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Assessing mechanical agency during apical
apoptotic cell extrusion

Sommer Anjum,1,2 Llaran Turner,3,4 Youmna Atieh,3 George T. Eisenhoffer,3,4,* and Lance A. Davidson1,5,6,7,*
SUMMARY

Homeostasis is necessary for epithelia tomaintain barrier function and prevent the accumulation of defec-
tive cells. Unfit, excess, and dying cells in the larval zebrafish tail fin epidermis are removed via controlled
cell death and extrusion. Extrusion coincides with oscillations of cell area, both in the extruding cell and its
neighbors. Here, we develop a biophysical model of this process to explore the role of autonomous
and non-autonomous mechanics. We vary biophysical properties and oscillatory behaviors of extruding
cells and their neighbors along with tissue-wide cell density and viscosity. We find that cell autonomous
processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment
providing a less pronounced contribution. We also find that some cells initially resist extrusion, influ-
encing the duration of the expulsion process. Our model provides insights into the cellular dynamics
and mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue
maintenance.

INTRODUCTION

Cell extrusion is critical for the maintenance of epithelial tissues,1 as dysregulation of cell extrusion can disrupt epithelial barrier function and

drive formation of adenocarcinomas.2 Key modes of homeostatic cell extrusion include apoptotic cell extrusion, extrusion of transformed

cells, and extrusion of live cells after overcrowding.3–5 An inducible in vivo experimental system for apoptotic cell extrusionwas recently devel-

oped in the epithelium of the larval zebrafish tail fin.6 This epidermis is best classified as a squamous-type epithelium. Transgenic fish express

the genetically encoded enzyme nitroreductase (NTR) in a subset of cells of the larval epidermis, and addition of the prodrug metronidazole

(MTZ) creates a cytotoxic byproduct that promotes cells to be extruded. We collected high resolution time-lapse sequences of extruding

epidermal cells and quantified geometric parameters of both extruding cells and their neighbors before, during, and after extrusion. Cells

in NTR/MTZ-activated epithelia undergo a series of actomyosin-driven pulsatile contractions that result in oscillations of cell area that can

be characterized by amplitude and duration. Area oscillations in extruding cells are additionally regulated by sphingosine-1-phosphate

(S1P) and activation of a caspase cascade.6 Similar regulation of apoptotic apical extrusion involving actomyosin contractility by S1P and

RhoA have been observed in cultured epithelial cell lines5,7

Oscillations in the shape of apoptotic extruding cells raise several questions concerning the mechanical agency of extruding cells and the

dependence of extrusion on the microenvironment. What is the role of the local mechanical environment in promoting extrusion? Epithelial

cell behaviors are commonly regulated and constrained by their neighbors. Are the pulsatile contractions coordinated between cells? Epithe-

lial cells in many embryos and larvae exhibit area oscillations, but it is unknown if these oscillations are adaptive. Does a cell facilitate its own

exit or is it pushed? Extrusion involves dynamic changes in cell adhesion and contractility in both the extruding cell and its neighbors, but we

know little about the relative mechanical contributions of these cell biological changes. To address these questions, we divide our interest in

the biophysics of extrusion into two categories, first, considering processes operating in the extruding cell (e.g., autonomousmechanical pro-

cesses), and second, processesmodulating extrusion that operate within cells in contact with the extruding cell (non-autonomousmechanical

processes). Akin to intrinsic properties, autonomous mechanics refers to the biophysical properties of the extruding cell that influence the

kinematics of extrusion, including steady state mechanical properties as well as the strength, rate, and periodicity of cyclic contractility.

Conversely non-autonomous processes refer to properties of the extruding cell’smicroenvironment such as the neighboring cells’mechanical

properties and cyclic contractility, and tissue confinement. While optogenetic tools are beginning to be used tomodulate cell and tissue level

forces,8 it is currently not possible to predictably manipulate biophysical properties such as amplitude or frequency of cell area strains. To
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address these outstanding questions, we sought to build a computational model where the roles of cell-autonomous and non-cell-autono-

mous mechanics in driving apical extrusion could be tested and compared quantitatively.

Epithelial homeostasis and morphogenesis have been simulated in several different frameworks, each with their own assumptions and

implementation techniques.9,10 The most simple physical analog of extrusion is the T2 transition within soap film arrays (e.g., wet foams),

where cell loss occurs through a 3-neighbor cell array that computational models of epithelia try to capture.11 Vertex models are the most

common biophysical models of epithelia.12 In vertex models, the dynamics of apical epithelial vertex movements minimize area and perim-

eter deviations from preferred values amidst dynamic force imbalances between the medioapical cell cortex and apical cell-cell junc-

tions.13–20 A Cellular Potts Model can also facilitate simulation of epithelial cell dynamics, where packets of cytoplasm are distributed

among cells in an epithelium to minimize an energy functional representing apical and junctional elastic energy.21–24 These models are

less suited to oscillations in cell areas and would require very fine and computationally expensive discretization to do so. Finite element

models have also been used to represent epithelial tissue-scale dynamics.25–28 Given how cells are partitioned in these models, the same

challenges for implementing oscillations in cell area as Cellular Potts models remain. Agent-based, or active particle models represent

epithelial cells, or their centers, as particles that can be endowed with biophysical properties and rules governing their interactions.29

Cell junctions composing an epithelial sheet in an active particle model can be represented by tiling or tessellating a set of cell centers.30,31

Another type of model is the phase-field model which specializes in the moving boundary problem within the phase field denoting cell

locations.32,33 Cell boundaries involve changes in said phase field defined in terms of partial differential equations (PDEs). These are some-

what more suited to representing area oscillations but require more complex definitions of the PDEs involved. Each of these simulation

frameworks can represent discrete cells and enable direct quantitative comparison with experiments depending on the choice of analysis

techniques. We prioritize model parsimony and a limited parameter set for representing area oscillations during extruding processes. We

chose an active particle model to allow centroid-focused control over cellular responses rather than defining these changes in terms of

cytoplasmic packets or individual cell vertices. Moreover, mechanical responses and initial conditions in these models are typically

more intuitive and lend to more ease of interpretability. This primes our model for later sensitivity analyses by limiting factors that might

confound our results and require possible non-dimensionalization.

Within our active particle model, we need to designate a potential consistent with other cell-center models. Center-based active particles

models are often formulated with cells repelling one another when spaced more closely than their interaction distance, which is typically in

terms of a single cell diameter.34 How do we maintain tissue cohesivity without a pairwise attraction? We find that having cells interacting

within one cell diameter of each other in a dense regime with fixed borders allows them to be tesselated into an epithelial sheet with move-

ments that mimic live cells (Figures 1 and S3). Repulsion range can be represented with a Gaussian function,35 but this diminishes elasticity for

more dense packing. We use an elastic function for this repulsion in a linear fashion, as done in vertex models. Other models have included

viscous elements,36 but our simulation parameters with initial potential and resting length can be more precisely controlled with an elastic

descriptor. This descriptor accounts for dissipation due to both friction and adhesion forces. This is somewhat analogous to vertex model

repulsive potentials if one considers connecting cell centroids with springs rather than vertices. The key difference here is that our model

does not have a closed-form energetic description, as we take a cell-by-cell force-based approach, in line with other cell-center models37

that use tessellation to render these centroids into the confluent sheet topology characteristic of epithelia.38

It is not common to see extrusion simulated explicitly or quantified in the aforementionedmodeling frameworks. A vertexmodel of delam-

ination from an overcrowded tissue39 incorporated triangular cells with small areas that can be removed. Vertex models have also been used

to interrogate parameters needed to form a rosette characteristic of the extrusion process through significant increases of extruding cell

contractility and local adhesions.40 Use of a vertex model in three dimensions (3D) sought to establish mechanical instability and symmetry

breaking as a precursor to cell extrusion on both the apical basal sides as a function of cell density and forces.41 A 3D phase field model of

extrusionwas applied to focus on cell-cell and cell-substrate interactions with an emphasis on adhesion forces, underscoring the role localized

stress.42 Additionally, combining phase field and vertex modeling approaches have been applied to represent extrusion to focus on gastric

cancer and ECM attachment.43 There is a need for a model in which the dynamics of extrusion is parameterized andmanipulable to indepen-

dently test the roles of cell-autonomous and non-cell-autonomous drivers. We sought to reducemodel complexity to the 2D space, as we are

studying the mechanics contributing to apical extrusion and have intuitive parameters acting on a cell-to-cell basis for precise manipulations

in silico. Of the various modeling frameworks, active particle models can be developed with minimal sets of parameters and implemented

with a limited set of assumptions on cell adhesions and intracellular remodeling.44 Active particle models have not been previously used

to interrogate extrusion. As of yet, no computational models have sought to isolate the contribution of the local mechanical microenviron-

ment in oscillations of cell area that contribute to extrusion.

To explore the biophysical principles regulating cells extrusion in the larval zebrafish, we developed an active particle model that repre-

sents the dynamic and stochastic mechanics of the extruding cell and its surroundings. Such a model needed to account for several exper-

imental observations including a sudden drop in area upon the onset of extrusion, and rachet-like oscillatory decreases in area in the

extruding cell with a range of amplitudes and periods. While active particle models have been useful in the analysis of epithelial morphogen-

esis and solidto fluid-like transitions that allow jammed tissues to flow, these models have not previously been used to investigate extrusion.

Initially, we sought to represent apical cell junctions by tiling cell centers via Voronoi tessellation. However, we found such tessellation

schemes could not represent mechanically heterogeneous cell populations, but only the geometry of cell positions.45–47 To properly repre-

sent both themechanical and geometrical heterogeneity of cells in a 2D sheet, we developed a hybrid tessellation that integratedmechanical

interactions within the centroidal Voronoi Tessellation framework (hybrid CVT). This hybrid tessellation framework allowed extruding cells to
2 iScience 27, 111017, November 15, 2024
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Figure 1. In vivo and in-silico epithelium at equilibrium, also see Figures S1, S3 and S10

(A) The larval zebrafish tail fin epithelium with cell-cell junctions fluorescently labeled. (Scale bar = 20mm).

(B) Close up of larval zebrafish epithelium with the expression of NTR-mCherry (Scale bar = 10mm).

(C) Z score normalized distribution of areas of tailbud epithelium cells.

(D) Sidedness distribution of tailbud epithelium cells (n = 10 larvae, 464 total cells).

(E) Schematic of types of cells in simulation and their movement restrictions.

(F) Cell fields obtained from using low and high width uniform distributions for sampling cell size.

(G) Cell fields obtained from using a Gaussian distribution for sampling cell size.

(H) Z score normalized cell area distributions for the three distributions over 10 simulations each (n = 141,151,161).

(I) Cell sidedness distributions for the three distributions over 10 simulations each (n = 141,151,161).
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be represented with small areas and mechanically driven oscillations. We simulate mechanical interactions through repulsive cell potentials

and incorporate these potentials to map cell-cell boundaries of extruding cells and their neighbors. In addition to providing control over cell-

to-cell biophysical properties, the model allows us to test the effect of tissue-wide properties such as viscosity and cell packing on extrusion.

By testing each of these features, we have been able to quantify the role of extruding cell autonomy and demonstrate that nonautonomous

factors may play a smaller role than earlier suggested.

RESULTS
Topology of the zebrafish larval epidermis

To better understand variation of the size and shape of cells within the zebrafish larval epidermis, we first determined the polygon distribution

of cells within the epithelium under homeostatic conditions and captured how these parameters could fluctuate from larvae to larvae.

Confocal images of the tail fin epithelium of transgenic larvae were collected 4 days post-fertilization (dpf) were collected using fluorescent

proteins that localize to epithelial cell-cell junctions (cldnBlyn-GFP) and NTR as part of the inducible apoptotic system (NTR-mCherry) (Fig-

ure 1A, Video S1). We confirmed the expression of with a closer look at the larval zebrafish tail fin (Figure 1B). Morphometric analysis showed

over 55.7% of cells in the epithelium have an area of 800–1000mm2 in a skewed-right distribution (Figure 1C), and are comprised of 29.9%

pentagons, 34.2% hexagons, 13.8% heptagons, 1.9% octagons, and 0.2% nonagons (Figure 1D). These data are consistent with the observed

polygon topology of the epidermis in other eukaryotes, including the epidermis of the Xenopus tadpole tail, the outer epidermis of the
iScience 27, 111017, November 15, 2024 3
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freshwater cnidarianHydra, theDrosophila wing disc epithelia, and the epidermis of plants.48 In all of these cases, a similar non-gaussian dis-

tribution of epithelial polygons is observed with less than 50% hexagonal cells and high percentages of pentagonal and heptagonal cells.

These data support the idea that similar topological distributions are present in other multicellular eukaryotes and provide the basis for a

ground state for a computational model of epithelial dynamics.
Active particle representation of a mechanically and geometrically heterogeneous epithelium

To simulate an epithelial sheet of cells, we developed a lattice-free model where cells are represented by interacting particles, or

nodes, that are positioned within a two-dimensional rectangular domain. Cells in this rectangular patch are represented by three types

of nodes: (1) corner nodes represent quarter-cells that connect the four corners of tissue to the domain boundary, (2) border nodes repre-

sent half-cells that connect the four tissue edges to the domain boundary, and (3) interior free nodes represent full sized cells in the

epithelium within the domain. Corner nodes do not move, whereas border nodes are free to move along the axes that demarcate the

domain boundary. Interior nodes may move freely within the 2D domain. Border and internal nodes move as they interact with each

other and move toward mechanical equilibrium via repulsion forces operating between all nodes (Figure 1E). Node movements are

governed by a force balance enforcing Langevin dynamics, incorporating stochasticity and drag forces from viscous media.49 We

represent the mechanical elasticity of each cell with a non-linear repulsive spring. Each cell is a node with its own unique mechanical prop-

erties. We represent the mechanical heterogeneity of the epithelium by assigning each node a repulsive potential that is randomly

selected from a uniformly distributed set of potentials/rest lengths (resti,j,k .). Forces act within an interaction distance, rest, of cell i

(Equation 1),

rest =
diameter

�
resti+restj

�
2

(Equation 1)

where diameter is an average cell diameter and resti and restj are rest lengths of cell i and other cells j. These rest lengths determine repulsion

forces between two cells as a function of diameter and the distance between them (Equation 2),

Fx =
dist � rest

rest
� dx

dist
; Fy =

dist � rest

rest
� dy

dist
(Equation 2)

where the distance, dist, is calculated between adjacent nodes and resolved into its components dx and dy and used to calculate forces in the

x and y directions, Fx and Fy, respectively. Force is calculated in the x and y directions between cell i and cells j at a distance less than rest away.

The x and y forces are summed for all cells within the interaction distance (Equation 3),

Fx;total =
Xj

i

Fx ; Fy;total =
Xj

i

Fy (Equation 3)

Cell motion occurs as force is scaled by viscosity and the simulation is advanced in time using forward Euler methods (Equation 4),

xi;t = xi;t� 1 +m � Fx;total � Dt ; yi;t = yi;t� 1 +m � Fy;total � Dt (Equation 4)

where each x and y position at a given time t, xi,t and yi,t, are calculated using the position in the previous time t-1 and the calculated total force.

Viscosity is represented by m and change in time between t and t-1 isDt. The viscosity term is multiplied and not divided by force. Thus, higher

viscosity values indicate lower viscosity, or lower resistance to flow.

To visualize changes in epithelial cell morphology and network topology, we convert our array of nodes into a 2D graph of topo-

logically connected cells with defined shapes and areas. One option for conversion is a Voronoi tessellation of the centroids. Voronoi

tessellations are commonly used to mimic epithelial shape distributions in active particle models.31,38,50,51 These tessellations have

known limitations, particularly in representing cell shape asymmetries and heterogeneity present in tissues responding to anisotropic

forces.52 A shortcoming of using the Voronoi tessellation with our study is that it cannot represent sufficiently small cells, even if cell

centroids become close to each other (Figure S2). One alternative is to use the centroidal Voronoi tessellation (CVT) to form the 2D

graph; CVT determines the centroid of each triangle in a Delaunay triangulation and connects them with straight lines. However, this

method is also purely geometric, like the Voronoi tessellation, and is similarly limited in representing the cell size heterogeneity pre-

sent in our model system. We developed a method to reflect the heterogeneity of geometric organization and arrangement of cell

sizes observed in vivo. Like the CVT method, we first calculate the circumcenters of the triangle but then shift their positions by the

weighted centroid of the potentials of the nearby cells, leveraging the physics of the system. We average the weighted centers with

the original Voronoi circumcenters and connect them, creating our own hybrid CVT (Figure S2). To extract cell areas, we perform a

segmentation. It is important to note that the potential function of the cell does not directly correlate with the measured area. There

is a not a closed form representation linking cell potentials to areas, as is done in some other modeling frameworks. The potential

function drives cell centroid movement, which is affected by the potentials of neighboring cells and tissue-wide properties. These

centroids are then tessellated using the described hybrid CVT strategy. The cells visualized through this process are the subject

of our analyses. Taken together, our model, tessellation scheme, and analysis pipeline (Figure S1) provide us a framework in which

we can recapitulate extrusion events in the tail fin epithelium of larval zebrafish.
4 iScience 27, 111017, November 15, 2024
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Cell heterogeneity as captured by simulation

As there is variation in cell morphology from embryo to embryo, as well as across the same tissue, we developed our model to represent this

variability. To generate diverse cell areas and sidedness in the epithelium at rest, we sample individual cell rest lengths from three distribu-

tions of rest lengths, including two uniform distributions (Figure 1F) and an adjusted Gaussian distribution (Figure 1G) centered at 1.0. Pre-

liminary analysis indicated that tissue packing also affects area and sidedness, with lower packing yieldingmore varied area and sidedness, so

we chose distributions that result in lower levels of packing (Figure S3). The area and sidedness across the three cases are not significantly

different from each other (p > 0.05; two-sample Kolmogorov-Smirnov test). Furthermore, area distributions are not significantly different

from the area measurements from cells in living epithelia (Figures 1C and 1D), however, sidedness in the simulations differs from these in vivo

data (Figures 1H and 1I). To offset this difference, we chose to sample cell potentials from the uniform high width distribution as it yielded a

lower sum of test statistics compared to the live cell area and sidedness (Table S1).

Cell potential oscillations generate kinematic changes in apical surface area and can be used to drive extrusion

In the larval zebrafish epithelium, cell areas vary in two distinct modes, decreasingly sinusoidal in extruding cells, and sinusoidally in neigh-

boring cells (Figures 2A–2C).We use cell area strain to compare changes in area over time (areafinal, areainitial) to account for cell area variation:

area strain =
areafinal � areaintial

areaintial
(Equation 5)

In order to drive cell area oscillation as seen in vivo, we apply a time-varying sinusoidal potential, resti, to a cell (Equation 6),

restiðtÞ = ai � sinðbi � t + ciÞ+ starti (Equation 6)

where a represents the oscillation amplitude, b represents the frequency, and c represents the phase of the oscillation. There are multiple

periodic functions that could be used to describe a driving function of simulated extruding cells. We tested three candidate functions: a sinu-

soid, sawtooth, and a square wave (Figure S4A). These were put in a linearly decreasing form (Figure S4B). Representative cell area strains are

shown for the square wave function (Figure S4C) and the sawtooth function. While these captured the decreasing area strains, we used the

Mann Whitney U test to compare amplitudes extracted using the Hilbert envelope (Figure S6) to live cells (n = 14 live cells, n = 15 simulated

cells for each case, with 200+ extracted amplitudes total). For the sawtooth function, the amplitudes were significantly different (p < 0.05). For

the square wave, the amplitudes match those from the live cells (p = 0.13). The case best matching the live cells was the sinusoidal case

(p = 0.23, Figure 2D). Thus, we used the sinusoidal function for our simulations. (Figure S4).

The observed variations in cell areas within the larval zebrafish epidermis (Figures 1C, 2C, and 2E) may reflect cell-intrinsic mechanical dif-

ferences. To represent this variation, we assign different rest potentials to individual cells (starti, startj, startk). However, cell area fluctuation, or

oscillation, is a common feature of animal epithelia, and in vivo observations of MTZ-treated tail epidermis reveal apical area oscillations

during the process of cell elimination by extrusion. Therefore, oscillation through the sinusoidal term was added to the start potential

(Equation 6). Two cells can oscillate in-phase, where high levels of potential are synchronized (ci = cj = 0 for both cells) or can oscillate out

of phase (ci - cjs 0�). In ourmodel system, cell areas oscillate out of phase (Figures 2C–2E). Tomake the oscillation cause cell area to decrease

over time, we included a linear term with slope di (Equation 7),

restiðtÞ = ai � sinðbi � t + ciÞ � di � t + starti (Equation 7)

By implementing these equations, we can represent cell area changes seen in vivo during extrusion. Despite not defining stable oscilla-

tions in the extruding cell potential function, we see this emerge in the area strains of some extruding cells (Figure 2D). We also see increasing

amplitudes of area strain despite the potential function having constant amplitude. Another emergent property is that cell area strains can

oscillate out of phase with the driving potential, exhibiting the phase variation observed in vivo (Figure 2E). Thus, variations in cell area, and

the dynamics of apical areas during extrusion can be represented by the described time-varying rest potential.

To quantify how changing themodel parameters affects area strain in simulated extruding cells, we calculate the time to half area loss (thalf)

and the slope when the time to half area loss is reached (slopehalf; Figure 2F). We interpolate these quantities between peaks where absolute

half area loss is reached to minimize dependence on amplitude and frequency of the driving potential. While these do not have a 1:1 corre-

lation with cell area, we wanted to decrease their bias on output data. Other endpoints such as local strain and strain along the x and y di-

rections were considered but were not as varied across simulations (Figure S9).

Base extrusion model: A minimal model of extrusion of an oscillating cell

Cell shape oscillation can be driven by varying the cell’s potential function over time. As individual cells are extruded apically after MTZ treat-

ment, they exhibit a distinctive form of oscillation. The cell starts with an initial area that oscillates, and then the cell loses a large portion of its

area (Figure 2C and Equation 7). Additionally, epidermal cells immediately adjacent to extruding cells also exhibit distinctive, high amplitude

oscillations, also driven by a time-varying potential (Equation 6). While multiple cells can be made to extrude in a single simulation, we chose

to have only one cell leave at a time to avoid confounding effects of distant oscillations (Figure S10, Video S2).

Using this approach, we sought to simulate key observations of extruding cells in living epithelia including oscillatory area changes with the

magnitude observed in vivo. There is a key distinction to be made with regard to the initial phases of extrusion observed of cells in living

tissues (Figure 2C). There are area oscillations that appear to be stable but transient before rapid area loss is achieved. Cells are imaged
iScience 27, 111017, November 15, 2024 5
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Figure 2. Quantifying and modeling epithelial cell extrusion, also see Figures S2, S5, S6, S9; Table S1

(A) Time-lapse imaging of cells extruding from the larval zebrafish epidermis.

(B) A simulated extruding cell over time.

(C) Five representative area strain trajectories of extruding cells from time-lapse imaging data.

(D) Five simulated cell area trajectories matching cell trajectories.

(E) Potential function with a sample initial potential of 0.62 and the base parameters and two cell area strain trajectories of different phase.

(F) Extraction of our output metrics of time to half area loss and slope of area loss from a cell area strain trajectory.
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at various times of their extrusion processes, with some having longer periods of stable oscillations than others. We want to start all simulated

cells at the point at which rapid area loss begins, so we do not include a period of stable oscillation in potential in our simulations. We are

simulating variations in extrusion phenotypes, not the triggering of the process itself; however, we do see stable oscillations in some cells

despite their potentials already decreasing. To accommodate this range of features, we varied parameters of the driving potential to mimic

changes of experimentally measured cell areas. We ran simulations with different parameters and compared the extruding cell’s area trajec-

tory to cell area trajectories observed in living epithelia. We compared the amplitudes of the extruding cells’ area trajectories between the

in vivo and in silico cases, showing that they are significantly similar (Mann Whitney U, p > 0.05, n = 14 live cells, n = 15 simulated cells, 200+

amplitudes in each case). We selected a set of parameters that generated extrusion over several simulations matching cell data observed

in vivo (Table 1). This parameter set represents a base case for the perturbations to follow.

Model parameters can be varied to assess their effect on thalf and slopehalf (Figure 3). Within the cell autonomous regime, we can

vary properties of the extruding cell potential, such as amplitude (a), frequency (b), and initial rest length (start). We also considered

changing the slope of the extruding cell potential, but keeping it constant helped isolate other factors contributing to the rate of

extrusion (Figure S7). Beyond the extruding cell, we consider two nonautonomous contributors: the microenvironment and the macroen-

vironment. We can assess the effect of the microenvironment on extrusion by changing the neighbor cell potential function’s amplitude (a),

frequency (b), and initial rest length (start). We can assess the role of the macroenvironment on extrusion by changing viscosity (m) and

packing (p).

Extruding cell potential is a key source of variation in extrusion timing

To explore the role of cell autonomous factors on extrusion, we varied properties of the extruding cell and measured how these parameters

contribute to the dynamics of extrusion while maintaining the geometry and mechanical properties of neighboring cells. First, we vary the

amplitude and the frequency. Ranges are chosen to capture physiologically observed variation. Multiple simulations are run with specifically
6 iScience 27, 111017, November 15, 2024



Table 1. This is the set of parameters used for the base case

Parameter Value

Amplitude 0.2

Frequency 0.8

Slope 0.014

Packing 0.9

Viscosity 15

Amplitude neighbors 0.2

Frequency neighbors 0.8

Distribution used for rest length Uniform

Minimum of distribution 0.6

Width of distribution 0.8
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varied parameter sets. Each simulation generates a single-cell extrusion event over a time series where cell centers are tessellated to produce

an epithelial array. Characteristic extrusion features thalf and the slopehalf are extracted from the extruding cell area changes during extrusion

(Figure 2F). For the same initial potential, we observe differences in thalf as amplitude changes (Figure 4A, Videos S3 and S4) but do not

observe changes in the slopehalf (Figures 4B and S8A). By varying the frequency of oscillation, we do not observe differences in thalf (Figure 4C,

Videos S5 and S6). However, unlike whenwe changed amplitude, variation in the frequency of oscillation alters slopehalf, especially at high and

low frequencies (Figures 4D and S8B).

The initial mechanical state or size of a cell may contribute to the dynamics of extrusion.We tested this possibility by using a range of initial

potentials for extruding cells using the bounds of the selected uniform distribution to capture the full range of initial cell sizes possible. The

potential of a cell is a major contributor to its size before extrusion (Figure 1G). Additional contributions to a cell’s size are the potentials of its

immediate neighbors and global packing within the tissue. From these simulations we find a positive correlation between the initial potential

of a cell and the cell’s thalf (R
2 = 0.8587) (Figures 4E and S8C). Furthermore, slopehalf has a mild positive correlation with the initial potential of

the extruding cell (R2 = 0.18) (Figure 4F), indicating cells that are large due to their low potential are also slower to extrude. Observations in

zebrafish suggest that larger cells might extrude more slowly than smaller cells6 (Figure S5).
Cell potentials of neighboring cells and the local mechanical environment can play a role in extrusion timing

Next, we query the contribution of nonautonomous biophysical factors on extrusion dynamics. To isolate the contribution of the me-

chanical environment of the extruding cell, we hold constant the potential function of the extruding cell and vary the potential of

neighbor cells. While the neighbor cell potentials do not experience a linear decrease like extruding cells, they do experience

oscillations (Figure 3). Based on our live cell observations, the neighbor cell areas oscillate out of phase with each other, so the

beginning of each neighbor cells’ oscillations is randomized in the first ten timesteps of the simulation. The neighbor cells’ potential

oscillations are set up to vary in a similar way: increasing and decreasing each parameter from their baseline levels of amplitude and

frequency. After varying amplitude, we find the amplitude of neighbor cell oscillation has a minimal effect on extruding cell area loss

(Figures 5A, 5B, Videos S7, and S8E). When neighboring cells pulse with a higher amplitude, there are stronger oscillations in the

extruding cell, indicating more mechanical resistance. The most mechanical resistance occurs for the highest neighbor oscillatory

amplitude and the lack of a stable phase in the case of the lowest neighbor oscillatory amplitude. After varying period, we find little

effect on thalf and slopehalf (Figures 5C, 5D, Videos S8, and S8F).

After varying the properties of extruding cells or their neighbors, we turned to varying the bulk mechanical properties of the tissue, or

macroenvironment, particularly density and viscosity. The mechanical status of a tissue may act through mechanobiological feedback to in-

fluence the assembly of contractile structures within the cell53,54; however, we do not explicitly include such feedback processes in our model

and still see a profound impact. Viscosity may contribute to extrusion phenotypes due to dampening the effect of forces from contractility-

driven oscillations within the tissue.55,56 Changing the viscosity modifies the timescale with which the tissue responds or deforms after an

applied force. If contractions fromoscillations propagate through the tissuemore slowly, thismay affect the thalf and slopehalf. Changing levels

of viscosity have an effect on thalf and no effect on the slopehalf (Figures 5E, 5F, and S8H). It appears that less viscous tissues slow down the time

to half area loss. Another factor impacting the micromechanical environment of the tissue is how cells are confined or distributed in space,

which in turn affects tissue mechanics. Crowding is known to induce extrusion of non-apoptotic (live) cells3; therefore, we tested the effect of

packing density on extrusion dynamics. We predicted that higher cell density will make cells extrude faster due to having lower areas, similar

to the case of low rest lengths (Figure 4E). We find agreement with this prediction, and observe that higher levels of packing drives cells to

extrude in less time, albeit at a similar rate (Figures 5G, 5H, S5, and S8G). Another readout of the role of the mechanical environment is the

strain responsewhen extruding cells have identical potential functions, including the initial rest length.Our analysis (Figure S8D) indicates that

cell areas can indeed vary in this case and that there is a role for variation due to nonautonomous mechanics. We next sought to methodically

determine the sources of this variation.
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Figure 3. Key parameters used for assessing cell autonomy

Across three scales, the autonomous region, nonautonomous microenvironment, and the nonautonomous macroenvironment, there are eight parameters that

are varied to assess their contributions to time to half area loss and the slope of area loss. Asterisks indicate cell centroids and the colors represent different scales,

with red being the smallest autonomous scale, orange being the nonautonomous microenvironment, and blue being the nonautonomous macroenvironment.
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Sources of variation in extruding cell area loss

Our model delineates the effects of cell behaviors and tissue mechanics on thalf and slopehalf. Yet, due to the stochastic nature of cell behaviors

across the field, we were not able to precisely control variation that may contribute to the duration of extrusion. To reduce bias from the con-

tributions of stochastic factors anddetermine precise contributions of eachparameter to variation in thalf and slopehalf, weperformed a sensitivity

analysis. Previously, when assessing cell autonomous effectors of extrusion, the focus was on the initial mechanical state of the cell and features

of its oscillatory resting potential (Figure 4). To determine how these features contribute to variation in outcomes, we sought to consider the

initial rest length of the extruding cell and the amplitude and frequency of the rest length oscillation. As non-autonomous factors such as

the neighbor cells and mechanical environment also contribute to extrusion (Figure 5), we sought to assess their relative contributions. For

neighboring cells, we assessed the parallel features to extruding cells: initial rest length, amplitude, and frequency of oscillation. For the tissue

mechanical environment, we again consider viscosity and packing, as they appeared to contribute to extrusion dynamics (Figures 5E–5H).

To define the ranges of the eight model parameters and make comparisons relative, we matched ranges for parameters of the extruding

and the neighboring cells.We tested the contribution of a range of initial rest lengths to the geometric heterogeneity of themodel epithelium

(Figures 1F–1H). Given the impact of rest length on area and sidedness (Figures 1H and 1I) and the wide range of area and sidedness seen

in vivo (Figures 1C and 1D), we selected cell potentials from the high-width uniform distribution. For the amplitudes and frequencies of the

extruding cells and their neighbors, the same ranges/deviations from the base case were used. For determining the ranges of viscosity and

packing in the model, direct literature comparisons were lacking, so we similarly chose values greater and lesser than that of the experimen-

tally determinedbase case to capture variation. Simulations carried out at the bounds of parameter ranges were visually inspected for stability

of the tessellation and segmentation.
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Figure 4. Effects of cell-autonomous properties on extrusion dynamics, also see Figures S4 and S5

(A) Effect of autonomous amplitude change on time on half area loss.

(B) Effect of autonomous amplitude change on slope of area loss.

(C) Effect of autonomous oscillatory period change on time on half area loss.

(D) Effect of autonomous oscillatory period change on slope of area loss.

(E) Initial rest length/potential of the extruding cell as a function of time to half area loss for n = 40 simulations.

(F) Slope of area loss related to initial potential of the extruding cell for the same 40 simulations. All data are represented as mean G 95% confidence interval.
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To assess parameter contributions to extrusion dynamics, we used extended Fourier Amplitude Sensitivity Testing.57 To implement the

eFAST technique, we sample input parameters from periodic distributions. Associatedmodel outcomes and peaks thereof are used to calcu-

late Sobol indices to quantify parameter contributions to time to half area loss and the slope of the area loss (thalf and slopehalf). Two Sobol

indices are calculated (Figure 6A): the first order index (S1) reports how sensitive the output is to a parameter’s variation, with high values

indicating more sensitivity. The total order index (ST) reports synergistic effects of any order. Confidence intervals of these indices are

also provided (Table S2).

Model parameters with the greatest effect on thalf are the extruding cell’s initial rest length, amplitude, frequency of the neighbor extruding

cell potential oscillation, and tissue viscosity. For all of these, the total Sobol index exceeds S1, indicating high order interactions between

multiple parameters affecting the outcomemore than the parameter on its own. Neighbor cell potential features have a lower impact on syn-

ergistic effects. For slopehalf, the parameters contributing to the most variance are the rest length of the extruding cell, the packing of the

tissue, and viscosity. The S1 index is close among all parameters, with neighbor cells having slightly lower values for both indices. In Figure 4D,

we see an effect of the extruding cell frequency on the slope, yet no effect is seen in Figure 5D for the neighbor cell frequency. Our sensitivity

analysis indicates that the two have the same contribution to variation in the slope of area loss; however, the extruding cell has a greater total

synergistic contribution to this variation. The difference in discrete and continuous sensitivity analysis highlights the biological complexities
iScience 27, 111017, November 15, 2024 9
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Figure 5. Non autonomous effects from cell neighbor and tissue-scale mechanics, also see Figure S5

(A) Effect of neighbor cell amplitude potential variation on time to half area loss.

(B) Effect of neighbor cell amplitude potential variation on slope of area loss.

(C) Effect of neighbor cell period potential variation on time to half area loss.

(D) Effect of neighbor cell period potential variation on slope of area loss.

(E) Effect of viscosity on time to half area loss.

(F) Effect of viscosity on slope of area loss.

(G) Effect of packing on time to half area loss.

(H) Effect of packing on slope of area loss. All data are represented as mean G 95% confidence interval and each parameter group is averaged over 10

simulations.
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ST index for
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loss
Rest length [0.6, 1.4] 0.34 0.71 0.16 0.91
Amplitude [0.05, 0.33] 0.13 0.81 0.13 0.90
Frequency [0.6, 1.0] 0.07 0.74 0.15 0.89
Rest length
neighbors [0.6, 1.4] 0.06 0.58 0.11 0.92

Amplitude
neighbors [0.05, 0.33] 0.10 0.53 0.12 0.78

Frequency
neighbors [0.6, 1.0] 0.14 0.92 0.15 0.80

Packing [0.8, 1.5] 0.12 0.49 0.16 0.70
Viscosity [5, 25] 0.14 0.41 0.17 0.83

Figure 6. Summary of contributors to extrusion dynamics, also see Table S2

(A) Table with parameter ranges for sensitivity analysis, with first (S1) and total (ST) order indices for time to half area loss and slope of area loss.

(B) Parameters affecting time to half area loss sorted by scale and level of contribution by S1 Sobol index (low = 0–0.1, med= 0.1–0.3, high = 0.3+). Colors of text in

table correspond to different scales introduced in Figure 3, with the autonomous region being the smallest in red, nonautonomous micro- and macro-

environments in orange and blue, respectively.
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that our simple model is able to represent. This, in the context of our other results, indicates that smaller cells that are pulsing more strongly,

with faster pulsing neighbors, moving more quickly, and are more confined in the tissue will extrude sooner. By binning the S1 Sobol indices

across scales, we are able to gain insight into the role of individual parameters on the entire process of extrusion (Figure 6B). Both thalf and

slopehalf are affected more strongly by the initial amplitude of the potential of the extruding cell, its rest length, and tissue viscosity. The fre-

quency of the extruding cell’s potential has a minimal effect on the thalf but a strong effect on slopehalf compared to other parameters, indi-

cating that the number of contractions affects extrusion dynamics differently than the strength of the contractions. Thus, in our model, the

local microenvironment has only a moderate impact on extrusion dynamics.
DISCUSSION

Our computational model can represent oscillatory cell extrusion dynamics in a way that enables perturbations that cannot be made as pre-

cisely in vivo. Properties of the repulsive potential function of the extruding cell make large contributions to the morphogenesis of extruding

cells, specifically time to half area loss (thalf) and slope of area loss (slopehalf). Furthermore, changing tissue wide properties including viscosity

and packing can enhance cell extrusion. Using ourmodel, we observed how extrusion changes as non-autonomous properties, such as neigh-

boring cell mechanics, are altered, even as we keep the extruding cell properties fixed. The biophysical properties and mechanics of the

extruding cell have large effects on thalf and slopehalf, with neighboring cell potential function parameters playing a less pronounced role.

Our comparative analysis of model parameters and constraints suggest that biophysical features of the extruding cell such as the potential

function and rest length, as well as tissue wide viscosity and packing contribute themost to thalf and slopehalf. In particular, we find that smaller

cells with higher amplitude area oscillations that aremore confined or in a less viscous environment will be removed from the tissue faster than

other cells. We suspect that more noise in cellular displacements disrupts coordinated contractions of neighboring cells due to their mechan-

ical coupling. This further illustrates that the interaction between the potential-based mechanical coupling of cells and bulk tissue mechanics

is a key effector of extrusion dynamics.

Active particle modeling together with hybrid tessellation enables variation of mechanical properties and observation of their impact

on the homeostasis of epithelial cell sheets. Using this model, we can represent a diverse apical morphology of cells within an epithe-

lium and manipulate both an extruding cell and its neighbors independently with well-defined and intuitive parameters under different

conditions. With a common analysis pipeline, applied to both live and simulated cell timelapses, we can make comparisons between
iScience 27, 111017, November 15, 2024 11
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these cases that were not previously possible. This type of model can be used to represent processes in a dynamic tissue, as opposed to

more traditional models focused on static tissues with isodiametric cells. Our model overcomes previous limitations in modifying oscil-

latory dynamics of extruding cells,39,42 and our data suggest autonomous contraction is a key contributor to extrusion of cells from

epithelial tissues. These data are consistent with the apoptotic cell being an active physical participant in the process of cell extrusion.40

During extrusion, an actomyosin ring forms in the extruding cell,5 and pulses of contractile medio-apical actomyosin drive cell-auton-

omous constriction that contributes to cell expulsion,6 similarly to observed ratcheting behaviors during apical constriction in

Drosophila.58,59 Contractility and rosette formation has been proposed to provide an essential mechanical signal to the surrounding

cells by transiently increasing junctional tension and local cellular density.40 While we do not define a period of stable oscillations in

cell potential in our simulations, some simulated cells exhibit this feature, similar to observations of cells in living tissues (Figures 2D

and S8). This emergent property suggests that cells may initially try to mechanically ‘‘resist’’ their neighbors’ oscillations or the phase

differences in neighboring cells may delay the start of the area loss process. We also see that extruding cells may ‘‘put up more of a

fight’’ when their neighbors pulse more strongly, as the most mechanical resistance occurs for the highest neighbor oscillatory ampli-

tude. Our results also provide additional support to the idea that the initial size/state of the cell may dictate the response to the envi-

ronment (crowding) or damage (in this case, MTZ). Defining the autonomous features that promote extrusion could aid in predictions of

cells primed to leave the tissue after a stimulus or during pathogenesis.

In our model, extrusion is not an emergent process—it is encoded in the function of the extruding cell’s potential; however, area

strain dynamics exhibit considerable diversity akin to observation of cells in living tissues. Elucidating factors that trigger extrusion

in vivo may drive the development of future models where specific cell-intrinsic factors result in the emergence of extrusion. What

are the molecular signals that drive this autonomous contraction program and extrusion in response to different stimuli? During

apoptotic cell extrusion in vivo, caspase activation leads to enrichment of the bioactive lipid sphingosine-1-phosphate that regulates

pulses to dictate regions of extrusion.6 Caspase activation has also been shown to promote the disassembly of microtubules that is

required for progression of extrusion.60,61 Furthermore, a wave of calcium emanating from the apoptotic cell can induce polarized

movement of the surrounding cells toward the extruding cells.62 A current limitation of our computational model is the absence of mo-

lecular pathways that regulate specific phases of the extrusion process. Integration of known molecular regulatory components of acto-

myosin assembly/disassembly cycles that drive oscillatory dynamics into this active particle-based model will likely provide key insights

into the removal of defective cells from homeostatic epithelial tissue maintenance.

While our data are supportive of oscillatory dynamics of an extruding cell providing the strongest contribution to the trajectory of extru-

sion, the neighboring cells still contribute, but to a lesser extent. Existingmodels representing contraction (without apoptosis) in other model

systems note the strength of contractions as a pertinent parameter.63,64 Contraction of the apoptotic cell also triggers a coordinated elon-

gation of the neighboring cells, which requires E-cadherin-mediated cell-cell adhesion.65 The small GTPase RhoA is a cadherin-dependent

signal in the neighbor cells that becomes activated in response to contractile tension from the apoptotic cell.7 However, in this study, changes

in cell adhesion within the extruding cell or its neighbors were not directly accounted for. Therefore, it is plausible that the neighbors play a

more significant role in facilitating the final removal phase than reflected by our model. Future studies using optogenetic manipulations of

caspase activation, contractility, and adhesion in the extruding cell and its neighbors prior to elimination will provide additional clues on the

mechanics of cell elimination during tissue homeostasis.

In summary, our computationalmodel based on in vivo observations provides a tool to assess the contributions of the extruding cell and its

neighbors to the process of eliminating defective cells from epithelial tissues. Given the conserved nature of epithelial topology and extrusion

programs in different organisms, our model could provide insights into additional mechanisms such as ratcheting behaviors and guide future

investigations into regulation of epithelial tissue homeostasis.
Limitations of the study

Limitations of this study include the challenges ofmatching computational simulations to noisy, non-stationary oscillatory functions represent-

ing in vivo cellular area strains. Our simulations are based on mechanical measures representing cellular contractility and adhesions and not

individual components acting at sub-cellular scales. It is not possible to fully disentangle cellular and tissue mechanics due to mechanical

coupling. We do not represent molecular feedback pathways proposed to be at play; however, we still find emergent properties matching

cells from living tissues. Finally, extrusion events in the model are not emergent, which made it challenging to define unique phases of extru-

sion and prevents identification of events initiating this process. We hope that future models can build on this work and that these results can

be used to guide further experimental interrogations of extrusion to provide greater insight into the mechanisms driving this crucial process

and its dysregulation in pathological conditions.
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Materials availability

The transgenic zebrafish lines used in this paper are available from G.T.E. to other scientific researchers upon request.
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Data and code availability

� Data: The published article includes all datasets and codes generated or analyzed during this study. Data supporting the findings presented can be found
within the body of the paper and the supplemental information.

� Code: All custom code for the computational model and analyses have been deposited in the below Dataverse repository:
Anjum, Sommer, 2024, "Data for "Assessing mechanical agency during apical apoptotic cell extrusion"", https://doi.org/10.7910/DVN/XKVWGA, Har-
vard Dataverse

� Other items: Additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Metronidazole (MTZ) Sigma M-3761

Experimental models: Organisms/strains

Zebrafish: Et(Gal4-VP16)zc1044a; Tg(UAS-E1b:nsfB-mCherry) Eisenhoffer et al.66 N/A

Zebrafish: Tg(-8.0cldnB:lyn-EGFP)zf106 Haas and Gilmour67 N/A

Software and Algorithms

Fiji ImageJ https://imagej.net/Fiji

Tissue Analyzer Aigouy et al.68 https://grr.gred-clermont.fr/labmirouse/software/

WebPA/index.html

Prism version 8 GraphPad https://www.graphpad.com/scientific-software/prism/

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

SA Lib Herman and Usher69 https://salib.readthedocs.io/en/latest/index.html

Custom code Anjum et al.70 https://doi.org/10.7910/DVN/XKVWGA
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experiments were conducted on 4 dpf larval zebrafish (Danio rerio) maintained under standard laboratory conditions with a cycle of 14 h of

light and 10 h of darkness. Larvae were collected and kept in E3 larva medium at 28.5�C.71 The zebrafish used in this study were handled in

accordance with the guidelines of the University of Texas MD Anderson Cancer Center Institutional Animal Care and Use Committee.

METHOD DETAILS

Induction of extrusion in surface epithelial cells in larval zebrafish

4dpf larvae were treated with 10mM metronidazole (MTZ) for 2–4 h in a 28.5�C incubator to induce extrusion activity.6,72

Imaging of zebrafish larvae

4 dpf zebrafish larvae were anesthetized with 0.04% tricaine in E3 andmounted in an X-plate Petri dish with using 0.5% UltraPure LowMelting

Point Agarose and E3. The larvae were imaged on a ZEISS LSM 800 laser scanning confocal microscope with fluorescent channels set to a

wavelength of 488 nm and 561 nm. Images were acquired from 30 s, 1 min or 1 min and 30 s acquisition times.

Quantification of zebrafish cell area and polygon topology

The resulting confocal images were handled in Fiji and segmented and the resulting area and polygon topology were assessed using Tissue

Analyzer73 as described in the previous protocols paper.6

Simulation and analysis pipeline

The simulation is coded as an ImageJ macro to allow pixel manipulation and visualization. We have developed a lattice-free model of an

epithelial sheet. Cells are described as nodes that are initialized randomlywithin a square bounding box. Corner nodes are fixed, while border

nodes move along one axis, and interior nodes may move along both axes. Nodes interact with each other by repelling neighbors via a

nonlinear compressive spring maintaining cell areas. Cell movement is governed by a force balance enforcing Langevin dynamics, incorpo-

rating stochasticity and drag forces from viscous media.49 At the beginning of the simulation, cells are randomly assigned uniformly distrib-

uted potentials/rest lengths. These rest lengths determine how much cells repel neighboring cells, as a function of distance. The repulsion

force is scaled by viscosity m and the simulation is advanced using forward Euler methods. When cells are first initialized, they move more

because of their proximity causing more force due to their random placement. We allow 100 timesteps for the cell positions to equilibrate

before performingmanipulations. An extruding cell is selected from centroids in the center of the field at random, and centroids within a pixel

based radius are selected to be the neighboring cells and assigned an oscillatory potential as well, with oscillations randomized to begin

within the first ten timesteps after equilibration is complete. Extruding cells adopt their linearly decreasing sinusoidal potential right away.

They are removed from the simulation when their potential function drops below 0.01. After tessellation using the hybrid CVT method, seg-

mentation of the cells is performed via ImageJ using cell centroid information derived from the model and assigning unique pixel values to
16 iScience 27, 111017, November 15, 2024
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cells detected as particles after tessellation. We extract morphometric features using regions of interest (ROIs) from each frame of the simu-

lation (typically 60–70 frames). Sidedness is calculated for cells not on the boundaries of the simulation by expanding the ROI and finding

unique pixel intensities. We calculate strain from ROI measurements for cells over time using MATLAB (Mathworks). To calculate the slope

and time to half area loss, we calculate the lower Hilbert envelope by using the discrete Fourier transform on the analytic signal of the strain

data (Figure S6). The envelope in the neighborhood of half area loss is used to calculate the slope and interpolate the time at which half area

loss is achieved. The absolute time to half area loss is calculated first, and then the troughs prior to this time and after this time are identified.

A line is drawn between these two points. We interpolate back to the time axis using this line to estimate the time to half area loss (thalf). The

slope of this line is recorded as the slope at half area loss (slopehalf). This approach was chosen to lower bias of half area loss times to changes

in amplitude and frequencies of the driving potential. Statistical analysis is performed in MATLAB and GraphPad Prism 9. To speed up the

simulation and analysis pipeline, we used MATLAB-ImageJ.74 By running ImageJ via MATLAB, simulations could be run in sequence without

jumping from MATLAB to ImageJ between simulation and analysis phases. The simulation and analysis pipeline overview is provided

(Figure S1).
Hybrid tessellation technique

We developed a method of tessellating cells that represents the physics of the system better than a Voronoi tessellation. The Voronoi tessel-

lation is done purely based on the location of the cell centroids. First, a Delaunay triangulation is performed, and the circumcenters of these

triangles are connected to form the Voronoi tessellation. In our newmethod, we calculate the centroid of the triangle, weighted by the resting

lengths of the cells that form the triangle. We average this with the original Voronoi circumcenter. This enables us to represent cellular extru-

sion by dramatically lowering a cell’s resting length in the simulation and inflating this value during the tessellation to bias the weighted

centroid toward an extruding cell. A shortcoming is sudden T1-type flips of edges in the network that occur when the weighted circumcenter

moves outside of the Delaunay triangle. We can attribute this to the special case in which the circumcenter of the Delaunay triangle lies

outside the triangle itself and when Delaunay triangles undergo large configuration changes. Due to this instability, we sought to find the

best of both worlds. We tested weighted combinations of the Voronoi tessellation (VT) and the Weighted Centroidal Voronoi (weighted

CVT) tessellation. The combination that allowed for the greatest stability while still being able to satisfy our base case criteria was an even

(50% each) weighting of the Voronoi tessellation and weighted CVT, which we call the Hybrid Centroidal Voronoi tessellation (hybrid

CVT). This method allows removal of cells in a way that can be precisely controlled.

xcentroid =

xi
resti

+
xj

restj
+

xk
restk

1

resti
+

1

restj
+

1

restk

Each index (i, j, k) represents a node of a Delaunay triangle. This tessellation is implemented via modification of the Delaunay Voronoi

ImageJ plugin.
Local strain calculation

During exploratory simulations of oscillatory extrusion, strain of a local neighborhood of cells was examined in addition to cellular strain. This

designation of a local ‘‘corona’’ is inspired by Tissue Tectonics.75 The deformation gradient matrix F is derived from the equation of an ellipse

fitted to the ROI of a cell or its neighborhood (Figure S9A) and is used to calculate Lagrangian finite strains, shown in Figure S9.

We define the initial configuration of the ellipse (fitted to either the cell or corona) at t = 0 as:

ðAx+ByÞ2 + ðCx+DyÞ2 = 1

The same ellipse after deformation, at t = 1 is defined as:

ðax+byÞ2 + ðcx+dyÞ2 = 1

Using the deformation gradient tensor F, we map the initial configuration of the ellipse to its current configuration and solve for F:

�
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C D

�
=
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�
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We then calculate the Lagrangian finite strain tensor for both the cell and corona levels.
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The x and y directions of cell strains (Cell εxx and Cell εyy) were essentially equivalent and close to half of the cell area strain, so we chose to

show only cell area strain for clarity. The area strains are calculated from the pixels contained in the cells within the ROIs, rather than using the

ellipse areas for more precise measurements. The local strains of a cell, its neighbors, and its neighbor’s neighbors (2-level corona; Local εxx,

Local εyy, Local Cell εarea) were negligible, even in the case where only the extruding cell potential was oscillating despite it reaching half area

loss sooner (Figures S9A, S9C, and S9D). We expect that this is due to area conservation: when a cell has a shrinking area, the neighboring cell

takes on that area. This is not a perfect 1:1 area allocation as viscous drag forces delay area allocations as a function of force dampeningwithin

the media. This is an interesting observation in that extruding cell oscillations may have a varying effect on the deformation of nearby cells. In

conjunction with possible minimal autonomous oscillations of non-extruding cells, we suspect that oscillations may be triggered later on with

compounding of these forces.
Developing a model with a larger field of cells and multiple extruding cells

Themodeling results shown involve amodel representing a single cell oscillating in a small field of cells to isolate the effects of themechanical

properties studied and establish case-by-case independence on our statistical analysis. However, in vivo, multiple cells oscillate within a larger

field. Another version of the model involves a larger field of approximately 400 cells wherein five cells are designated as oscillatory extruding

cells (Figure S10). The extruding cells are within the center third of the field to minimize boundary effects. This adds a layer of complexity, as

oscillations from one extruding cell, in close enough proximity to the neighborhood of another extruding cell, may impact the dynamics of

that extruding cell, as well as the morphology of its neighbors. This extended model is more computationally expensive but allows a way to

probe tissue-scale mechanics of propagating oscillations more directly.
QUANTIFICATION AND STATISTICAL ANALYSIS

To extract amplitudes from the area strain trajectories, we calculate the Hilbert envelope by using the discrete Fourier transform on the an-

alytic signal of the strain data. Amplitude is calculated as half the difference between adjacent peaks and troughs in the signal for live cell and

simulated data (Figure S6). For comparisons between two groups such as the amplitudes for matching the base case, we used the Wilcoxon

rank-sum test at the 95% significance level in MATLAB. For analysis of manipulated features such as amplitude, frequency, and packing, we

use a one-way ANOVA to compare variations across groups at the 95% significance level using GraphPad Prism.We checked normality of the

distribution of half times as well as the residuals, and our datameets criteria for sufficient samples to account for deviations from normality. All

data is represented as mean and 95% confidence interval. Sample sizes may be found in the text and figure legends.

For the attribution of features of time to half area loss, we performed global sensitivity analysis using the extended Fourier Amplitude

Sensitivity test (eFAST) using the SALib package in Python.69 The eFAST test leverages periodic sampling within the parameter intervals

to detect peaks in the output data that are attributed to these signals by computing the Fourier transform. This informs calculation of Sobol

indices bymeasuring the fraction of the variance in the output attributed to Fourier coefficients associatedwith each of the varied parameters.

We used 480 parameter sets generated by the SA Lib fast sampler and ran asmany simulations to extract our two outputs. These indices tell us

the fraction by which the variation of the summary statistic would be reduced if a parameter was held constant. Together, the effects of syn-

ergy between changingmultiple parameters are shown. Results are interpreted as contributions to variability in the output variables of time to

half area loss and slope of area loss, with larger values indicating a greater contribution.
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