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Abstract

Background: Non-parametric bootstrapping is a widely-used statistical procedure for assessing confidence of
model parameters based on the empirical distribution of the observed data [1] and, as such, it has become a
common method for assessing tree confidence in phylogenetics [2]. Traditional non-parametric bootstrapping does
not weigh each tree inferred from resampled (i.e., pseudo-replicated) sequences. Hence, the quality of these trees is
not taken into account when computing bootstrap scores associated with the clades of the original phylogeny. As
a consequence, traditionally, the trees with different bootstrap support or those providing a different fit to the
corresponding pseudo-replicated sequences (the fit quality can be expressed through the LS, ML or parsimony
score) contribute in the same way to the computation of the bootstrap support of the original phylogeny.

Results: In this article, we discuss the idea of applying weighted bootstrapping to phylogenetic reconstruction by
weighting each phylogeny inferred from resampled sequences. Tree weights can be based either on the least-
squares (LS) tree estimate or on the average secondary bootstrap score (SBS) associated with each resampled tree.
Secondary bootstrapping consists of the estimation of bootstrap scores of the trees inferred from resampled data.
The LS and SBS-based bootstrapping procedures were designed to take into account the quality of each “pseudo-
replicated” phylogeny in the final tree estimation. A simulation study was carried out to evaluate the performances
of the five weighting strategies which are as follows: LS and SBS-based bootstrapping, LS and SBS-based
bootstrapping with data normalization and the traditional unweighted bootstrapping.

Conclusions: The simulations conducted with two real data sets and the five weighting strategies suggest that the
SBS-based bootstrapping with the data normalization usually exhibits larger bootstrap scores and a higher
robustness compared to the four other competing strategies, including the traditional bootstrapping. The high
robustness of the normalized SBS could be particularly useful in situations where observed sequences have been
affected by noise or have undergone massive insertion or deletion events. The results provided by the four other
strategies were very similar regardless the noise level, thus also demonstrating the stability of the traditional
bootstrapping method.

Background
In statistics, bootstrapping is a general purpose para-
meter estimation approach falling within a broader class
of resampling methods [1]. Bootstrapping allows one to
assess whether the data distribution has been influenced
by stochastic effects. Non-parametric bootstrapping pro-
ceeds by generating pseudo-replicates of the observed
data. Each of the pseudo-replicated data sets is obtained

by random sampling with replacement from the original
data set. On the other hand, parametric bootstrapping
involves sampling from a fitted parametric model,
obtained by substituting the maximum likelihood esti-
mator for the unknown population parameter.
Non-parametric bootstrapping is the most commonly

used robustness estimation method in phylogenetics
[2,3]. It is applied to evaluate the reliability of a phyloge-
netic tree by examining how often a particular clade, or
the corresponding branch, in the tree appears when the
original nucleotides or amino acids are resampled. The
tree inferring method used to reconstruct the phylogeny
from the original data should be carried out to infer the
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phylogenies from the resampled data. The frequency
with which a given branch is found represents its boot-
strap support (i.e., bootstrap score).
Different parametric bootstrapping procedures related

to phylogenetic analysis were proposed by Huelsenbeck
et al. [4], Swofford et al. [5] and Goldman et al. [6]. Para-
metric bootstrapping can be carried out when we assume
an explicit model of sequence evolution. In this case, the
original data are used to estimate the stochastic evolu-
tionary parameters, which may include the site-specific
rates of evolution, the distribution from which the rates
of evolution are drawn or the substitution probabilities
on each branch, characterizing the original data set.
In spite of concerns, controversy and confusion over

the interpretation of bootstrap scores [7-10], bootstrap
analysis has been playing a prominent role in many phy-
logenetic studies and will likely remain a key method for
assessing branch support of phylogenetic trees [11]. It is
often assumed, for instance, that the bootstrap support
of a branch represents the probability that this branch is
correct. However, this point of view is over-simplified
[12]. For example, in the case of the famous Felsenstein
zone quartet tree the maximum parsimony and UPGMA
methods converge to the wrong tree as the sequence
length increases, and thus both assign very high boot-
strap scores to the clades of the wrong phylogeny
[13,14]. The best way to interpret the bootstrap support
of a given clade is to consider that it indicates the prob-
ability that this clade would continue to be found if the
same phylogenetic inferring method was applied to
pseudo-replicated data having the same empirical distri-
bution as the original data set [12].
In this article we introduce two weighting schemes which

can be used to assign weights to each of the trees obtained
from pseudo-replicated data. One of them is based on the
LS estimate of “pseudo-replicated” trees, whereas the sec-
ond one proceeds by assessing bootstrap support of those
trees (i.e., carries out secondary bootstrapping). These two
weighting schemes can be used to correct the standard
non-parametric bootstrapping procedure that assign equal
weights to each of the phylogenies obtained from the
pseudo-replicated sequences. Such a correction will take
into account the quality of each pseudo-replicated phylo-
geny. The LS coefficient, as well as the ML function value
or the Maximum parsimony score, can be used as an esti-
mate of how close the distance matrix obtained from the
pseudo-replicated sequences (or the set of pseudo-repli-
cated sequences, in the case of ML or MP) is to the space
of trees. For instance, if it is located far away from this
space (i.e., this corresponds to a high value of the LS coeffi-
cient) compared to the other trees inferred form pseudo-
replicates, then a low weight should be assigned to this tree
(and to this pseudo-replicated data set). Alternatively, sec-
ondary bootstrapping can be performed to obtain a

robustness estimate for each of the trees built from pseudo-
replicates. Each of the pseudo-replicated multiple sequence
alignments (PRA) obtained from the original data can be
resampled once again to obtain secondary pseudo-repli-
cated multiple sequence alignments (SPRA) that can be, in
turn, used to assess the bootstrap support of the tree
inferred from PRA. In this way, an average bootstrap score
of internal branches of each pseudo-replicated tree can be
used to assign a weight to this tree. Thus, a higher average
bootstrap score of a “pseudo-replicated” tree will corre-
spond to a higher weight assigned to this tree.
This article is organized as follows. In the Methods

section, we present two weighting schemes, based on
the LS and secondary bootstrapping, used to assign
weights to “pseudo-replicated” trees. There we also dis-
cuss the possibility of normalization of the obtained tree
estimates. Then, in the Results section, we present the
simulation results for the traditional (unweighted) boot-
strapping and four different bootstrapping procedures
inducing weights, while considering two real data sets of
12 DNA sequences (Primate data set from [15]) and 32
protein sequences (PheRS sequences from [16]). In these
simulations, we also compare the robustness of the
competing bootstrapping procedures by assessing their
performances under the condition when different
amounts of noise were added to the original data. The
Discussion section compares the proposed methods
with standard bootstrap correction procedures and
explains the rationale of our study. Finally, the Conclu-
sion section summarizes the introduced weighting
schemes and presents the ideas for future research.

Methods
Here we discuss four new weighting schemes which can
be used in bootstrapping to assign weights to the trees
obtained from pseudo-replicated sequences. Specifically,
the LS (least-squares) and secondary bootstrap score esti-
mates will be computed for each pseudo-replicated phy-
logeny. The normalized LS and normalized secondary
bootstrap score estimates will be also considered. All
these estimates can be used to generate weights of
pseudo-replicated trees. A “corrected” bootstrapping pro-
cedure based on the obtained weights will be presented.
Let X be a set of n taxa (i.e., objects, species) and A be

a multiple sequence alignment obtained for the taxa
from X. We assume that each sequence in A has l
nucleotides (or amino acids). The model of nucleotide
substitution that best fits the data can then be deter-
mined and the corresponding data correction applied. A
phylogenetic tree T can be inferred by a tree-building
algorithm (the Neighbor-Joining [17] algorithm was
used in this study to infer phylogenies). The standard
non-parametric bootstrap scores can be calculated using
the following procedure [2]:
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(1) l columns of A are randomly chosen with replace-
ments, giving rise to a pseudo-replicated sequence align-
ment PRA with n rows of l columns. This procedure is
repeated N times and a set of pseudo-replicated
sequence alignments PRA1, PRA2,..., PRAN is obtained.
(2) Phylogenetic trees T1, T2,..., and TN are then

reconstructed from the pseudo-replicated alignments
PRA1, PRA2,..., and PRAN, by means of the same tree-
inferring algorithm that was used to build T.
(3) The topology of the original tree T is then com-

pared to the topologies of the trees built from pseudo-
replicates. The bootstrap score of the branch k in T
(denoted here as bsk) is the percentage of time that k is
found in the set of trees T1, T2,..., and TN. It is com-
puted as follows:

bs
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where Bi is the set of internal branches of the tree Ti,
given by their non-trivial splits or bipartitions.

LS-based bootstrapping
The least-squares (LS) coefficient can be used to esti-
mate how well the given distance matrix D, obtained
from the multiple sequence alignment A using a specific
sequence-to-distance transformation, approximates the
patristic distance (i.e., additive distance or tree metric)
Δ between the leaves of the phylogenetic tree T
obtained from D using the selected tree-building algo-
rithm. In this study, the Jukes-Cantor distance [18] for
the DNA sequences and Kimura Protein distance [19]
for the amino acids were employed. The least-squares
coefficient, LS, between D and Δ is computed as follows:

ls d i j i j
i j

= −∑∑( ( , ) ( , )) , 2
(2)

where d(i,j) is the distance between the taxa i and j,
and δ(i,j) is the patristic distance between the leaves
labelled by i and j in the phylogenetic tree T.
We propose to use the LS coefficient to assign indivi-

dual weights to all trees obtained from pseudo-replicated
data (Figure 1). Obviously, the smaller the value of the LS
coefficient, the better the phylogenetic tree fits the corre-
sponding distance matrix D. Instead of using equal
weights for all trees obtained from pseudo-replicated
data, as the traditional bootstrapping does, the following
four-step weighting scheme was adopted in this study:
1. Given the original sequence alignment A, we first

computed from it a series of N pseudo-replicated align-
ments PRA1, PRA2,..., and PRAN, using the traditional
bootstrapping strategy. The Jukes-Cantor [18] evolution-
ary model was then applied to obtain the distance

matrices M, PRM1, PRM2,..., and PRMN, from A, PRA1,
PRA2,..., and PRAN, respectively. Phylogenetic trees T,
T1, T2,..., and TN and the corresponding tree metric
matrices Δ, Δ1, Δ2,..., and ΔN were calculated from
these distance matrices using Neighbor Joining [17].
2. The vector ls = {lst | t = 1, 2,..., N}, comprising the

LS coefficients for all N trees obtained from pseudo-
replicates was then computed:

ls d i j i jt

i j

t t= −∑∑( ( , ) ( , )) , 2
(3)

where dt (i, j) and δt (i, j) are, respectively, the dis-
tance between the taxa i and j in the pseudo-replicated
distance matrix PRMt and the patristic distance
between the leaves labelled by i and j in the tree t
inferred from PRMt (Figure 1). The maximum likeli-
hood (ML) and maximum parsimony (MP) estimates
can be used at this step as an alternative to LS. In the
case of maximum parsimony, multiple optimal trees
are usually generated for each replicate (note that mul-
tiple trees are possible with ML, although in practice
they are not typically recovered). The resultant multi-
ple pseudo-replicated trees can be treated in two fol-
lowing alternative ways: First, a consensus tree for
these multiple trees can be established (e.g., using an
extended majority rule) and then used in the computa-
tions in the same way that the unique NJ tree; second,
each of the obtained multiple pseudo-replicated trees
can directly contribute to the computation of the
weighted bootstrap scores, but the resulting weights
(Formulas 4-5) of each of those trees should be in turn
divided by the cardinality of the set of optimal trees
obtained for the considered set of pseudo-replicated
sequences.
3. At this step the weights of all trees,w = {wt | t = 1,

2,..., N}, obtained from pseudo-replicates were computed
by solving the following system of equations:
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The solution of the system (4) is as follows (for any
t = 1,..., N):
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4. The LS-based bootstrap scores of the internal
branches of T, denoted here as ls_bs = {ls_bsk | k = 1,
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2,..., m}, were then determined. The LS-based bootstrap
score of the branch k in T was computed as follows:
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where m is the number of internal branches of the
original tree T and Bt is the set of internal branches of
the tree t.

Normalized LS-based bootstrapping
Normalized LS-based bootstrap scores can also be com-
puted and used to estimate the robustness of a phyloge-
netic tree. The normalization of LS, which should in
most cases accentuate the difference between the LS
coefficients associated with the phylogenetic trees
inferred from pseudo-replicated data, was performed in
the following way:

norm ls
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t N

N

_
( , , , )

( , , , ) ( ,
= −

−
1 2

1 2 1


 lls lsN2, , )

,
 (7)

where norm_ls = {norm_lst | t = 1, 2,..., N} is the nor-
malized vector of the least-squares coefficients com-
puted after Step 2 (see the four-step weighting
procedure described above) and Min(ls1, ls2,..., lsN) and
Max(ls1, ls2,..., lsN) are, respectively, the minimal and
maximal values of the set {ls1, ls2,..., lsN} computed at
Step 2. Obviously, all the values of norm_lst (t = 1, 2,...,
N) are located in the [0,1] interval. Steps 3 and 4 were
then carried out as described above using the normal-
ized LS coefficients, and the weight of the tree t was
computed as follows:
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Secondary bootstrapping
Secondary bootstrap scores can be also used to assign
weights to phylogenies inferred from pseudo-replicates.

Figure 1 LS-based bootstrapping. LS-based bootstrapping: The LS coefficient can be used to assess the quality of phylogenetic trees obtained
from pseudo-replicated sequence alignments. Lower values of LS correspond to a better fit by a phylogenetic tree and are associated with
higher weights.
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The weight of each phylogeny inferred from (primary)
pseudo-replicated sequences can be assessed as the aver-
age of bootstrap scores of its internal branches. A
pseudo-replicated sequence alignment PRAi (i = 1,..., N)
can be used to create Ns secondary pseudo-replicated
alignments SPRAi1, SPRAi2,..., SPRAiNs. As in traditional
bootstrapping, the columns from PRAi can be randomly
chosen with replacements to create secondary pseudo-
replicates. Phylogenetic trees Ti1, Ti2,..., and TiNs can
then be inferred from the pseudo-replicated alignments
SPRAi1, SPRAi2,..., SPRAiNs, and the tree Ti inferred from
PRAi, using the same tree-building algorithm (Figure 2).
The topology of Ti can then be compared to the topolo-
gies of the trees built from the secondary pseudo-repli-
cates. The bootstrap scores of all internal branches of Ti

can be computed, and the average bootstrap score
(denoted here as ssi) characterizing the overall bootstrap
support of the tree Ti can be estimated.
When either the ML or MP approach is used, possible

multiple optimal pseudo-replicated phylogenies can be
treated in two ways: First, the mean of their average boot-
strap scores can be taken into account in Formulas 9 and
10 and then their consensus tree in Formula 11; second,
each of the obtained optimal MS or ML pseudo-repli-
cated trees can directly contribute to the computation of
the weighted bootstrap scores but their resulting weights
(Formulas 9-10) should be divided by the cardinality of
the set of optimal pseudo-replicated trees.
The weights w = {wt | t = 1, 2,..., N} of all the trees Ti

(i = 1,..., N) obtained from primary pseudo-replicates
can be computed by solving the following equation sys-
tem:
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The solution of the system (9) is as follows (for any
t = 1,..., N):
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Obviously, the bigger the average secondary bootstrap
score assigned to a tree, the bigger the tree weight.
The bootstrap scores of the internal branches of T based

on secondary bootstrapping, and denoted as ss_bs =
{ss_bsk | k = 1, 2,..., m}, can then be calculated. Thus, the
bootstrap score of the branch k in T can be calculated as
follows:
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where m is the number of internal branches of the
original tree T and Bt is the set of internal branches of
the tree t.

Normalized secondary bootstrapping
As in the case of the LS-based bootstrapping, the nor-
malized secondary bootstrap scores can be computed
and used to estimate the tree robustness. The normali-
zation, which should emphasize the difference between
the average secondary bootstrap scores of phylogenetic
trees inferred from primary pseudo-replicates, can be
carried out in the following way:

norm ss
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where norm_ss = {norm_sst | t = 1, 2,..., N} is the nor-
malized vector of the average secondary bootstrap scores
of primary pseudo-replicated trees T1,..., TN, and Min
(ss1, ss1, .... ssN) and Max(ss1, ss1, .... ssN) are, respec-
tively, the minimal and maximal values of the set {ss1,...,
ssN}. Then, the weight of the primary pseudo-replicated
tree t can be computed as follows:
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Results
In this section we apply the four discussed weighting
schemes to examine two real data sets consisting, first,
of protein-coding mitochondrial DNA sequences for a
group of 12 Primate species [15] and, second, of 32
PheRS Synthetase amino acid sequences for a group of
32 organisms, including bacteria, archaea and eukarya
[16].

Data description
The first examined data set was originally described by
Hayasaka et al. [15]. The latter authors determined
nucleotide sequences of homologous 896-base fragments
of mitochondrial DNAs (mtDNAs) derived from four
species of old-world monkeys, one species of new-world
monkeys, two species of prosimians and five species of
hominoids. They then reconstructed a phylogenetic tree
for this group of 12 Primates. The internal branches of
this tree have very high bootstrap support, varying from
85 to 100% (see the Results section). This data set was
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Figure 2 Secondary bootstrapping. Secondary bootstrapping: Secondary pseudo-replicated sequence alignments SPRAi1, SPRAi2,..., and SPRAiNs
are obtained from the primary sequence alignment PRAi. The trees Ti1, Ti2,..., and TiNs inferred respectively from SPRAi1, SPRAi2,..., and SPRAiNs are
serving to assess the quality of the phylogenetic tree Ti used in primary (i.e., traditional) bootstrapping. A higher value of the average secondary
bootstrap score of Ti corresponds to its better (secondary) support and is associated with a higher weight.
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also analyzed in a number of evolutionary studies
[20-23].
The second considered data set includes 32 PheRS

Synthetase sequences with 171 bases for 21 bacteria, 6
archaea and 2 eukarya organisms originally studied by
Woese et al. [16]. PheRS is the only class II synthetase
in the NUN codon group, and it has no close relatives
within that class. For both the a- and b-subunits of
PheRS, significant length differences distinguish the bac-
terial subunits from their archaeal counterparts. Woese
et al. [16] found that the AARSs were very informative
about the evolutionary process. The analysis of different
phylogenetic trees for a number of considered AARSs
revealed the following features: The AARSs evolutionary
relationships were mostly conform to established species
phylogeny; a strong distinction existed between bacterial
and archaeal types of AARSs; horizontal transfer of
AARS genes between archaea and bacteria was predicted
(see also [24]). In fact, PheRS shows classical canonical
pattern with the only exception being the spirochetes (i.
e., Borrelia burgdorferi and Treponema pallidum)
PheRSs. They are of the archaeal, not the bacterial
genre, and are closely related to the clade formed by the
archaea Pyrococcus horikoshii, Pyrobaculum aerophilum
and Sulfolobus solfataricus (see the Results section and
Figure two in [16]). The considered PheRS data set was
also studied intensively [24-33].

Distribution of the LS coefficients and average secondary
bootstrap scores
First, we examined the distribution of the least-squares
(LS) coefficients and secondary bootstrap scores (SBS)
for the Primate [15] and PheRS Synthetase [16] data
sets presented above (Figures 3 and 4, cases a-b). For
both original multiple sequence alignments (MSA), we
also created their “noisy” variants by modifying 10% of
the nucleotides for the Primate MSA and amino acids
for the PheRS MSA (Figures 3 and 4, cases c-d). The
noise-affected data were generated in order to investi-
gate how the LS and SBS functions change when the
uncertainty is introduced in the data. Figures 3 and 4
show the distribution of LS and SBS for the original (a)
and “noisy” (b) MSAs as well as for 100 pseudo-repli-
cated data sets obtained from each of them.
Figures 3a and 4a show that the LS coefficients corre-

sponding to the original MSAs (depicted by encircled
diamonds in both figures) are very low (e.g., the lowest
LS coefficient in Figure 4a is that of the original MSA).
This means that the original MSAs were generally much
closer to the space of phylogenetic trees than the
pseudo-replicated MSAs obtained from them. After the
addition of noise (Figures 3c and 4c) the LS coefficients
corresponding to the original and pseudo-replicated
MSAs obviously increased, but the difference between

them emphasized: The LS coefficient of both original
trees (Figures 3c and 4c) became the smallest ones in
both cases.
On the other hand, the average SBS corresponding to

the original trees (see the encircled triangles in Figures
3b and 4b) were not among the highest ones compared
to those of the “pseudo-replicated” trees. This means
that the original trees were not necessarily more robust
than their pseudo-replicated counterparts. After the
addition of noise (Figures 3d and 4d), the robustness of
the original and “pseudo-replicated” trees decreased as
expected. For the noisy data, the average SBS of the ori-
ginal trees remained only slightly higher than the mean
of the average SBS of the “pseudo-replicated” trees.

Simulation study
A simulation study was conducted to evaluate the per-
formances of the four introduced weighting strategies,
including the LS and SBS-based (original and normal-
ized) bootstrapping. The traditional bootstrapping
scheme, assigning the weights of 1 to all pseudo-repli-
cated trees, was also tested. The simulations were car-
ried out on the Primate [15] and PheRS Synthetase [16]
data sets discussed above.
In order to examine the robustness of each weighting

strategy, a simulation with “noisy” sequences was per-
formed. A random noise varying from 1 to 10% (with
the step of 1%) was added to both original MSAs (for
the Primate and PheRS data) to create the variants of
“noisy” data. To simulate noisy data in the aligned
sequences, we tested two experimental strategies. The
first strategy consisted of changing at random a fixed
percentage of nucleotides from the observed sequence,
whereas the second one consisted of the random elimi-
nation or addition of blocks of nucleotides (or amino
acids) of different sizes. In this section, we are present-
ing the combined results (with the 50/50% ratio) for
these two strategies detailed below.
Strategy 1. For a given noise percentage (NR%), each

nucleotide or amino acid of the original data set had the
probability of NR% to change its state. If the nucleotide
or amino acid x was chosen to be affected by noise, it
was replaced by a different nucleotide or amino acid. All
the other nucleotides or amino acids, different from x,
had an equal probability (1/3 for nucleotides and 1/19
for amino acids) to replace x in the MSA. The
sequences were not realigned after the addition of noise.
Strategy 2. For a given percentage of noise (NR%), the

random elimination or addition of blocks of nucleotides
(or amino acids) of different sizes (the block sizes were
selected randomly and varied from n*l*NR/2 to n*l*NR/
10 nucleotides or amino acids, where n was the number
of species and l was the sequence length) was per-
formed. The elimination of blocks of nucleotides or
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Figure 3 Distribution of the LS coefficients and SBS for the Primate data set. Distribution of the LS coefficients for the original (a) and
“noisy” (b) Primate [15] multiple sequence alignments (MSAs) and 100 pseudo-replicated data sets obtained from each of them. Distribution of
the average secondary bootstrap scores of the trees corresponding to the original (c) and “noisy” (d) Primate MSAs and 100 pseudo-replicated
data sets obtained from each of them. The first (encircled) value corresponds to the original (cases a and b) and noise-affected original (cases c
and d) MSAs.

Figure 4 Distribution of the LS coefficients and SBS for the PheRS data set. Distribution of the LS coefficients for the original (a) and
“noisy” (b) PheRS [16] multiple sequence alignments (MSAs) and 100 pseudo-replicated data sets obtained from each of them. Distribution of
the average secondary bootstrap scores of the trees corresponding to the original (c) and “noisy” (d) PheRS MSAs and 100 pseudo-replicated
data sets obtained from each of them. The first (encircled) value corresponds to the original (cases a and b) and noise-affected original (cases c
and d) MSAs.
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amino acids imitates possible deletion events and intro-
duces new gaps in the multiple sequence alignment.
The addition of short sequences of nucleotides or amino
acids imitates possible insertion events.
The Seqboot program from the PHYLIP package [34]

was used to generate multiple resampled versions of the
original Primate and PheRS MSA. For each execution,
100 replicates of the original data sets were generated.
All the other parameters used were the default Seqboot
parameters. The Jukes-Cantor [18], in the case of
nucleotides, and Kimura Protein [19], in the case of
amino acids, sequence-to-distance transformations fol-
lowed by the Neighbor-Joining algorithm [17] were car-
ried out to infer phylogenetic trees. The five
bootstrapping strategies (4 relying of weights and the
traditional one) were tested on such noisy pseudo-repli-
cates. For each of the five strategies, the following mea-
sure, denoted here as least-squares bootstrap deviation -
ls_bd, was calculated as follows to assess the strategy
robustness:

ls bd bs bsn
k

m

k k_ ( ) ,= −
=

∑
1

2 (14)

where bsk is the bootstrap score of the internal branch
k in the original tree T inferred from the original MSA
(i.e., from the original Primate or PheRS data set), bsnk
is the bootstrap score of the internal branch k in the
tree Tnoisy obtained from the original MSA affected by
noise, and m is the number of internal branches in the
original tree T (note that m was always equal to n-3,
where n was the number of species, for both Primate
and PheRS phylogenies).
Figures 5 and 6 report, respectively, the Primate [15]

and PheRS [16] phylogenies built with Neighbor-Joining.
It is worth noting that the Primate phylogenetic tree
(Figure 5) perfectly corresponds to that previously
obtained by Makarenkov and Legendre [21], whereas
the PheRS phylogeny (Figure 6) was different from the
tree obtained by Woese et al. [16] and Boc et al. [24],
using the ML methods. The most noticeable difference
between the presented NJ phylogeny (Figure 6) and the
ML trees built by Woese et al. [16] and Boc et al. [24] is
that in the tree in Figure 6 the spirochetes (i.e., PheRSs
of the bacteria B. burgdorferi and T. pallidum) are not
specifically related to the archaebacterium P. horikoshii
(these three organisms form a 3-taxon cluster in the
trees shown in Figure two in [16] and Figure seven in
[24]). The bootstrap scores provided by the five compet-
ing bootstrapping strategies (i.e., traditional bootstrap
scores, secondary bootstrap scores, LS-based bootstrap
scores, normalized secondary bootstrap scores and nor-
malized LS-based bootstrap scores) were calculated for

the original and noisy data and depicted in Figure 5 (for
the Primate data) and Figure 6 and Table 1 (for the
PheRS data). The results presented in Figures 5 and 6,
and in Table 1 demonstrate that the normalized second-
ary bootstrap scores were usually higher than the boot-
strap scores yielded by the four other bootstrapping
strategies, including the traditional bootstrapping
method. This trend was maintained for both original
and noisy data. On the other hand, the bootstrap scores
provided by the secondary bootstrapping, LS-based
bootstrapping, and normalized LS-based bootstrapping
were very similar to those obtained with the traditional
unweighted bootstrapping. For instance for the original
(and, respectively, for the noisy) PheRS data, the stan-
dard bootstrap scores were lower than those given by
the normalized secondary bootstrap scores strategy in
18 of 29 cases (24 of 29 cases for the noisy data), equal
in 9 cases (4 cases for the noisy data) and higher in only
2 cases (1 case for the noisy data). Thus, when a 10%-
noise was added to the data, the difference in the boot-
strap scores even emphasized. The indicated scores for
the original and noisy data, for each of the tested noise
percentages, were the averages calculated over 100
repeated calculations (for both primary and secondary
bootstrapping).
Moreover, Figures 7 and 8, representing, respectively,

the Primate [15] and PheRS [16] data, illustrate the dif-
ference in the following parameters between the five
bootstrapping strategies: Sum of bootstrap scores of
internal branches (Figures 7-8 a-b) and least-squares
bootstrap deviation (Figures 7-8 c-d). The latter para-
meter, computed according to Formula 14, can be
viewed as an indicator of the method’s robustness.
Indeed, the lower the method sensitivity regarding the
noise factor, the smaller the least-squares bootstrap
deviation. The results in Figures 7-8 are shown depend-
ing on the noise percentage (varying from 1 to 10%).
When observing the sum of bootstrap scores and the
least-squares bootstrap deviation curves, one can notice
that the normalized secondary bootstrap scores strategy
always provided the highest totals of bootstrap scores of
internal branches and the lowest least-squares bootstrap
deviations regardless the noise level. For instance for the
Primate data set and the normalized secondary boot-
strapping, the least-squares bootstrap deviation, ls_bd,
between the noise-free and noisy bootstrap scores (For-
mula 14) was equal to 644.01, while for the traditional
bootstrapping, the ls_bd coefficient was much higher
and equal to 786.4. Alternatively, for the PheRS data set
and the normalized secondary bootstrapping, the ls_bd
coefficient was equal to 2279.19, while for the traditional
bootstrapping it was also much higher and equal to
2534.58. The additional simulations conducted with lar-
ger noise levels (when the noise factor varied from 10 to
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35%; these results are not shown) confirmed the
observed trend.

Discussion
The controversial study conducted by Hillis and Bull
[35] claimed that the traditional bootstrap confidence
values used to assess tree accuracy are consistently
biased downward. As a response to Hillis and Bull [35],
Felsenstein and Kishino [36] argued that the phenomena
noticed in [35] are not the result of bootstrap use but
rather a result of summarizing the evidence for a given
clade using the associated p-values.
Later on, Efron et al. [37] introduced a method for

bias correction to estimate more accurate p-values for
topological inference through a correction based on
first-order p-values. The simplex of possible solutions is
partitioned into regions corresponding to different tree
topologies [37,38]. Efron’s study concluded that the con-
fidence values 

~ obtained using the traditional Felsen-
stein’s bootstrapping are not systematically conservative
(i.e., not biased systematically downward) as was stated
by Bull and Hillis [35]. Depending on the local config-
uration of the topological space around the actual tree,
the bias may be conservative or liberal. According to
Efron’s study [37], Felsenstein’s method provides a rea-
sonable first approximation to the actual confidence
levels of the observed tree clades. One interpretation of
non-parametric bootstrapping that is compatible with
Bayesian inference was also proposed [[37], page 7090]:
“In a Bayesian sense, 

~ can be thought of as reasonable

assessments of error”. Efron et al. [37] defined another
type of non-Bayesian confidence level 

∧ (which can be
estimated by a two-level bootstrap algorithm), such that


~ and 

∧ converge at rate 1 / n , as the sequence
length n increases. The methods discussed in [37] and
[38] assess the curvature of the solution boundary,
which is used in an analytical correction formula to esti-
mate the magnitude of the shifted bootstrap
distribution.
In [38], Efron and Tibshirani introduced the “problem

of regions”. There, one wishes to know which of a dis-
crete set of possibilities applies to a continuous para-
meter vector. Efron and Tibshirani gave several
examples of problem of regions that appear in real
applications, including testing significance for model
selection and for the number of density peaks. They
concluded that, at some point, third-order and higher
terms may be necessary to obtain sufficiently accurate
confidence estimates [38]. Both of the latter studies used
weighting procedures. However, the weights described in
[[37] and [38]] are not applied to pseudo-replicated
trees, as in our study, but to the first-level bootstrap
vectors. The procedure of reweighting the first-order
resamples is carried out using a simple importance sam-
pling scheme [see the Bootstrap reweighting section in
38 and Equations 4.1-4.14 therein]. According to [38],
reweighting the first-order bootstrap samples converts,
from a Bayesian point of view, the flat-prior of a poster-
iori probability distribution of the related regions into
the appropriate Welch-Peers a posteriori probabilities.

Figure 5 Primate phylogenetic tree with bootstrap scores. The 12-taxon Primate phylogenetic tree inferred with Neighbor-Joining [17]. The
nucleotide sequences of 896-base fragments of mitochondrial DNAs [15] were considered and transformed into distances using the Jukes-
Cantor transformation [18]. The bootstrap scores provided by the five considered bootstrapping strategies are indicated above internal branches.
They are shown for the original and noisy data (the noisy data were obtained after the addition of 10% of noise to the original sequences; they
are indicated between parentheses). The bootstrap scores are indicated in the following order: Standard bootstrap scores, secondary bootstrap
scores, LS-based bootstrap scores, normalized secondary bootstrap scores (shown in bold) and normalized LS-based bootstrap scores.
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Figure 6 PheRS phylogenetic tree with bootstrap scores. The 32-taxon PheRS Synthetase [16] phylogeny inferred using Neighbor-Joining
[17]. The standard bootstrap scores, followed by normalized secondary bootstrap scores, are indicated above the internal branches. They are
shown for the original and noisy data (the noisy data were obtained after the addition of 10% of noise to the original sequences; they are
indicated under the internal branches). The bootstrap scores for the three other weighting bootstrap strategies are presented in Table 1
(encircled, are the branch numbers as they are reported in Table 1).
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Furthermore, the method introduced in this paper is
based on the quality of pseudo-replicated trees
(expressed through the LS and SBS measures) used in
the classical Felsenstein’s bootstrapping, whereas the
Efron method [37], based on an iterative bootstrapping,
searches directly for the improvement of the bootstrap
scores robustness. It is worth noting that the second-
level bootstrap vectors considered in [37] (that are
somewhat analogous to the SBS considered in this
paper) are generated only for the first-level bootstrap
vectors located on the boundary of the clade whose
robustness is evaluated.
In their recent work, Gullo et al. [39] discussed the

usage of different weighting schemes for clustering
ensembles, including the problems of consensus tree
reconstruction and bootstrap support computation.
Clustering ensembles (i.e., consensus clustering or

aggregation clustering) have recently emerged as a
powerful tool to address traditional clustering issues
[39]. Given a data collection, a set of clustering solutions
(i.e., ensemble), can be generated by varying the para-
meter settings. Given a clustering ensemble (in our case,
the set of trees obtained from resampled sequences), a
major goal is to extract a consensus partition (in our
case, the original tree with a robust bootstrap support),
taking into account information available from the given
set of clustering solutions. Gullo et al. [39] provided the
justification for several weighting schemes to discrimi-
nate among the clustering solutions, including the one
adopted in the present study. Each of these schemes is
based on theoretical considerations on ensemble diver-
sity and computes the vector of weights w = (w1,..., wN)
in such a way that wi Î [0; 1], for each i Î [1,...,N], and

i

N

iw
=
∑ =

1
1 . The first of those schemes, called Single

Table 1 Bootstrap scores comparison for the PheRS data set

Branch number Scores for noise-free data Scores for noisy data (10% of noise)

Std SB LS NSB NLS Std SB LS NSB NLS

1 35.7 35.7 35.4 35.7 35.2 33.0 33.0 32.6 32.8 32.4

2 100.0 100.0 100.0 100.0 100.0 99.7 99.7 99.7 99.7 99.7

3 54.1 54.3 53.7 55.3 53.4 43.4 43.6 43.0 44.9 42.8

4 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 99.9

5 91.7 91.9 91.8 92.8 91.7 78.6 79.2 78.7 81.7 78.7

6 47.2 47.4 47.6 48.7 47.9 34.2 34.6 34.6 36.6 34.8

7 54.4 54.7 54.4 56.3 54.5 43.8 44.2 43.8 45.9 43.8

8 22.8 22.7 22.7 22.5 22.7 20.5 20.5 20.4 20.8 20.3

9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.8 99.8

11 98.9 98.9 99.0 99.0 99.0 95.3 95.4 95.5 96.0 95.6

12 99.9 99.9 99.9 99.9 99.9 97.1 97.2 97.0 97.5 97.0

13 68.2 68.3 68.8 69.1 69.2 56.6 56.9 57.6 58.4 58.3

14 99.8 99.8 99.8 99.9 99.9 98.6 98.7 98.7 98.9 98.7

15 23.6 23.9 23.5 25.4 23.5 15.7 16.0 15.8 17.3 16.0

16 45.3 45.6 45.5 47.0 45.6 32.1 32.4 32.4 33.7 32.4

17 5.1 5.1 5.0 5.2 5.0 2.4 2.5 2.5 2.8 2.5

18 66.3 66.8 67.0 68.9 67.4 50.5 51.2 51.0 54.6 51.4

19 63.2 63.2 63.5 63.3 63.7 54.7 54.9 55.0 55.5 55.3

20 5.5 5.5 5.6 5.6 5.7 2.7 2.7 2.7 2.8 2.7

21 26.1 26.2 26.1 26.9 26.2 19.9 20.1 20.0 21.0 20.0

22 2.2 2.2 2.2 2.2 2.3 1.2 1.2 1.2 1.3 1.3

23 33.2 33.5 32.9 34.7 32.7 21.5 21.8 21.2 23.2 21.1

24 21.4 21.5 21.2 22.2 21.2 10.7 10.8 10.6 11.6 10.7

25 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.7 99.8 99.7

26 69.0 69.2 69.4 70.0 69.5 50.2 50.5 50.4 51.9 50.6

27 77.0 77.3 76.9 78.9 77.0 64.5 64.9 64.5 66.9 64.6

28 31.1 31.1 31.0 31.1 30.9 17.8 17.9 17.8 18.6 17.9

29 49.1 49.1 49.3 49.0 49.3 33.4 33.5 33.5 34.1 33.6

Comparison of bootstrap scores for the five bootstrapping strategies considered in this study. The comparison was made for all 32 internal branches of the
phylogenetic trees inferred from the original (i.e., noise-free) and noisy (with 10% of noise added) PheRS sequences. The branch numbers correspond to those
indicated in Figure 6. Standard bootstrap scores (Std), secondary bootstrap scores (SB), LS-based bootstrap scores (LS), normalized secondary bootstrap scores
(NSB, shown in bold) and normalized LS-based bootstrap scores (NLS) are reported.
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Weighting (see Formula 4.4 in [39]), presents the most
intuitive way to weight each clustering solution (i.e.,
each pseudo-replicated tree in our case). The key idea
consists in computing each individual cluster diversity
measure (in our case, such a measure would be the LS
coefficient or the average SBS associated with each
pseudo-replicated phylogeny) and then in assigning
weights that are proportional to individual cluster diver-
sities. In fact, Formulas 5 and 10 used in our study to
determine the individual weights of pseudo-replicated

trees are analogous to Formula 4.4 in [39]. These for-
mulas represent the simplest and the most intuitive way
of introducing weights in bootstrap analysis. Most
research works focusing on clustering ensembles diver-
sity suggest selecting ensembles according to a maxi-
mum diversity criterion [40-42], which states that the
higher the ensemble diversity (i.e., the more variation
we have in the individual LS coefficients or in the aver-
age SBS), the better the accuracy of the consensus parti-
tion (i.e., bootstrap scores or consensus tree) extracted

Figure 7 Sum of bootstrap scores and LS deviation for the Primate data set. Sum of bootstrap scores of internal branches (cases a and b)
and least-squares bootstrap deviation (cases c and d), computed according to Formula 14, for the Primate data set [15] obtained by the five
bootstrapping strategies considered in this study. The results are shown with respect to the noise level (the noise percentage varying from 1 to
10% is represented on the x-axis). Standard bootstrap scores are depicted by circles, secondary bootstrap scores by crosses, LS-based bootstrap
scores by diamonds, normalized secondary bootstrap scores by squares, and normalized LS-based bootstrap scores by triangles.
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from the ensemble. Thus, in our study, the weights are
computed using a linearly increasing distribution, which
defines weights according to a maximum diversity cri-
terion. In the future, it would be also interesting to test
the other weighting schemes discussed in [39]. Specifi-
cally, a Normal distribution model that computes
weights according to a median diversity criterion (see
Formula 4.5 in [39]) along with the Group Weighting
(see Formulas 4.6-4.9 in [39]) and Dendrogram Weight-
ing (see Formula 4.10 and Algorithm 1 in [39]) models

could be tested in the framework of weighted
bootstrapping.

Conclusions
The traditional non-parametric bootstrapping is a com-
mon method for assessing tree confidence in phyloge-
netic analysis [2]. It generates and operates pseudo-
replicated (i.e., resampled) data sets having the same
empirical distribution that the original data set. How-
ever, traditional bootstrapping does not take into

Figure 8 Sum of bootstrap scores and LS deviation for the PheRS data set. Sum of bootstrap scores of internal branches (cases a and b)
and least-squares bootstrap deviation (cases c and d), computed according to Formula 14, for the PheRS Synthetase data set [16] obtained by
the five bootstrapping strategies considered in this study. The results are shown with respect to the noise level (the noise percentage varying
from 1 to 10% is represented on the x-axis). Standard bootstrap scores are depicted by circles, secondary bootstrap scores by crosses, LS-based
bootstrap scores by diamonds, normalized secondary bootstrap scores by squares, and normalized LS-based bootstrap scores by triangles.
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account either the “tree-likeness” of phylogenies inferred
from pseudo-replicated sequences (i.e., how well these
phylogenies fit the corresponding pseudo-replicated sets
of sequences) or the bootstrap support of those phyloge-
nies. In this study, we described four weighting strate-
gies allowing one to assign weights to the trees inferred
from pseudo-replicates, and thus to do away with one of
the limitations of traditional bootstrapping: The assign-
ment of equal weights to all “pseudo-replicated” trees.
In our approach, the weights of the trees inferred from
pseudo-replicates are assigned according to either the
LS estimate of this tree (i.e., how well it fits the pseudo-
replicated sequences) or to the average secondary boot-
strap scores (SBS) of the tree (i.e., the bootstrap scores
associated with the internal branches of “pseudo-repli-
cated” trees). The simulations carried out with two real
data sets and five weighting strategies, including the LS
and SBS-based bootstrapping, the LS and SBS-based
bootstrapping with the data normalization, and the tra-
ditional bootstrapping, suggest that the weighted boot-
strapping based on the normalized SBS usually exhibits
larger bootstrap scores and a higher robustness com-
pared to the traditional bootstrapping and the three
other competing methods. The high robustness of the
weighting strategy based on the normalized SBS makes
this strategy particularly useful in the situations when
the considered sequences were affected by noise or
underwent insertion or deletion events. Also, when large
numbers of replicates (≥100) were considered, the per-
formances of the four other weighting strategies were
very similar, thus confirming the stability of the tradi-
tional unweighted bootstrapping.
An interesting way for the future investigation would

be the study of the proposed weighting schemes in the
context of establishing a consensus tree. For instance,
the Consense program of the PHYLIP package [34]
allows the user to introduce weights for each of the
input trees. Indeed, the average SBS or LS (original or
normalized) estimates of the trees (e.g., of the trees
obtained from the pseudo-replicated sequences) could
be used to compute the consensus tree (see also [43]).
In addition, a new way of computing a consensus tree,
which takes into account all individual bootstrap scores
of the internal branches of the input trees, could be
developed for the weighted supertree methods discussed
in [44].
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