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Targeted therapy has been widely adopted as an effective treatment strategy to battle
against cancer. However, cancers are not single disease entities, but comprising
multiple molecularly distinct subtypes, and the heterogeneity nature prevents precise
selection of patients for optimized therapy. Dissecting cancer subtype-specific signaling
pathways is crucial to pinpointing dysregulated genes for the prioritization of novel
therapeutic targets. Nested effects models (NEMs) are a group of graphical models that
encode subset relations between observed downstream effects under perturbations
to upstream signaling genes, providing a prototype for mapping the inner workings
of the cell. In this study, we developed NEM-Tar, which extends the original NEMs to
predict drug targets by incorporating causal information of (epi)genetic aberrations for
signaling pathway inference. An information theory-based score, weighted information
gain (WIG), was proposed to assess the impact of signaling genes on a specific
downstream biological process of interest. Subsequently, we conducted simulation
studies to compare three inference methods and found that the greedy hill-climbing
algorithm demonstrated the highest accuracy and robustness to noise. Furthermore,
two case studies were conducted using multi-omics data for colorectal cancer (CRC)
and gastric cancer (GC) in the TCGA database. Using NEM-Tar, we inferred signaling
networks driving the poor-prognosis subtypes of CRC and GC, respectively. Our model
prioritized not only potential individual drug targets such as HER2, for which FDA-
approved inhibitors are available but also the combinations of multiple targets potentially
useful for the design of combination therapies.

Keywords: nested effects model, molecular subtype, regulatory network, drug targets, combination therapy,
cancer

INTRODUCTION

Cancers are always discovered with diverse molecular properties and heterogeneous clinical
outcomes, even when occurring in the same tissues or organs. The last decade has witnessed
tremendous progress in the emerging field of precision medicine for more accurate patient
stratification for more optimized therapeutic treatment. However, it remains challenging to
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dissect the mechanism underlying cancer heterogeneity to
identify novel drug targets for further development of targeted
therapies. Targeted cancer therapy has been accepted as an
effective weapon to conquer cancer (Green, 2004; Polyak and
Garber, 2011), aiming to inhibit or reverse the activation patterns
of particular cancer signaling pathways. Unfortunately, pathway
redundancies, complex feedback, and crosstalk present in cancer
cells often result in drug resistance, leading to treatment failure
(Bernards, 2012; Yamaguchi et al., 2014). Therefore, a key task of
precision medicine is excavating the causally wired relationship
among the regulatory elements contributing to specific cancer
molecular subtypes.

The identification of cancer therapeutic targets has long
been based on biological knowledge and experience, which
lacks a global functional overview and efficiency. Mathematical
modeling could be established to predict potential drug targets
in a more systematic and efficient way (Supplementary Table 1).
Studies like iODA (Yu et al., 2020) integrated basic bioinformatic
analysis and statistical methods to prioritize consistent molecular
signatures at the pathway level for further investigation of
cancer pathogenesis. Methods such as MiRNA-BD (Lin et al.,
2018) focused on the discovery of novel miRNA biomarkers in
diseases such as cancers without training or prior knowledge.
Graphical models (e.g., Mezlini and Goldenberg, 2017; Manatakis
et al., 2018; Kotiang and Eslami, 2020) were also proposed
to infer the regulatory relationship and key driver genes,
but the networks mainly encode gene expression associations,
without support of multi-omics input. Other methods such
as the miRNA-TF-mRNA network (Pham et al., 2019) and
bipartite graphs (Bashashati et al., 2012) employed complex
structures and multi-omics data to identify cancer driver genes
as potential therapeutic targets. Furthermore, computational
models were also proposed for the personalized prediction of
potential target genes (Hou and Ma, 2014; Guo et al., 2018).
All the previous methods have demonstrated their usefulness in
various applications, very few of them infer causal regulatory
relationships. To study the dysregulation of pathways and
discover causal regulation relationships, typical approaches are
Bayesian Networks, which encode conditional independence
between genes on edges [e.g., (Sachs et al., 2005)]. However, the
major limitation of Bayesian networks lies in their requirement of
direct observations (e.g., protein activities) of perturbation effects
on other pathway components, which are often not available.
Besides, these methods require a large sample size to distinguish
signal from noise and only capture parts of biologically relevant
networks (Markowetz and Spang, 2007). Nested effects models
(NEMs) (Markowetz et al., 2005, 2007) are specifically tailored
to reconstruct signaling networks from indirect observations of
experimental interventions. In each experiment, one component
(e.g., kinase, transcription factor) in the pathway is perturbed,
and multi-dimensional downstream effects are observed (e.g.,
gene expression or cell imaging data) (Siebourg-Polster et al.,
2015). Different from other graphical models, NEMs encode
subset relations between the observed downstream effects
reporter genes under perturbations to signaling genes.

Nested effects models have been successfully applied to various
biological scenarios to infer the causal network of signaling

components (Markowetz et al., 2005; Fröhlich et al., 2009;
MacNeil et al., 2015). Several extensions of NEMs have been
proposed to adapt to different experimental designs or data types.
For instance, Boolean NEMs (Pirkl et al., 2016) creatively model
the data observed from arbitrary experimental combinations
(excitation or inhibition) to infer a full Boolean network and
further integrate the information from the literature. Epistatic
NEMs (Pirkl et al., 2017) infer epistasis from phenotyping screens
of double knock-downs systematically to test the hypothesis that
complex relationships between a gene pair can be explained
by the action of a third gene that modulates the interaction.
Dynamic NEMs (Anchang et al., 2009; Fröhlich et al., 2011)
infer the rate of the signal flow within the network from time-
series data, while Hidden Markov NEMs (Wang et al., 2014)
model the evolution of the network itself over time. Motivated
by a recent experiment investigating epithelial-mesenchymal
transition (EMT) in murine mammary gland cells, a method for
mapping a non-interventional time series onto a static NEM has
been proposed (Cardner et al., 2019). Furthermore, with the rapid
development of single-cell sequencing technologies, a mixture of
NEMs (M&NEM) tailored explicitly for single-cell data has been
proposed (Pirkl and Beerenwinkel, 2018), which is capable of
identifying different cellular subpopulations and inferring their
corresponding causal networks simultaneously.

To prioritize potential therapeutic targets based on
tissue-derived multi-omics profiles from cancer patients,
we extended the classic NEMs to model the causal effects
of genetic and epigenetic aberrations of various regulatory
components (kinases, transcriptional factors, and miRNAs)
on downstream genes. Importantly, the computational
evaluation was conducted on the regulatory components
(mainly on kinases) to prioritize potential therapeutic targets.
Figure 1 illustrated the framework and major steps of NEM-
Tar, which is featured with the following highlights: (1)
Different from pre-existing NEMs developed for phenotyping
screens derived from experimental perturbations, NEM-Tar
integrates natural perturbations (e.g., somatic mutations, DNA
hyper- or hypo-methylation, copy number alterations) at
multiple levels of gene regulations for cancer-related signaling
network inference; (2) We proposed a scoring method based
on information theory, named weighted information gain
(WIG), which could prioritize not only individual therapeutic
targets but also evaluate potential combination therapies; (3)
NEM-Tar is a versatile framework for dissecting the cancer
molecular heterogeneity by inferring cancer subtype-specific
signaling network. In our case studies, we specifically focused
on the ‘EMT’ subtype in gastric cancer and the CMS4-
mesenchymal subtype in colorectal cancer (Cristescu et al.,
2015; Guinney et al., 2015), which are associated with a
higher risk of recurrence and poor prognosis. Potential drug
targets are evaluated specifically on the epithelial-mesenchymal
transition (EMT) pathway, which is directly associated with
cancer metastasis.

In the ‘Methods and Materials’ section, we introduce the
design of NEM-Tar and the inference strategies in detail.
Subsequently, we test the effectiveness of NEM-Tar in a
simulation study (‘Results on Simulated Data’) and demonstrate
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FIGURE 1 | The workflow of NEM-Tar for cancer regulatory network inference and potential drug targets prioritization. Observations of the states of S-genes and
E-genes could be obtained after the preprocessing of multi-omics data. The signaling network regulating a specific cancer subtype will subsequently be inferred.
Finally, based on quantification of the causal impact and specificity to downstream genes using WIG, potential drug targets could be prioritized for single and double
perturbations.

its potential by real case studies on colorectal cancer and gastric
cancer (‘Results on Case Studies’).

MATERIALS AND METHODS

The Original Nested Effects Model (NEM)
We first review the original nested effect model (NEM), before
we explain in detail how we extend the original model design to
fit multi-omics high-throughput profiles of cancer samples.

The structure of a NEM is illustrated in Figure 2A. The goal
is to infer a signaling network G, represented as a directed acyclic
graph involving the regulators, also referred to as signaling genes
(S-genes), denoted Sj for j∈{1,2,....,m}. In the initial phenotypic
screening experiments, the S-genes are individually perturbed
during RNAi experiments, but their effects are indirectly
measured by the expression level of effect reporter genes (E-
genes) denoted Ei for i∈{1,2,....,n}. The attachment of E-genes
to S-genes is denoted by 2, within which θij = 1, if E-gene i is
attached to S-gene j. The initial NEMs assumed that each E-gene
can be attached to at most one S-gene, but this constraint has
been relaxed thereafter. Tresch and Markowetz have proposed
to add a null S-gene, which predicts no effects to account for
uninformative features (Tresch and Markowetz, 2008). Due to
the nested effects, it is assumed that the signaling network G
is transitively closed; for instance, in Figure 2A, the signaling
information flow is S2→S3→S4, then S2→S4 also exists.

We calculate the expected E-gene profiles for a given model
(G;2) as the matrix product with Eij the predicted state of
E-gene i under knock-down of S-gene j, namely Eexp = G2. In
practice, we cannot neglect potential noise in the data, which
requires probabilistic modeling to infer an optimal G to interpret
the observation of E-genes. Suppose that we have a candidate
network structure G, which is a directed acyclic graph (DAG) of
S-genes. What matters ultimately is the posterior probability of
the model:

P(G|E) =
P(E|G)P(G)

P(E)
(1)

where the denominator does not depend on G and cannot be
taken into consideration for model comparison. Since almost
nothing is known about the signaling network without reliable
knowledge, we use a uniform prior P(G). Thus, we focus entirely
on the likelihood P(E|G). It can be computed by marginalizing
over E-gene attachments 2, or by employing the maximum a
posteriori (MAP) estimate of 2 (Tresch and Markowetz, 2008).
The former choice is more intuitive, and the marginal likelihood
can be deduced as:

P(G|E) =

∫
P(E|G, 2)P(2, G)d2

=
1

mn

n∏
i=1

m∑
j=1

l∏
k=1

P(eik|G, θi = j) (2)
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FIGURE 2 | Illustration of the nested effects model and NEM-Tar for real cancer samples. (A) The S-genes are modeled as hidden variables, and their signaling
interaction graph G (solid arrows) is the target to infer. In experiments with perturbations to individual S-genes, differential expression of downstream genes could be
observed and considered as effect reporter genes (E-genes). Assuming that each E-gene is directly regulated by at most one S-gene in G, the maximum a posteriori
attachment 2 (dashed arrows) of effect genes to S-genes could be computed. The goal is to search for the signaling graph G, which yields the most likely
probabilistic nested effects. (B) For an extra observational dimension (the real patients), the necessary adjustment should be conducted on the design and inference
strategies of classic NEM. However, the information that needs to be inferred is also the hidden interaction between S-genes and the attachment relationship of
E-genes to S-genes.

The term P(eik|G, θi = j) in Eq. 2 reflects the noise rate of the
real binary observation eik. The distribution of eik is determined
by the network structure G and the error probabilities α and
β. For all E-genes and targets of perturbation, the conditional
probability of the E-gene state eik given the network structure G
can then be written as:

P(eik|G, θi = j) =

eik=1 eik=0{
α 1− α

1− β β

(3)

Equation 3 means that if Ei is not an influenced target of the
S-gene perturbed in experiment k, the probability of observing
eik = 1 is α (probability of false alarm, type-I error); the probability
to miss an effect and observe eik = 0 even though Ei is an
influenced target is β (type-II error).

NEM-Tar for Multi-Omics Data
Figure 1 illustrated the NEM-Tar framework and the major
steps involved to infer a signaling network using a toy example,
and a comparison was made with a classic NEM in observation
(Figure 2B). We model copy number variations or mutations

(e.g., copy number gain/mutation in kinase A/B, mutation
in transcription factor TF1), hyper/hypo methylation (e.g.,
hypermethylation of miRx) as ‘natural’ perturbations in tumors,
which are different from experimental perturbations such as
RNA interference and CRISPR-Cas9 knockout modeled in the
classic NEMs. Regulators considered in the network are master
regulators (TFs and miRNAs) and modulators (kinases) resulting
from the reported literature (Fessler et al., 2016; Kiyozumi et al.,
2018; Xie et al., 2020) and our prioritized candidates. Let S∗ = [skj]
denote the state matrix of regulators, where skj represents whether
regulator j is aberrant in sample k or not. Let G represent
the signaling network of interactions between kinases, TFs, and
miRNAs, and 2 be the set of interactions between regulators and
their target genes. Let D = [eki] be the observed data, where eki
denotes whether the E-gene i is differentially expressed in patient
k (eki = 1) or not (eki = 0). Our goal is to infer the optimal G that
maximizes the following marginal likelihood:

arg max
G

P(D|G, S∗) = arg max
G

∫
P(DE|G, S∗, 2)P(2|G, S∗)d2

(4)
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It should be noted that Eq 4 is similar to the original likelihood
function of NEMs (Eq. 2), except the state matrix of regulators
(S-genes) in our model.

When the optimal S-genes structure G∗ is determined, we
could compute the posterior probability for the edge between Sj
and Ei.

P(θi = j|G
∗

, S∗, D) =
1
Z

l∏
k=1

P(eki|G∗, S∗, θi = j) (5)

where Z is a constant and does not rely on G∗.
When using NEM-Tar in real-world applications, we

recommend the following criteria to select E-genes and S-genes.
E-genes can be prioritized based on genes that are significantly
upregulated (log2FC > 1, FDR < 0.01) in a specific cancer
subtype of interest. If the selected E-genes are too few (e.g.,
only 238 E-genes for the EMT subtype of GC based on the
above criteria), the cutoff on log2FC may be relaxed to 0.5.
The prioritization of S-genes can be based on the following
criteria. First, subtype-specific miRNAs and TFs can be
prioritized based on differentially expressed genes. By default,
we recommend selecting TFs that are significantly upregulated
(log2FC > 1 and FDR < 0.01) and miRNAs that are significantly
downregulated (log2FC < −1 and FDR < 0.01). However,
due to the heterogeneity between different cancer subtypes,
the number of candidate miRNAs or TFs may be limited. In
the situation, the cutoff on log2FC may also be relaxed to 0.5.
Second, the selection of S-genes should also satisfy the following
perturbation criteria: (1) Mutation: the cutoff on mutation
frequency in kinases/TFs should be >5%. When the overall
mutation frequency of candidate S-genes is lower than 5%, the
cutoff might also be relaxed appropriately. (2) copy number
variations (CNVs): kinases and membrane proteins with >5%
frequency of copy number gains. (3) DNA methylation: miRNAs
with significant hypermethylation (delta-beta >0.1, BH-adjusted
P < 0.001).

Inference Methods of NEM-Tar
The original NEM performs an exhaustive search over all
transitively closed graphs to identify the optimal graph by
the maximum likelihood estimation (Markowetz et al., 2005).
Since the number of candidate network structure G grows
exponentially with the number of nodes, an exhaustive
enumeration is not feasible for signaling networks with more
than five S-genes. In real applications, it is always necessary to
search for a larger network, where heuristics are more appropriate
to explore the network space. Many heuristic inference methods
have been proposed, with respective advantages as well as
limitations. To determine the optimal inference strategy for
NEM-Tar, we investigated the triple relations, greedy hill-
climbing, and MCMC sampling methods.

Instead of scoring the whole network, the model could be
learned using a pairwise method (Markowetz et al., 2007). For
a pair of genes A and B, their relationship could be determined
by maximum a posteriori (MAP) from four possible models:
A·B (unconnected), A→B (effects of A are a superset of effects
of B), A ← B (subset), and A ↔ B (undistinguishable effects).

However, the pairwise learning assumes independence of edges,
which is not true in transitively closed graphs. Hence, the natural
extension of pairwise learning is the inference from the triples of
nodes (Markowetz et al., 2007), which comprises two steps. First,
for each triple (x,y,z) in the graph with n nodes, all 29 possible
quasi-orders are scored, and the MAP model is selected. Edgewise
model averaging was subsequently employed to combine all
models into the final graph.

Greedy hill-climbing is a more straightforward optimization
strategy known from the literature (Russell and Norvig, 2016).
Given an initial network hypothesis (usually an empty graph), a
local maximum of the likelihood function could be reached by
successively adding an edge. This procedure is continued until
no improving edge can be found anymore. We also evaluated the
performance of greedy hill-climbing for the benchmark in our
simulation study.

Furthermore, Markov chain Monte Carlo (MCMC) methods
are a class of algorithms for sampling from a probability
distribution. Niederberger et al. (2012) proposed an inference
method by combining MCMC sampling with an Expectation-
Maximization (EM) algorithm. For reconstructing evolving
signaling networks, MCMC sampling was also an important
procedure in HM-NEM (Wang et al., 2014). In our simulation
study, we also examined MCMC sampling, and the detailed
pseudocode is in Supplementary Figure 1.

Weighted Information Gain (WIG) for
Evaluation of the Causal Impact of
S-Genes on Downstream Reporter
Genes
Given the inferred optimal network G∗ and interactions between
regulators and target genes 2∗, we sought to quantify the causal
impact that a regulator has on downstream reporter genes,
especially signature genes for a particular biological process of
interest such as epithelial–mesenchymal transition (or EMT)
(Nieto et al., 2016; Lambert et al., 2017). The fundamental
assumptions of the assessment criteria for the impact should
satisfy: (1) The more E-genes related to a particular pathway are
affected by an S-gene, the more significant the influence is; (2)
The more likely a particular E-gene is attached to an S-gene,
the higher the global influence of the S-gene is. On the basis
of the above assumptions, we defined a score called Weighted
Information Gain (WIG) on every E-gene within the regulons
of S-genes based on KL divergence (Kullback and Leibler, 1951)
in information theory, which measures the information gain after
network inference.

WIG(Sj) =
∑r

i=1 WIG(Sj → Ei)

=
∑r

i=1 P(Sj → Ei) log[(m+ 1)P(Sj → Ei)]
(6)

As shown in Figure 3, before the network inference, for every
E-gene, we assume that the probability of an E-gene attached
to an S-gene is uniformly distributed, which could be denoted
asP(θi = j|G) = 1/m+ 1, if we set a ‘null’ S-gene and no
particular prior knowledge is involved. While after the inference,
the posterior distribution of nested effect positions of E-genes
changes intoP(Sj → Ei) = p(θi = j|G∗, S∗, D). According to the
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original definition of KL divergence, the increase of the
information of the attachment of an E-gene could be computed,
like the highlighted WIG(S3→E3) and WIG(S3→E14). As for
an S-gene, the global causal impact over all the E-genes or
some signature genes of key pathways could be obtained by
summing up the WIG of related E-genes, as shown in Eq. 6. The
statistical significance for the specificity of WIG on key pathways
could be estimated by the bootstrap of the same number as the
pathway signature genes of arbitrary E-genes within the regulon
of a S-gene.

Ultimately, kinases/TFs/miRNAs with top causal WIG and/or
enough significance will be prioritized as potential drug targets.
For more convenient drug design, kinases, or membrane
proteins are preferred.

Data Source
In our case studies, we analyzed multi-omics data for colorectal
cancer (CRC) and gastric cancer (GC) patients from TCGA,
including the following data types: (1) whole-genome gene
expression data for 382 CRC and 415 GC patients based on RNA
sequencing platform; (2) copy number variation data (scores on
gene level) for 374 CRC patients and 268 GC patients; (3) somatic
mutations profiles for 423 CRC patients and 433 GC patients;
(4) miRNA expression data for 297 CRC and 446 gastric tumors
based on Illumina sequencing platform; (5) DNA methylation
data for 396 CRC and 395 GC tumor samples based on Infinium
Methylation 450K platform.

RESULTS

Results on Simulated Data
Generation of in silico Data
The simulations evaluating the inference strategies of NEM-Tar
were performed on datasets generated with varying network sizes
and noise levels. The generation of simulated data is described in
detail as follows.

(1) S-gene graph generation: We first randomly generated
a graph of m S-genes, m∈ {6,8,10,12,15,20,30}. These graphs of
S-genes were transformed to transitively closed graphs.

(2) S-gene state generation: For each S-gene graph generated,
we simulated patient samples with a random fraction of S-genes
perturbed according to the real proportions of S-genes with
genetic and epigenetic alterations in the gastric cancer case study.
An S-gene state matrix was subsequently generated according to
the S-gene graph and simulated perturbations.

(3) Attachment of E-genes to S-genes: In each S-gene graph
simulated, we attached effect reporter genes (or E-genes) to each
S-gene, and the number of E-genes per S-gene was roughly
equivalent to the average number of E-genes in the gastric
cancer case study.

(4) Generation of E-gene observations: For each simulated
graph, with the corresponding S-gene state matrix and E-gene
attachment, we next generated the corresponding E-gene
observation matrix. For E-genes without downstream effects
expected, observations were sampled from a null distribution, or
otherwise from an alternative distribution. In the simplest case,

we only sampled binary data, where 1 indicated an effect and 0 no
effect, according to the Type-I error αsim (FP) and Type-II error
βsim (FN).

Using the simulation strategy, we generated data to test the
performance of NEM-Tar:

(1) Scalability. Fix αsim = βsim = 0.05 and vary the number
of S-genes from 6 to 30, representing the size of a typical
signaling pathway. For each number of S-genes, 200 different
random S-gene networks were generated, and the simulated
S-gene network structures were inferred using MCMC sampling,
triple relations, and greedy hill-climbing, respectively;

(2) Robustness to noise. Fix βsim = 0.05 and the number of
S-genes m = 12 (medium size) and vary αsim from 0.05 to 0.5. For
the inference of S-gene network, we set α = 0.2, β = 0.1, which
were arbitrarily chosen and different from the αsim and βsim used
for the generation of E-gene data. The evaluation criteria of their
performance were TPR = TP/(TP+ FN), TNR = TN/(TN+ FP),
Accuracy = (TP + TN)/(TP + FN + TN + FP) and
Precision = TP/(TP+ FP).

Benchmark the Performance of Inference Methods
The simulation results are shown in Figure 4. Using MCMC
sampling (Figure 4A), although the performance showed a
decreasing trend due to the increase of the size of the network,
the magnitude of decrease was quite significant (e.g., the averaged
TPR of 200 networks decreased from 0.867 to 0.136). Especially,
the most concerned measure ‘Precision’ was unacceptable in real
applications, no matter for smaller networks (S-genes ≤ 10)
or larger networks (S-genes > 10). Even for smaller networks
with only six S-genes the instability of MCMC was evident,
as the median of Precision (0.845) was much larger than the
mean (0.770). For relatively large networks (e.g., 20 S-genes),
the averaged Precision was too low (0.328) to accept. Using
the triple relations inference, the result was slightly better
than MCMC sampling (Figure 4B), but a dramatic decrease
of Precision was also observed for networks with ≥ 10 S-
genes. A special observation on the triple relations is that
the performance on the networks with a medium size (10-15)
showed fluctuating TPR, TNR, and Accuracy rather than a steady
decrease, suggesting that the inference based on triple relations
was also unstable.

Compared to MCMC sampling and triple relations methods,
greedy hill-climbing showed much higher performance
(Figure 4C-D). For small and medium networks (6-15 S-
genes), the median of all the evaluation metrics were close to 1.
Even for relatively large networks, the TPR and Precision were
still reliable. Though, in essence, the greedy hill-climbing is likely
to be trapped in a local optimum, at least for the graphs with
less than 30 S-genes, the performance is reasonably good. The
robustness for the inference with varying αsim based on greedy
hill-climbing is also stable and acceptable. Even for the very noisy
condition (αsim = 0.5), the averaged TPR and Precision could
still reach 0.947 and 0.766, respectively. Furthermore, compared
to the other two methods, the greedy hill-climbing algorithm
was not only superior in the performance, but also less time
consuming (Supplementary Table 2).
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FIGURE 3 | Illustration for the definition of Weighted Information Gain (WIG) using a toy example. (A) A toy network containing four S-genes with their corresponding
E-gene attachment. Note that the hierarchies of S1 and S2 genes cannot be distinguished. (B) Posterior effect positions obtained after network inference;
(C) Uniformly distributed effect positions before inference. Suppose that the attached E-genes to a S-gene are all signature genes related to a pathway of interest
(e.g., EMT), it could be easily calculated that S4 has the highest causal impact on the particular downstream pathway, and S1 and S2 have the same impact. As an
example, we illustrated the calculation of WIG(S3).

Therefore, based on the simulation study, we employed
greedy hill-climbing as the inference method for the
following case studies.

Results on Case Studies
To exemplify NEM-Tar for inference of cancer subtype-
specific signaling network and prioritization of potential
therapeutic targets, we did two case studies using multi-
omics data in gastric cancer and colorectal cancer,
respectively.

Inferring the Signaling Network Driving the EMT
Subtype of Gastric Cancer and Prioritization of
Potential Drug Targets
Gastric cancer (GC), a leading cause of cancer-related deaths,
is known to be a heterogeneous disease. The presence of
molecular heterogeneity in GC has been shown through
the existence of subtypes with distinct genetic/epigenetic
aberrations associated with clinical outcomes. Based on
300 primary gastric cancer tumor specimens, the Asian
Cancer Research Group (ACRG) identified four molecular
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FIGURE 4 | A comparison of the performance of three representative network inference strategies. (A–C) The performance of NEM-Tar based on (A) MCMC
sampling, (B) triple relations, and (C) greedy hill-climbing, respectively, on simulated data for varying numbers of S-genes. For each method, we generated 200
random signaling networks and inferred their structures using NEM-Tar from the simulated E-gene data. (D) The performance of NEM-Tar based on greedy
hill-climbing testing its robustness to simulated data with different levels of noise.

subtypes with distinct patterns of molecular alterations and
clinical outcomes (Cristescu et al., 2015). Among these four
subtypes, patients classified to the MSS/EMT (in short, EMT)
subtype showed the worst prognosis. Despite the extensive
subtyping studies published, the regulatory mechanism
underlying specific molecular subtypes has not been fully
explored explicitly. Here, we employed NEM-Tar to infer
the signaling network driving the EMT gastric cancer and
quantitatively evaluate single and double perturbations to
prioritize potential drug targets.

For the choice of the regulatory elements, we focused
on the signature genes of the MAP-kinase pathway (KRAS,
BRAF), frequently mutated kinases/TFs (TP53, ARID1A, CDH1,
and ERBB2) (Gastric Adenocarcinoma - My Cancer Genome)
and significantly upregulated TFs (log2FC > 0.5, BH-adjusted
P < 0.01) as well as downregulated miRNAs (log2FC < −1,
BH-adjusted P < 0.01) in the EMT subtype. The regulatory
elements were filtered through the integration with the somatic
mutation profiles. More specifically, we kept the kinases and TFs

with mutation frequency > 5% and ZEB2 (Dai et al., 2012) and
KRAS (Yoon et al., 2019), which were well characterized before
for their roles in EMT regulation. As a result, we included nine
kinases/TFs in 177 patient samples for the following analysis. The
perturbations to miRNAs were measured by DNA methylation
in the promoters, and six miRNAs were selected with highly
significant hypermethylation (delta-beta > 0.1, BH-adjusted
P < 0.001) in the samples of the EMT subtype. Since copy
number variations (CNVs) were frequently found in kinases and
membrane proteins in many cancer types, we also incorporated
copy number gains as a type of perturbation in the case study.
Furthermore, 1194 genes significantly upregulated in the EMT
subtype (log2FC > 0.5, BH-adjusted P < 0.01) were selected as
E-genes for the following analysis.

In the classic NEMs, E-genes’ states are the production
of individually perturbed S-genes, while for NEM-Tar
E-genes’ states can be the production of multiple S-genes
with genetic and/or epigenetic perturbations in a tumor sample.
Therefore, the concepts of positive and negative controls
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for the discretization of E-genes’ states should be revised
accordingly. A positive control referred to the patients belonging
to a particular subtype (e.g., EMT subtype) but without any
(epi)genetic aberrations in the S-genes. In contrast, a negative
control referred to patients not assigned to a particular subtype
(e.g., Non-EMT subtypes) and had no aberrations in any
S-genes. Using the strategy, we transformed the continuous
gene expression data into binary observations. Denote Cik as the
continuous expression level of Ei of patient k. Let µi

+ be the
mean of positive controls for Ei, and µi

− the mean of negative
controls. To derive binary data Eik, we defined individual cutoffs
for every gene Ei by:

Eik =

{
1 if Cik<σ · µ+i + (1− σ) · µ−i
0 else

(7)

Based on the method introduced in Markowetz et al. (2005), to
make a balance between Type-I and Type-II errors, we set σ = 0.5
for the discretization. As a result, we obtained the estimated error
rates α = 0.07, β = 0.08.

Using the discretized E-gene data, we inferred the S-gene
network regulating the EMT subtype of GC using NEM-Tar
(Figure 5A). Interestingly, CDH1, ERBB2 (HER2), and KRAS
were predicted to be sitting at the top hierarchies in the signaling
network. Indeed, Trastuzumab, a monoclonal antibody for
human epidermal growth factor receptor 2 (HER2), has already
been established with chemotherapy as a first-line treatment for
HER2-positive metastatic advanced GC patients (Bang et al.,
2010). Besides, CDH1, coding for the E-cadherin protein, was
reported to be linked to GC susceptibility and tumor invasion,
and preliminary studies indicated the potential clinical value to
employ CDH1 haplotypes in metastatic GC to stratify patients
that will benefit from Trastuzumab-based treatments (Caggiari
et al., 2017). NEM-Tar further supports the important discovery

by computationally predicting and statistically evaluating the
potential drug targets. Summarizing the single and double S-gene
perturbations (to kinases only) with top WIGs, we found that
both CDH1 and HER2 had a strong causal impact on the
signature genes of epithelial-mesenchymal transition (EMT)
(Zhao et al., 2019). More importantly, the causal effect was
statistically significant and specific to the EMT pathway only
(Table 1), as quantified by permutation tests, i.e., random
sampling of E-genes with the same number of EMT signature
genes in the regulon of a S-gene, and calculating the frequency
of observing a same or higher WIG from the sampled E-gene
sequences. Moreover, the combinatorial perturbations (Table 2)
to CDH1 and ERBB2, CDH1 and KRAS or CDH1 and BRAF
had the strongest and specific causal effect on the EMT pathway
among all possible combinations.

Inferring the Signaling Network Driving the
CMS4-Mesenchymal Subtype of Colorectal Cancer
and Prioritization of Potential Drug Targets
Similar to gastric cancer, colorectal cancer (CRC) is also
a heterogeneous disease posing a challenge for accurate
classification and treatment of this malignancy. Recently, CRC
patients have been categorized using unsupervised classification
of gene expression profiling, which resulted in distinct CRC
subtypes. In order to generate unified subtyping of CRC,
based on a large panel of CRC patients (n = 4151), the
CRC Subtyping Consortium identified four consensus molecular
subtypes (CMSs) (Guinney et al., 2015). Linking the subtypes to
disease outcomes revealed that the mesenchymal subtype CMS4
displayed a worse prognosis, highlighting the clinical relevance of
the CMS taxonomy. As another case study, we employed NEM-
Tar to infer the signaling network driving the CMS4 CRC and

FIGURE 5 | The case studies of NEM-Tar on gastric cancer and colorectal cancer. (A) Reconstructed signaling network for the EMT subtype of gastric cancer.
(B) Reconstructed signaling network for the CMS4 subtype of colorectal cancer.
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TABLE 1 | WIGs assessing the impact of single perturbations (kinase only) on EMT in GC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG (100,000
sampling, BH-adjusted P)

CDH1 591 57 66.15 <1e-05

ERBB2 491 44 51.65 <1e-05

KRAS 229 20 20.05 <1e-05

BRAF 14 1 2.71 3.21e-01

TABLE 2 | Double perturbations (kinase only) with top WIGs in GC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG
(50,000 sampling, BH-adjusted P)

CDH1/ERBB2 591 57 66.15 <5e-04

CDH1/KRAS 591 57 66.15 <5e-04

BRAF/CDH1 591 57 66.15 <5e-04

KRAS/ERBB2 558 51 59.12 <5e-04

BRAF/ERBB2 505 45 54.36 <5e-04

KRAS/BRAF 229 20 20.05 <5e-04

calculated WIGs for single and double perturbations to signaling
elements in order to prioritize potential drug targets.

To select regulatory elements, we incorporated the signature
genes of the MAP-kinase pathway (KRAS, BRAF, PIK3CA),
and the TFs significantly upregulated in CMS4 (log2FC > 1,
BH-adjusted P < 0.01) as well as the miRNAs significantly
downregulated in CMS4 (log2FC <−0.5, BH-adjusted P < 0.01).
The regulatory elements were filtered through the integration
with the somatic mutation profiles. More specifically, the kinases
and TFs with the mutation frequency > 5% were left, resulting
in 11 kinases/TFs in 212 patient samples for analysis. The
perturbations to miRNAs were measured by DNA methylation
in the promoters, and two miRNAs were selected with highly
significant hypermethylation (delta-beta > 0.1, BH-adjusted
P < 0.001) in the samples of the CMS4 subtype. The copy
number variations (CNVs) profiles were also preprocessed, but
the frequency of copy number gain was too low (less than
5%) to integrate. Finally, after integration with downstream
E-genes (log2FC = 1, BH-adjusted P = 0.01) that are differentially
expressed between CMS4 and non-CMS4 samples, we obtained a
212× 1337 E-gene observation matrix for the following analysis.

The whole discretization analysis of E-genes is similar to
what we did in gastric cancer. In CRC, the positive controls are
patients belonging to the CMS4 subtype without any aberrations
in any S-genes, while the negative controls are patients assigned
to Non-CMS4 subtypes without aberrations in any S-genes.
We set σ = 0.6 for the discretization, and the estimated error
rates were α = 0.22 and β = 0.18. Using the discretized E-gene
data, we inferred the S-genes network regulating the CMS4
subtype of CRC (Figure 5B). Based on the WIG calculation
(Table 3, 4), we found that the perturbation on KRAS has the
highest impact on the EMT pathway, though the influence is
not specific to EMT, which is reasonable as KRAS is a frequently
mutated oncogene in cancer. Currently, a variety of methods to
inhibit KRAS for the treatment of metastatic CRC have been
proposed (Porru et al., 2018). Besides, CTNNB1, which encodes

β-catenin, has the second highest impact on the EMT pathway.
CTNNB1 is involved in the Wnt-β-catenin signaling pathway,
which often drives a transcriptional program that is reminiscent
of EMT (Anastas and Moon, 2013). Particularly, the role of Wnt-
β-catenin signaling in CRC and its potential as a therapeutic
target for CRC has been extensively explored. Existing drugs
targeting β-catenin, such as Aspirin, are already available, and
several small molecules are under clinical trials (Cheng et al.,
2019). Furthermore, the combinatorial perturbations to KRAS
and CTNNB1, as well as KRAS and TGFBR2, enhanced the
causal impact on the EMT pathway compared to their single
perturbations, suggesting potential combination therapies for the
specific CMS4 subtype of CRC.

DISCUSSION

Although quite a few computational approaches have been
developed for the identification of cancer therapeutic targets, they
differ in the types of input data, the design of models/algorithms,
the output of the results and the angles of biological
interpretations. The unique strength of our NEM-Tar lies in its
capability to prioritize not only individual therapeutic targets
but also combinational therapies, which has not been realized
before as far as we know. As a result, it is very difficult
to quantitatively compare NEM-Tar with other computational
approaches directly. However, we tried to make a rough
comparison with two widely used methods, DawnRank (Hou
and Ma, 2014) and DriverNet (Bashashati et al., 2012), which
were proposed to discover cancer driver genes. Using DawnRank,
we found that for the CMS4 subtype in CRC, AR, and GLI2,
two TFs in our regulatory network, were also ranked among the
top 5% (Supplementary Table 3). More excitingly, CDH1 and
TP53 were ranked as the top two drivers for the EMT subtype
in GC (Supplementary Table 3). When it comes to the result of
DriverNet, only CDH1 and TP53 were prioritized as the 2nd and
3rd for EMT subtype in GC (Supplementary Table 4). However,
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TABLE 3 | WIGs assessing the impact of single perturbations (kinase only) on EMT in CRC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG (100,000
sampling, BH-adjusted P)

KRAS 525 49 38.61 1.48e-01

CTNNB1 151 14 23.26 < 1e-05

TGFBR2 85 10 16.67 < 1e-05

PIK3CA 26 3 5.98 3.14e-02

BRAF 15 2 3.94 5.21e-01

ERBB4 23 2 2.95 5.25e-01

TABLE 4 | Double perturbations (kinase only) with top WIGs in CRC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG (50,000
sampling, BH-adjusted P)

KRAS/CTNNB1 650 60 55.88 <5e-04

KRAS/TGFBR2 584 56 49.29 2.73e-04

KRAS/ERBB4 548 51 41.56 1.06e-01

KRAS/BRAF 525 49 38.61 2.62e-01

KRAS/PIK3CA 525 49 38.61 1.71e-01

BRAF/CTNNB1 151 14 23.26 <5e-04

PIK3CA/CTNNB1 151 14 23.26 <5e-04

TGFBR2/CTNNB1 151 14 23.26 <5e-04

ERBB4/CTNNB1 151 14 23.26 < 5e-04

TGFBR2/ERBB4 108 12 19.62 4.20e-05

no driver genes were found consistent between NEM-Tar and
DriverNet for the CMS4 subtype of CRC (Supplementary
Table 5). It should be noted that DawnRank and DriverNet
could dissect the driver genes only based on the modeling
of association networks, which lack the inference of causal
relationships and cannot measure double or multiple therapeutic
targets. Furthermore, neither DriverNet nor DawnRank were
designed to distinguish TFs and kinases and could not
incorporate perturbation information at other levels of gene
expression regulations except for gene mutations. Instead, NEM-
Tar was developed to prioritize potential therapeutic targets using
regulatory network inference based on nested effects models.

The hierarchical causal relationship between signaling
components is not only central for understanding the regulatory
mechanism of cancers but also critical for developing potential
drug targets to overcome the pervasive genetic redundancies.
Inspired by NEMs encoding subset relations between observed
downstream effects of experimental perturbations in signaling
genes, we proposed NEM-Tar to infer signaling networks from
various genetic and epigenetic perturbations to regulatory
elements such as kinases, transcriptional factors, and miRNAs.
The marginal likelihood function of NEM-Tar is similar to
the original likelihood function of NEM, except the state
matrix of regulators (S-genes) in our model. Based on
NEM-Tar, a new score named weighted information gain
(WIG) was defined to assess the causal impact of S-genes on
downstream reporter genes.

Colorectal cancer and GC are two major malignancies of
the gastrointestinal tract, for which molecular subtyping has
been well studied. To exemplify the usefulness of NEM-Tar, we

performed two case studies to infer signaling networks that drive
the poor prognosis subtypes of GC and CRC, respectively. In
GC, we found that among the top significant signaling genes
with high WIGs, CDH1, and ERBB2 are particularly attractive.
Indeed, the FDA-approved drug Trastuzumab targeting ERBB2
has already been established with chemotherapy as a first-line
treatment for HER2-positive metastatic advanced GC patients.
Our further evaluation of combinatorial perturbations suggested
that simultaneous inhibition of CDH1 and ERBB2/KRAS/BRAF,
ERBB2, and KRAS/BRAF, as well as KRAS and BRAF may be
potential combination therapies. For CMS4 CRC, except for
KRAS, a representative oncogene employed as a therapeutic
target, the kinase CTNNB1 with the second highest WIG
may be a potential alternative therapeutic target to CRC, and
combinatorial inhibition of KRAS and CTNNB1 may provide a
potential combination therapy.

Within the inferred signaling networks, we noticed many
interesting interactions between the S-gene regulators. First, in
the signaling network inferred for the EMT subtype in GC
(Figure 5A), CDH1 and ERBB2 were prioritized as potential
therapeutic targets (Table 1). A signal flow was inferred between
them, which could be explained by the direct interaction
(PPI) between them (Guo et al., 2014) or their PPIs via
β-catenin (CTNNB1) (Schroeder et al., 2002; Tang et al.,
2008). The signal flow miR-200a→ZEB2 could be strongly
supported by the previous finding that miR-200a can regulate
the expression of ZEB2 by directly binding the 3′UTR (Cong
et al., 2013). Furthermore, the signal flow KRAS→miR-200a
was also supported by the previous finding that oncogenic
KRAS activation can suppress the expression of miR-200s
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(Zhong et al., 2016), and TP53→ZEB2 could be verified
by their interactions with the miR-200 family (Rokavec
et al., 2014). Second, in the signaling network inferred for
the CMS4 subtype in CRC (Figure 5B), the advantages of
our work were demonstrated more explicitly. The signal
flow KRAS→PIK3CA→BRAF, supported by the MAP-kinase
pathway (Dhillon et al., 2007), i.e., the PPIs between KRAS
and PIK3CA (Hart et al., 2015) and between PIK3CA and
BRAF (Shen et al., 2017), which is known as a typical signaling
pathway driving EMT. The interaction between TGFBR2 and
SMAD4 is involved in the TGFβ signaling pathway (Zhang et al.,
1996). The signal flow CTNNB1→TGFBR2 is involved in the
crosstalk between Wnt/β-catenin and TGFβ signaling pathways
(Tian and Phillips, 2002). Together, the literature supports the
effectiveness of NEM-Tar in predicting the regulatory hierarchy
involving multiple redundant pathways driving EMT. Moreover,
we also found signal flows between miRNAs, like the links miR-
200a→miR-425, miR-141→miR-135b (Figure 5A) and miR-
200a→miR-141 (Figure 5B), which are interesting but have
not been previously reported yet. The miRNAs may interact
indirectly via intermediate regulators, which were not included
in the regulatory network inference based on our criteria for
the selection of S-genes. The crosstalk between the miRNAs
might also indicate their synergistic relationship on co-regulating
downstream targets, which is frequently reported in the literature
[reviewed in Xu et al. (2016)]. Integrating the computational
prediction with experimental validation will be more convincing
in revealing the crosstalks between the miRNAs, which will be an
interesting direction to explore in our future work.

NEM-Tar can be improved in multiple ways in our
future work. First, known signaling pathway structures can be
incorporated into the model as prior knowledge to strengthen the
accuracy of inference. Second, NEM-Tar proposed in this article
is designed for binary effects and treats E-genes as independent
random variables. However, we can possibly model log odds
ratios like the methods in Tresch and Markowetz (2008), where
alternative and null distribution are both normal, to decrease the
information loss. Third, in this work, we focused on the S-genes
with subtype-specificity or with functional relations reported to
key pathways (e.g., MAP-kinase) or biological processes (e.g.,
EMT), and therefore the number of S-genes was limited. The
limitation of scalability to a larger perturbation scale could be one
future direction to improve our method. In our simulation study,
greedy hill-climbing demonstrated high and robust performance
in signaling networks with up to 30 S-genes, which meets the
regular need for signaling network inference and drug targets
prioritization. Many techniques may improve the performance
of MCMC sampling (Andrieu et al., 2003), which warrants
further exploration in our future work. Last but not least,

we can also change the modeling framework radically using
graph embedding based methods (Yue et al., 2020), as the
observation of S-genes and E-genes are all high-dimensional
vectors. However, the question of how to preserve the assumption
of nested subset structures in the embedding space needs to be
conquered tactfully.

In conclusion, NEM-Tar presents a useful computational
framework for dissecting the regulatory architecture
underlying specific cancer subtypes and prioritizing
potential drug targets. With the explosive increase of high-
throughput sequencing data, NEM-Tar warrants further
evaluation using large-scale multi-omics data cohorts
in the future.
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