
Research Article
Accelerating Content-Based Image Retrieval via
GPU-Adaptive Index Structure

Lei Zhu

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Lei Zhu; leizhu0608@gmail.com

Received 31 August 2013; Accepted 17 February 2014; Published 20 March 2014

Academic Editors: D. Talia and C.-W. Tsai

Copyright © 2014 Lei Zhu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A tremendous amount of work has been conducted in content-based image retrieval (CBIR) on designing effective index structure
to accelerate the retrieval process. Most of them improve the retrieval efficiency via complex index structures, and few take into
account the parallel implementation of them on underlying hardware, making the existing index structures suffer from low-degree
of parallelism. In this paper, a novel graphics processing unit (GPU) adaptive index structure, termed as plane semantic ball (PSB),
is proposed to simultaneously reduce the work of retrieval process and exploit the parallel acceleration of underlying hardware. In
PSB, semantics are embedded into the generation of representative pivots and multiple balls are selected to cover more informative
reference features.With PSB, the online retrieval of CBIR is factorized into independent components that are implemented onGPU
efficiently. Comparative experiments with GPU-based brute force approach demonstrate that the proposed approach can achieve
high speedup with little information loss. Furthermore, PSB is compared with the state-of-the-art approach, random ball cover
(RBC), on two standard image datasets, Corel 10 K and GIST 1M. Experimental results show that our approach achieves higher
speedup than RBC on the same accuracy level.

1. Introduction

With the popularity of high-end digital imaging device
and convenient image storage system, the amount of high-
quality images is growing exponentially. It provides us a great
challenge to find visual similar images from massive image
collections. Content-based image retrieval (CBIR) is one of
the desirable solutions to return similar images for a given
query instance automatically based on pure visual analysis
and similarity comparison [1, 2].

CBIR represents the visual content of image with low-
level descriptors via feature extraction. With the extracted
visual features, similarities between query images and images
in database are calculated and sorted, and the most sim-
ilar image is returned. For a given query image, response
time of retrieval depends on the complexity of similarity
comparison, which is further determined by the dimension
of image feature and image database size. For accurate
description, high dimensional feature is needed to represent
the complex image content, which is generated from high
quality imaging devices. At the same time, large quantities of
images are produced from portable image capturing devices.

High dimensional features and large quantities of images
make the process of similarity calculation and ranking time-
consuming. Retrieving similar images becomes a compu-
tationally expensive task. For a practical retrieval system
design, the efficiency of CBIR system is turned into a crucial
issue that needs to be seriously taken into consideration.

To ease the computational pressure, a huge variety of
strategies and efforts have been made by researchers in the
literature to reduce the retrieval time of CBIR. On the one
hand, software developers employ graphics processing unit
(GPU) as one of the important platforms to accelerate feature
extraction and similarity comparison. Many researchers have
reported their promising results on parallelizing sequential
algorithm on GPU. Their successful practices demonstrate
that hardware acceleration becomes one of the important
options to improve the retrieval efficiency. On the other
hand, algorithm designers propose many effective index
structures at the algorithm design level to accelerate the
process of similarity comparison via pruning unnecessary
computations. These index structures generally have elegant
mathematical formulation but pay little attention to parallel
implementation. Oversight of parallel implementation dur-

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 829059, 11 pages
http://dx.doi.org/10.1155/2014/829059

http://dx.doi.org/10.1155/2014/829059

2 The Scientific World Journal

ing algorithmdesignmakes the conventional index structures
interleave series of similarity calculations and comparisons.
In fact, inherent dependence between calculation elements
in traditional index structures is not adaptive to capture the
characteristics of GPU, which launches a bundle of threads
to run independent tasks. Therefore, direct parallelization
of traditional index structure cannot make full use of GPU
resources. To the best of our knowledge, few papers concen-
trate their efforts on designing GPU-adaptive index structure
to integrate both efforts from algorithm design and hardware
parallelization.

In this paper, we are motivated to design our approach
via combining the advantages of both algorithm design and
hardware parallelization.This is our starting point to develop
the GPU-based parallel CBIR system. A novel GPU-adaptive
index structure, termed as plane semantic ball (PSB), is
proposed to leveragemultiple semantic balls to cover retrieval
space. It should be noted that this technique is different
from traditional index structures that exploit hierarchical
space decomposition to prune redundant computations. To
improve efficiency further, PSB is designed to represent the
involved data structures in the formofmatrix, so that the data
structures can be processed in parallel by different calculation
units in GPU. In this case, large number of threads can be
launched on GPU platform to conduct the same operations
concurrently, and thus the online retrieval process of CBIR
can be greatly improved.

The contributions of the paper are mainly concentrated
on the following three facets.

(i) A novel GPU-adaptive index structure, PSB, is pro-
posed to index the features in database.Different from
the existing approaches, PSB is designed to capture
the hardware characteristics of GPU.

(ii) An effective parallel strategy is designed to leverage
both the space decomposition ability of PSB and the
hardware resources of GPU.

(iii) Comprehensive experiments on two image datasets
are conducted to demonstrate the effectiveness of the
proposed approach.

The remainder of the paper is organized as follows:
related work is reviewed in Section 2. Section 3 provides the
background of CBIR system. Data structure and parallel
retrieval algorithm are introduced in Section 4. Section 5
introduces the characteristics of GPU and programming
environment CUDA. Section 6 presents the details of parallel
acceleration. Experimental results and discussions are given
in Section 7. We finally conclude the paper in Section 8.

2. Related Work

This section presents related work on algorithm acceleration
and hardware parallelization of CBIR. Related work about
algorithm acceleration is mainly concentrated on dimension
reduction and index structure. Hardware parallelization is
mainly focused on parallel acceleration of CBIR on platform
of multicore or many-core.

Dimension reduction is an approach that reduces the
dimension of feature vector prior to any application and
speeds up the process of similarity computation. In this
research field, a huge variety of effective algorithms, such
as principal component analysis (PCA) [3], local linear
embedding (LLE) [4], and locality preserving projection
(LPP) [5], are proposed. The basic idea of these techniques is
eliminating the redundant information in feature dimensions
and compressing the feature into low dimensions. Although
these techniques can accelerate the retrieval process to some
degree, they incur some information loss, which negatively
impacts the descriptive ability of image feature and brings
down the retrieval accuracy.

Index structure is another effective approach, which
prunes the retrieval space and avoids unnecessary compu-
tations. In general, this kind of approaches can be further
divided into two main categories: tree-based index structure
and hashing-based index structure. Tree-based index struc-
ture performs well for low-dimensional feature (around 20
dimensions), but poorly for high-dimensional feature. The
performance of it even degrades to that of brute force retrieval
in extreme case when the dimension of features becomes very
high. In CBIR, hundreds of feature dimensions are needed
to describe the complex visual content of image. Therefore,
the retrieval performance will be degraded if tree-based
indexing structure is used to index features. Furthermore,
tree-based index structure involves an interleaved series of
similarity computations and comparison operations, causing
ineffectiveness for parallelization [6]. Although hashing-
based index structures, such as local sensitive hashing (LSH)
[7] and spectral hashing (SH) [8], are proposed without the
drawbacks described above, they are not designed for the
generic distance types, and thus the application of these
algorithms is largely limited. In addition, another weakness
of hashing-based index structure is that the building of it
involves many parameters, which cannot be easily adjusted
for any inexperienced users.

There is also a large body of work focusing on hardware
parallelization of retrieval process in CBIR. The authors of
[9, 10] propose an effective parallelization of brute force
retrieval using compute unified device architecture (CUDA)
and CUDA basic linear algebra subroutines (CUBLAS) [11],
respectively. An effective algorithm is given in [12] to further
extend the process of the nearest neighbor search on multi-
GPU. A parallelization of CBIR system is reported in [13]
to accelerate the retrieval process on 8-core system and 16-
core system. Their experimental results report 5.6x and 9.7x
speedups. The work in [14, 15] exploits a computer cluster
system to parallelize CBIR with several computers connected
by high-speed network. The authors of [16] develop a three-
level flexible image retrieval system (FIRE) using openmulti-
processing (OpenMP) and shared memory multiprocessors.
Challenges, such as load balancing, parallelization overhead,
and parallelism exploitation, are considered in their work.
All methods described above can only be considered as
brute force parallelization, which is inherently parallelizable.
Although they have reported promising experimental results,
their performance can be further improved if principals of
index structure are taken into account.

The Scientific World Journal 3

The approaches that are most similar to this work are
[17, 18]. They suggest the nearest neighbor search on GPU
via exploiting a simple index structure, termed as a random
ball cover (RBC). To the best of our knowledge, RBC
may be the most effective GPU-adaptive index structure.
However, this work only exploits a simple random subset as
representative pivots for space decomposition, which lacks
semantics cover for the feature database. In addition, RBC
only selects the closest ball as retrieval scope for each query
feature, which brings much performance loss. Therefore, in
order to reduce accuracy loss,more representative pivots have
to be selected to cover more information. Moreover, their
approach only focuses on algorithm design and pays little
attention to efficient parallel implementation. To mitigate the
drawbacks of the RBC described above, we develop a new
GPU-adaptive index structure PSB in this paper. In PSB,
semantics are embedded to generate representative pivots to
make the feature space more compact. Appropriate number
of representative pivots is selected according to the similarity
measurement to cover more semantic balls and involve
more possible reference features. In addition, to maximize
the performance of the proposed index structure, we also
propose a high-efficient parallel retrieval scheme tomake full
use of the GPU resources to accelerate the retrieval process.

3. Overview of CBIR System

This section reviews the background of CBIR system. For
more detailed analysis of relevant techniques, one can refer
to [1, 2].

Although many CBIR systems, such as VisualSeek [19],
MARS [20], and SIMPLIcity [21], have been proposed in
multimedia field, the majority of them are designed with the
same architecture. These systems are generally comprised of
an offline part for feature indexing and an online part for
query interface. Figure 1 shows the typical framework of a
CBIR system.

In the offline part, visual features of images in database
are automatically extracted and stored in feature database.
This process is called feature extraction. In computer vision
field, many effective approaches are proposed to extract
feature descriptors to represent the visual content of image.
In general, these features are classified into global features
and local features, which represent images by vectors and
vector sets, respectively. Since the main aim of this paper is to
focus on the acceleration of retrieval process, we simply adopt
GIST [22] as the main image feature. The effectiveness of our
approach on other features will be explored in further work.
In the literature, GIST is proposed to use a set of perceptual
dimensions (naturalness, openness, roughness, expansion,
and ruggedness) to describe the spatial structure of the
image. A Gabor filter with fixed parameters is built. Image
is filtered and segmented into grid cells where orientation
histograms are extracted. Finally, the response of Gabor
filers on each grid cells is concatenated into GIST feature.
With extracted GIST features, distances between images are
calculated. In practical CBIR system, to speed up the retrieval
process, features are usually indexed by data structures to
prune the unnecessary computations. An effective index

Query interface

Query image Results
visualization

Yes

No

Online

Relevance
feedback Satisfied

Retrieval process

Feature
extraction

Similarity
comparison

Similarity
ranking

Similarity
calculation

Offline

Image
database

Feature
database

Indexed
database

Figure 1: Typical framework of CBIR system.

structure should keep a balance between retrieval accuracy
and efficiency.The conventional tree-based or hashing-based
index structures are proposed to achieve this requirement.

In the online part, given a particular query image, visual
feature is extracted as the images in the database. Dissim-
ilarities between query feature and features in database are
then calculated and ranked. Based on the ranked results, the
corresponding images are finally forwarded to user.

In a typical CBIR system, for the limited discriminating
ability of low-level features, several rounds of relevance feed-
back need to be iterated to bring the semantic gap between
low-level features and high-level semantics. In each round
of relevance feedback, as descriptive information of query
image is revised by the feedback information, similarities
between query feature and features in database should be all
recalculated. To make things worse, in a practical system,
several rounds of feedback are generally needed to achieve
query intend, which brings more computational pressure on
the underlying hardware.

In general, the stage of similarity calculation and ranking
consumesmost of the online retrieval time.Hence, it has great
importance to develop efficient index structure to reduce the
response time for query and improve the user experience for
a CBIR system.

4. Plane Semantic Ball

In this section, details of the proposed GPU-adaptive index
structure PSB and its associated parallel retrieval algorithm
are presented. The main notations in the paper are listed in
Notations section.

In offline part of CBIR, we build the structure of PSB.
Representative pivots are generated from clustering process

4 The Scientific World Journal

and balls are built for all pivots to cover the whole feature
space.With the built balls, features in database are assigned to
their proper balls according to the nearest distance principle.
We call the built index structures as semantic since the
clustering process embeds semantics into the representative
pivots and balls.

With the built PSB, the online retrieval process is divided
into two consecutive stages. In the first stage, several nearest
representative pivots are selected for query. Features in balls
of the selected pivots are combined to constitute the retrieval
scope of the second retrieval. The nearest features are found
in the second stage and considered as the final results of the
whole retrieval system.

4.1. Basic Computational Unit. In this subsection, we intro-
duce the module, basic computation unit (BCU), on which
both the PSB and online retrieval algorithm are built. The
basic aim of BCU is to find𝐾 nearest features for query. We
denote the operation of BCU as NN(X,Y, 𝐾), whereX is the
set of query features,Y is the set of reference features, and 𝐾
is the number of the nearest features which are returned by
BCU.

We further decompose the procedure of BCU into two
subprocedures: distance computation and distance selection.
As the query image 𝑞 is described by a feature vector and
feature space is actually vector space, the process of distance
computation can be easily transformed into vector-matrix
multiplication. This operation can be further transformed
into matrix-matrix multiplication when streams of queries
are launched. Therefore, many existing GPU implementa-
tions of vector-matrix and matrix-matrix multiplication can
be applied directly. As image features are generally sparse
enough, optimization tricks of sparse matrix-vector multipli-
cation can be further exploited to improve the performance.
With BCU presented above, we introduce the construction of
our proposed index structure PSB and its associated retrieval
algorithm in the following subsections.

4.2. PSB Construction. In this subsection, details about the
construction of PSB are described. To build PSB, we should
first choose representative pivots from feature database F
to cover the whole feature space. Each representative pivot
maintains a ball which holds𝑇nearest features fromdatabase.
Representative pivots are generated by clustering the feature
database to involve more semantics into the cluster centers,
which are considered as the representative pivots in this study.
Figure 2 shows the basic structure of our proposed GPU-
adaptive index structure PSB.

In PSB, representative pivots are determined by 𝑘-means.
The ball of a particular representative pivot 𝑅𝑓 is built from
NN(𝑅𝑓, F, 𝑇) to find the 𝑇 nearest neighbors among F. Its
formula can be represented as (| ⋅ | is the cardinality of set)

Ball (𝑅𝑓) = {𝑓 | 𝑓 ∈ F,D (𝑅𝑓, 𝑓) < Φ𝑅𝑓} ,

Ball (𝑅𝑓)

= 𝑇,

Φ𝑅𝑓
= MAX
𝑓∈Ball(𝑅𝑓)

{D (𝑅𝑓, 𝑓)} .

(1)

By properly setting the value of 𝑇, feature points in
database will belong to at least one semantic ball. The
combined balls of the 𝐻 nearest representative pivots are
defined as Union(𝑅1, 𝑅2, . . . , 𝑅𝐻), which is calculated by
the Union operation on corresponding balls. Formally, it is
calculated by Union(Ball(𝑅1),Ball(𝑅2), . . . ,Ball(𝑅𝐻)).
4.3. PSB-Based Online Retrieval. Once the user uploads
query image, feature is first extracted and image is repre-
sented by feature vector. With the PSB in place, the online
retrieval process is divided into two consecutive retrieval
rounds. The aim of the first round retrieval is reducing
retrieval scope, while the second round retrieval is to return
the final nearest images. Formally, the first retrieval round
can be represented as NN(Q,R, 𝐻), which is used to find
𝐻 nearest representative pivots for each query among 𝑆
representative pivots. The search scope of the second pro-
cess is determined as the Union ball of 𝐻 representative
pivots, which can be represented as Union(NN(Q,R, 𝐻)).
Thus, the whole retrieval process can be represented as
NN(Q,Union(NN(Q,R, 𝐻)), 𝐸), which is simply built on the
BCU andUnion operation on balls of the nearest representa-
tive pivots. Based on the returned results, the corresponding
images are returned to user.

Let us analyse the time complexity of online retrieval.
We assume the whole feature database is comprised of 𝑀
images and𝑁 query images, which are represented by feature
vector with 𝑑 dimensions. If brute force retrieval is adopted,
the time complexity will be 𝑂(𝑀𝑁𝑑). In our approach, as
there are 𝑆 representative pivots and each of them points to
𝑇 image features, the time complexity of online retrieval is
𝑂(𝑁(𝑆+𝐻𝑇)𝑑) ((𝑆+𝐻𝑇) < 𝑀). As semantics are embedded
in PSB by clustering, small 𝑆 and 𝐻 are required to obtain
the same retrieval accuracywith the brute force retrieval.This
inference is validated in our experiments which demonstrate
that PSB can achieve high speedup with almost no accuracy
loss.

5. GPU and CUDA

In this section, GPU and its programming environment
CUDA are introduced to give a general description. Instruc-
tions that should be considered during the parallel imple-
mentation are also presented. Figure 3 shows a typical GPU
architecture. GPU came about as a powerful many-core
processor for graphic rendering. It usually contains sev-
eral streaming multiprocessors (SM) which are capable of
supporting concurrently threads. A typical SM is generally
equipped with multiple streaming processors (SP) and low-
capacity shared memory, which has low data access latency
and speedy bandwidth. Global memory is the only unique
memory type in GPU that can be shared by both CPU and
GPU. Therefore, data exchange between GPU and CPU is
mainly through globalmemory.Themain drawback of global
memory is data access latency caused by PCI transmission. In
addition,GPU is equippedwith constant and texturememory
to speed up the process of read/write operation for frequently
accessed data.

In order to enable the general applications to run on
GPU, we develop a CUDA C-like program that parallelizes

The Scientific World Journal 5

the sequential algorithm. To programwith CUDA, sequential
algorithms should be first analyzed and decomposed into
sequential and parallel programs, which can be dispatched
to run on CPU and GPU, respectively. Parallel programs are
organized into kernels, which launch threads to run the same
code on segmented data concurrently.

Architecture characteristics of GPU and special program-
ming mode of CUDA present significant challenges for par-
allel algorithm design. To maximize the efficiency, sequential
algorithms should be seriously analyzed and decomposed
into components with low dependencies. In addition, the
characteristics of parallel programming and memory opti-
mization tricks should be carefully taken into account.

6. Parallel Acceleration

6.1. Data Layouts. A GPU-based parallel algorithm that is
memory boundmay, as is the case in CBIR, yield poor perfor-
mance if the programmer ignores the specific characteristics
of GPU.Therefore, to obtain better memory throughput, data
structures included in PSB should be placed in appropriate
memory type, by taking into account both the intrinsic GPU
memory characteristics and inherent attributes of memory
access to data structure.

Since representative pivots and reference features are
almost constant in thewhole retrieval process, they are placed
on constant memory and texture memory, respectively, to
improve memory throughput. For large-scale image dataset,
reference features should be placed on global memory as the
capacity of texturememory is limited. Because query features
are varied, these features are directly transferred to global
memory to providememory coalescing. Note that all features
described above are transformed in columns so that each
thread can access one component of current query data.

6.2. Parallelization of BCU. Since the retrieval process of
queries is independent, we parallelize the computation of
BCU on query level. It means that the retrieval processes of
queries are parallelized.

6.2.1. Distance Matrix Computation. The aim of this step is to
calculate the pairwise distance between queries and reference
features, generating distancematrix𝐷.The element in 𝑖th row
and 𝑗th column of matrix is denoted as𝐷𝑖𝑗, which represents
the distance between query feature 𝑖 and reference feature 𝑗.
For presentation convenience, in our approach, the distance
metric considered between two image features is trivially
restricted to Euclidean distance. This metric can be naturally
substituted with other metrics for other features. Formally,
𝐷𝑖𝑗 is given by

𝐷𝑖𝑗 =
√

𝑑

∑

𝑙=1

(𝑋𝑙𝑗 − 𝑌𝑙𝑖)
2
. (2)

Matrix multiplication can be implemented on GPU effi-
ciently since it can be decomposed into many independent
calculation elements. Therefore, in order to make full use
of the GPU resources, the computation of distance matrix

Representative pivot R2

(cluster center)

Ball of representative pivot

R1

R2

R3R4

R5
R6

𝜓R𝑖

Figure 2: Basic structure of PSB (R1, R2, R3, R4, R5, R6 are
representative pivots).

is transformed into matrix-based calculation. Formally, the
value of𝐷𝑖𝑗 can be calculated as

𝐷𝑖𝑗 =
√(𝑋𝑗 − 𝑌𝑖)

𝑇
(𝑋𝑗 − 𝑌𝑖),

𝑋𝑗 = (𝑋1𝑗, 𝑋2𝑗, . . . , 𝑋𝑑𝑗)
𝑇
,

𝑌𝑖 = (𝑌1𝑖, 𝑌2𝑖, . . . , 𝑌𝑑𝑖)
𝑇
.

(3)

After mathematical transformation,𝐷 can be calculated as

𝐷 = √𝐴 + 𝐵 + 𝐶, (4)

where the 𝑖th row of 𝐴 is the modulus of 𝑌𝑖 and denoted
as ‖𝑌𝑖‖ and the 𝑗th column of 𝐵 is the modulus of 𝑋𝑗 and
denoted as ‖𝑋𝑖‖ (‖ ⋅ ‖ is the Euclidean norm). The matrix
𝐶 is computed in form of the matrix-matrix multiplication
between query and reference features as

𝐴 𝑖𝑗 =
𝑌𝑖
 =

√

𝑑

∑

𝑙=1

𝑌
2
𝑙𝑖
𝐵𝑖𝑗 =

𝑋𝑗

= √

𝑑

∑

𝑙=1

𝑋
2
𝑙𝑗
,

𝐶𝑖𝑗 = −2 ×

𝑑

∑

𝑙=1

𝑋𝑙𝑗 × 𝑌𝑙𝑖𝐷𝑖𝑗 = √𝐴 𝑖𝑗 + 𝐵𝑖𝑗 + 𝐶𝑖𝑗.

(5)

Since, in the context of CBIR, we only need the rank order
of reference features in two retrieval rounds, the values of
distance are not valuable. Therefore, the matrix calculation
of 𝐵 is omitted for simplicity:

𝐷 = √𝐴 + 𝐶. (6)

The computation ofmatrix𝐶 ismatrix-matrixmultiplica-
tion. There are a lot of existing implementations. Therefore,
we do not implement our own GPU code of matrix-matrix
multiplication, but just use the optimized implementation
in CUBLAS. In this way, to compute the matrix 𝐷, we
just calculate the modulus of reference features and add it
to proper position in 𝐶. In our approach, this process is
completed in coarse interreference parallelism. Threads are
launched with the same number as reference features. Each
thread calculates the modulus and adds the value to the
corresponding column.

6 The Scientific World Journal

CPU

Core 0 Core M· · ·

Registers Registers

RegistersRegisters Registers Registers

Cache

Host memory

GPU

SM 0 SM P

Shared memory Shared memory

SP 0 SP N SP 0 SP N

Local
memory

Local
memory

Local
memory

Local
memory

Texture
memory

Constant
memory

Device
memory

Figure 3: Typical architecture of GPU.

20.34
Yes

Drop

Insertion

Root
element

No

Thread ID 1 2 3 · · ·

20.34
Yes

Drop

Insertion

Root
element

No

Thread ID 1 2 3 · · ·

Unordered heap array, each max-heap keeps
current k smallest elements

22.25

21.15

19.43

16.23

22.25

21.15

19.43

16.23

24.86

24.86

21.58

21.58

14.32

14.32

23.32

23.32

25.99

25.99

23.14

23.14

16.21

16.21

21.01

21.01

16.69

16.69

13.25

13.25

11.85

11.85

15.49

15.49

26.35

26.35

25.41

25.41

23.64

23.64

14.35

14.35

Ordered heap array, each max-heap keeps
current k smallest elements

?

?

Figure 4: Two types of heap-array built for features of query images
(ordered heap keeps the stored minimum elements ordered, but
unordered heap does not need this requirement).

6.2.2. Distance Selection. To this end, distances between
query features and reference features are computed.This step
is to select the nearest distances for queries. Two available
strategies can be adopted to complete this process. The first
strategy that can be taken is to selectminimumvalues directly
on distances. Its main drawbacks are the memory abusing to
store the entire distance vector in globalmemory and the time
delay as a result of continuous memory access.

In our implementation, a heap-array is built for features
of query images, which means that a max-heap (root element
is largest one is Heap) is built for each query. Two types of
max-heap are built in retrieval process. In the first retrieval
round, an unordered max-heap is built to store the distances
of unsorted representative pivots. In the second retrieval
round, ordered max-heap is built to store the distances of
final nearest reference features. Figure 4 shows the basic
structure of ordered and unordered heap-array built in our
approach.Theonly difference of two types ofmax-heap is that
whether the stored indexes of nearest features are ordered or
not.

Max-heap keeps track of elements with minimum dis-
tance that have been found so far and excludes unnecessary
distance comparisons. We assume to find 𝐾 smallest dis-
tances (in the first retrieval round 𝐾 = 𝐻, in the second
retrieval round 𝐾 = 𝐸). In the beginning, first 𝐾 distances
are inserted into the heap directly without comparison.When
the heap is full, the newly encountered elements are inserted
with comparison. Unnecessary distance comparisons can be
excluded directly by comparing the input value with root
counterpart in max-heap. If the value of newly encountered
element is larger than root element, it is excluded directly.
In contrast, if the value is smaller than root element, it is
pushed into its corresponding position in distance heap after
adjustment. For orderedmax-heap, indexes of stored features
should always be kept ordered after each adjustment.

After the insertion of elements, 𝐾 smallest distances are
obtained. However, the main aim of distance selection is to
obtain the indexes of the corresponding reference features,
but not the distance values. To accomplish this goal, an index
Heap is allocated as a counterpart to store the indexes of
nearest reference features. The element insertion operations
performed in distance Heap are applied to index Heap again.
After several rounds of comparison and insertion, the indexes
of nearest reference features for query features are obtained
and are finally stored into the global memory.

The Scientific World Journal 7

Q = {Q1, Q2, . . . , QN}

Q1, Q4, . .
. , Q100

Q2, Q8, . . . , Q50

Q
12 , Q

31 , . . . , Q
985

R10 , R223 , . . . , R123
R23 , R853, . . . , R778

R97, R246, . . . , R1034

Parallel BCU

Distance matrix
computation

Unordered heap array

Map

Ball (R1) Ball (R2) Ball (R3)

Distance matrix
computation

Distance matrix
computation

Distance matrix
computation

Parallel BCU
Reduce

Ordered heap array

Sorted results

· · ·

R = {R1, R2, . . . , RS}

(H × T) × N distance matrix

Figure 5: Parallel online retrieval in CBIR.

In order to take advantages of both max-heap and inher-
ent characteristics of GPU memory types, coarse interquery
parallelism is exploited for parallelization of this procedure.
A kernel function is designed and threads are launched with
the same number as queries. These threads compute distance
between queries and reference features and select indexes of
𝐾minimum distances from the distance vector.

6.3. Parallel Retrieval. Based on the parallel BCU, a MapRe-
duce-like parallel retrieval scheme is designed for CBIR.
Figure 5 describes the basic framework of our parallel
retrieval process ofCBIR. In this framework, features of query
images and that of representative pivots are first imported
into the module of parallel BCU where unordered heap array
is already built. After that,𝐻 nearest representative pivots are
found for each query feature. Queries are then mapped to
their corresponding semantic ball, where distance matrix is
computed between queries and reference features. A reduce
operation is designed to collect the distances calculated for
each query feature from 𝐻 balls. This procedure generates
(𝐻𝑇) × 𝑁 distance matrix, which is further imported into
the ordered heap array. After these procedures, indexes
of the nearest reference features are obtained and their
corresponding images are returned to query user.

7. Experiments and Results

In this section, a set of experiments are performed to
demonstrate the performance of the proposed methodology.
First, details about the test dataset and experimental setup

are introduced. Second, performance variation is investigated
with parameters of our approach. Third, our approach is
compared with brute force retrieval and the state-of-the-art
approach on Corel 10 K [23], respectively. Finally, compara-
tive experiment is performed onGIST 1M [24] to evaluate the
performance on large-scale image dataset.

7.1. Dataset and Experimental Setup. The proposed approach
is evaluated on standard image dataset Corel 10 K and
GIST 1M, which are widely used in the literature for CBIR
performance evaluation. Corel 10 K contains 10000 images in
100 categories. In experiment, 10 images for each category are
randomly selected as query images. The remaining images
are used as reference images to be retrieved. For Corel 10 K,
GIST is extractedwith 4 blocks and 8 orientations, generating
512-dimensional features. GIST 1M dataset has two feature
datasets: query and reference dataset. The reference dataset
contains features of the Holidays image set and images from
Flickr 1M [25].The query dataset only contains features from
the Holidays image. On GIST 1M dataset, all images are
represented by 960 feature dimensions. Statistics of dataset
is given in Table 1.

In experiments, GPU code is implemented using CUDA.
All the experiments are performed on the platform equipped
with GPU of NVIDIA Geforce GTX460, whose CUDA
capability is 2.1, drive version is 4.0, and GPU clock rate is
1.55GHz.The platform is also equipped with an Intel Core i7
950 CPU running at 3.07GHz.The operating system is 64-bit
RHEL AS 6 with Linux kernel 2.6.32.

8 The Scientific World Journal

0.164

0.162

0.16

0.158

0.156

0.154
0

3

4

5

Sp
ee

du
p

Number of representative pivots

M
ea

n
av

er
ag

e p
re

ci
sio

n

200 400 600 800 1000 1200 1400 1600 1800 2000

(a)

M
ea

n
av

er
ag

e p
re

ci
sio

n

0.17

0.16

0.15

0.14

Radius of ball

Sp
ee

du
p

15

13

11

9

7

5

3

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(b)

Figure 6: Performance evaluation on Corel 10 K for a number of representative pivots and radius of ball. (a) MAP variations with the number
of representative pivots. (b) MAP variations with radius of ball.

Table 1: Statistics of test dataset.

Image database Corel 10 K GIST 1M
Feature dimensionality 512 960
Image database size 10,000 1,001,000
Query dataset size 1,000 1,000
Reference dataset size 9,000 1,000,000

Table 2: MAP and speedup variations with S on Corel 10 K (𝐻 =

3, 𝑇 = 500).

𝑆 400 600 800 1000 1200 1400 1600 1800
MAP 0.1607 0.1612 0.1618 0.1621 0.1623 0.1625 0.1626 0.1624
Speedup 4.36x 4.12x 3.97x 3.72x 3.52x 3.28x 3.12x 2.98x

Table 3: MAP and speedup variations with T on Corel 10 K (𝐻 =

3, 𝑆 = 300).

𝑇 400 600 800 1000 1200 1400 1600 1800
MAP 0.1585 0.1607 0.1617 0.1626 0.1628 0.1632 0.1635 0.164
Speedup 5.14x 4.07x 3.33x 2.88x 2.54x 2.31x 2.12x 1.96x

The performance is evaluated on mean average precision
(MAP) and speedup. For Corel 10 K,MAP is calculated as the
mean of precisions achieved at all recall levels. For GIST 1M
dataset, MAP is calculated as the mean of precisions when
100 images are returned. Speedup of an approach is calculated
as the ratio between run time of approach and that of GPU-
based brute force implementation.

7.2. Evaluation for Number of Representative Pivots and
Radius of Ball. Adjusting parameters for PSB keeps a balance
between speedup and accuracy loss. In this subsection,
experiments are performed to observe the MAP variations
with the parameters of PSB. Figure 6 reports MAP and
speedup variations with the number of representative pivots
(𝑆) and the radius of ball (𝑇). For more data, one can refer

Table 4: MAP and speedup variations with H on Corel 10 K (𝑆 =
800, 𝑇 = 700).

𝐻 4 5 8 10 12 14 16
RBC-MAP 0.161 0.162 0.1626 0.163 0.1628 0.1632 0.1634
RBC-speedup 3.14x 2.53x 2.50x 2.29x 2.16x 2.07x 1.96x
PSB-MAP 0.1641 0.1642 0.1642 0.1642 0.1642 0.1642 0.1642
PSB-speedup 1.53x 1.65x 1.27x 1.20x 1.15x 1.08x 1.01x

to Table 2 and Table 3 for details. The figure shows that when
parameters are above certain value (𝑆 = 800 or 𝑇 = 700),
MAP curve becomes steady.This experimental phenomenon
gives us a revelation that the best parameters of PSB can be
determined as the certain point in growth curve of accuracy.
In addition, Figure 6 also shows that the proposed PSB can
achieve more than 1x speedup with little accuracy loss. For
instance, when 𝑆 is 300 and 𝑇 is 1800, theMAP we can obtain
is 0.164 (0.0002 smaller than accurate MAP). At the same
time, the speedup we get is 1.96, which is almost 2x faster
compared with GPU-based brute force retrieval.

7.3. Evaluation for Semantic Embedding and Number of
Searched Representative Pivot Selection. In this subsection,
we evaluate the effectiveness of semantic embedding and
multiple representative pivot selection. In this experiment,
𝑆 and 𝑇 are fixed to 800 and 700, respectively, to observe
performance variations. Figure 7 shows the performance
improvement. For concrete data, one can refer to Table 4.
Figure 7(a) shows that the proposed PSB can get higher
MAP compared with RBC on each 𝐻. When the 𝐻 is
5, we can obtain the same MAP with brute retrieval and
1.65x speedup. It clearly demonstrates that the semantic
embedding can involve more semantics into the generation
of representative pivots and condense the retrieval space.
Based on the condensed search scope, higher MAP is easily
achieved if the same 𝐻 is set. Figure 7(a) also reports the
MAP and speedup variations with 𝐻. It shows that MAP
of RBC and PSB both increase with 𝐻. This experimental

The Scientific World Journal 9

M
ea

n
av

er
ag

e p
re

ci
sio

n

0.17

0.16

0.15

Number of searched representative pivots
0 1 2 4 6 8 10 12 14 16 18 20

Sp
ee

du
p

9

7

5

3

PSB-MAP
RBC-MAP

PSB-speedup
RBC-speedup

1

(a)

0.154 0.156 0.158 0.16 0.162 0.164 0.166 0.168
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Mean average precision

Sp
ee

du
p

RBC
PSB

(b)

Figure 7: Performance evaluation on Corel 10 K for semantic embedding and multiple representative pivots selection. (a) MAP and speedup
variations with the number of representative pivots. (b) Speedup variations with MAP.

0.001 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

2

4

6

8

10

12

14

16

Mean average precision loss

Sp
ee

du
p

Figure 8: Performance comparison with GPU-based brute force
retrieval.

result shows that multiple representative pivot selection can
cover more informative reference features in database. The
negative effect of multiple representative pivot selection is
that the retrieval process is slightly extended, which makes
the speedup decrease steadily with𝐻.

From Figure 7(a), we can draw a conclusion that MAP
and speedup are varied with 𝐻. Therefore, for comparison
convenience and better presentation, Figure 7(b) is plotted
to reflect the relationship between speedup and MAP. This
figure clearly illustrates that our approach achieves lower
speedup compared with RBC when different 𝐻 is set. But,
on the same MAP level, we can achieve higher speedup. In
addition, we can obtain the MAP that cannot be achieved
by RBC (the best MAP obtained by RBC is 0.1637, while that
obtained by PSB is 0.1642).

7.4. Comparison with Brute Force Retrieval. In this subsec-
tion, we compare the proposed PSB with the brute force
retrieval. We directly download the source code of GPU-
based brute force retrieval from [10] and use it to find
the nearest referenced features for each query. A set of
experiments is performed to observe the speedup variations
with accuracy loss.

Figure 8 shows that the MAP loss of PSB is generally
ranged from 0.035 to 0.0001. The speedup achieved in this
context is very important. Even when the accuracy loss is
0.0001 (very close to accurate retrieval), we can obtain 1.73x
speedup, 73% improvement compared against brute force
retrieval. In addition, on other accuracy loss level, we can
easily obtain higher speedup. For instance, we can achieve
about 2.8x speedup when the accuracy loss is 0.001 and 3.7x
speedup when accuracy loss is 0.002.This experiment clearly
demonstrates that we can obtain high speedup with little
accuracy loss. It also indicates that the proposed approach is
effective in scenario of approximate CBIR.

7.5. Comparison with the State-of-the-Art Approach RBC. In
this subsection, the performance of PSB is compared with
the state-of-the-art approach RBC. Source code of RBC
implementation is directly downloaded from author website
[26]. In this experiment, parameters of the two approaches
are adjusted manually and a figure is drawn to reflect the
relationship between speedup and accuracy.

Figure 9(a) describes speedup variations of two
approaches with MAP on Corel 10 K. We can easily see
from the figure that PSB performs better than RBC. The
figure shows that PSB can obtain MAP which cannot be
reached by RBC. MAP of PSB is mainly ranged from 0.1542
to 0.1641, while that of RBC is concentrated in a range
from 0.1313 to 0.1615. The largest MAP PSB obtained is
0.1641, while that obtained by RBC is only 0.1615. More

10 The Scientific World Journal

0.
13

0.
13

5

0.
14

0.
14

5

0.
15

0.
15

88

0.
15

5

0.
16

13

0.
16

42

0
1
2

4

6

8

10

12

14

Mean average precision

Sp
ee

du
p

RBC
PSB

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

2

3

4

5

6

7

8

Sp
ee

du
p

RBC
PSB

Mean average precision loss

(b)

Figure 9: Comparisons with the state-of-the-art approach RBC. (a) Comparison on Corel 10 K. (b) Comparison on GIST 1M.

importantly, PSB obtains higher speedup than RBC on the
same accuracy level. For instance, when MAP is 0.1613, PSB
achieves speedup up to 4.55x, which is larger than 2.51x
speedup achieved by RBC. When MAP is 0.1588, speedup of
PSB is up to 4.58x, which is also large than 2.82x achieved by
the RBC. It should be noted that speedup of PSB is almost 2
times the speedup of RBC when accuracy is about 0.154. The
main reason that PSB obtains the better performance is that
PSB covers the whole reference features with semantics so
that retrieval scope can be reduced.

Figure 9(b) reports speedup variations of two approaches
with MAP loss on GIST 1M. It is not hard to find from the
figure that, even with high dimensional features and large-
scale image dataset, PSB still achieves better performance
than RBC. On this dataset, PSB can obtain MAP loss that
cannot be reached by RBC. On the same accuracy loss level,
our approach can also achieve higher speedup.

8. Conclusions

CBIR is one of the available solutions to find similar images
automatically for query from large quantities of images. To
overcome the computational complexity of CBIR, a novel
GPU-adaptive index structure is proposed in this paper to
simultaneously prune unnecessary computations and lever-
age the parallel processing capability of GPU. With the built
GPU-adaptive index structure, the retrieval process of CBIR
can be decomposed into independent components that can be
parallelized with high efficiency. Effective parallel techniques
are designed to make full use of the computational resources
of underlying hardware. Experiments on standard image
retrieval datasets demonstrate that the proposed approach
achieves substantial speedup with little accuracy loss and also
achieves higher speedup compared with the state-of-the-art

approach. All experiments demonstrate that the proposed
approach can be an effective and robust tool to help solve
the computational challenges of CBIR. In the future, we
will continue to deploy the proposed algorithm to other
applications and evaluate its performance.

Notations

𝑀: Number of images in database
𝑁: Number of query images
𝑆: Number of representative pivots
𝑇: Radius of ball
𝐸: Number of results returned by CBIR
𝐻: Number of searched representative

pivots
𝑑: Dimension of feature vector
𝐷: Distance matrix between features
D: Dissimilarity measure
𝑅𝑓: Feature of a particular representative

pivot
R = {𝑒1, 𝑒2, . . . , 𝑒𝑆}: Feature of a representative pivot
F = {𝑓1, 𝑓2, . . . , 𝑓𝑀}: Feature database
Q = {𝑞1, 𝑞2, . . . , 𝑞𝑁}: Query features.

Conflict of Interests

The author declares that there is no conflict of interests regar-
ding the publication of this paper.

Acknowledgment

The author thanks the anonymous reviewers for their helpful
suggestions.

The Scientific World Journal 11

References

[1] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R.
Jain, “Content-based image retrieval at the end of the early
years,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 12, pp. 1349–1380, 2000.

[2] Y. Rui, T. S. Huang, and S.-F. Chang, “Image retrieval: current
techniques, promising directions, and open issues,” Journal of
Visual Communication and Image Representation, vol. 10, no. 1,
pp. 39–62, 1999.

[3] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorre-
lated multilinear principal component analysis through succes-
sive variance maximization,” in Proceeding of the 25th Interna-
tional Conference on Machine Learning, pp. 616–623, July 2008.

[4] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduc-
tion by locally linear embedding,” Science, vol. 290, no. 5500,
pp. 2323–2326, 2000.

[5] W.Yu,X. Teng, andC. Liu, “Face recognition using discriminant
locality preserving projections,” Image and Vision Computing,
vol. 24, no. 3, pp. 239–248, 2006.

[6] J. L. Bentley, “Multidimensional binary search trees used for ass-
ociative searching,” Communications of the ACM, vol. 18, no. 9,
pp. 509–517, 1975.

[7] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Communi-
cations of the ACM, vol. 51, no. 1, pp. 117–122, 2008.

[8] Y.Weiss, R. Fergus, andA. Torralba, “Multidimensional spectral
hashing,” in Proceedings of 12th European Conference on Com-
puter Vision (ECCV ’12), pp. 340–353, Springer, Berlin, Ger-
many.

[9] V.Garcia, E.Debreuve, andM.Barlaud, “Fast k nearest neighbor
search using GPU,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPR ’08), Los Alamitos, CA, USA, June 2008.

[10] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest
neighbor search: fast GPU-based implementations and appli-
cation to high-dimensional feature matching,” in Proceedings
of the 17th IEEE International Conference on Image Processing
(ICIP ’10), pp. 3757–3760, Los Alamitos, CA, USA, September
2010.

[11] NVIDIA, 2007, CUDA CUBLAS library.
[12] K. Kato and T. Hosino, “Multi-GPU algorithm for k-nearest

neighbor problem,” Concurrency Computation Practice and
Experience, vol. 24, no. 1, pp. 45–53, 2012.

[13] Q.Miao, Y. Chen, J. Li, Q. Zhang, Y. Zhang, andG. Chen, “Para-
llelization and optimization of a CBVIR system on multi-core
architectures,” in Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’09), Los
Alamitos, CA, USA, May 2009.

[14] J. L. Bosque, O. D. Robles, L. Pastor, and A. Rodŕıguez, “Parallel
CBIR implementationswith load balancing algorithms,” Journal
of Parallel and Distributed Computing, vol. 66, no. 8, pp. 1062–
1075, 2006.

[15] T. M. Lehmann, M. O. Güld, C. Thies et al., “Content-based
image retrieval inmedical applications,”Methods of Information
in Medicine, vol. 43, no. 4, pp. 354–361, 2004.

[16] C. Terboven, T. deselaers, C. bischof, andH.Ney, “Shared-mem-
ory parallelization for content-based image retrieval,” in Pro-
ceedings of Workshop on Computation Intensive Methods for
Computer Vision (CIMCV ’10), Springer, Berlin, Germany, 2010.

[17] L. Cayton, “A nearest neighbor data structure for graphics har-
dware,” in Proceedings of the 1th International Workshop on

Accelerating Data Management Systems Using Modern Processor
and Storage Architectures (ADMS ’10).

[18] L. Cayton, “Accelerating nearest neighbor search on manycore
systems,” in Proceedings of the 26th International Conference on
Parallel & Distributed Processing Symposium (IPDPS ’12), pp.
402–413, Los Alamitos, CA, USA, 2012.

[19] J. R. Smith and S.-F. Chang, “VisualSEEk: a fully automated con-
tent-based image query system,” in Proceedings of the 4th ACM
International Multimedia Conference, pp. 87–98, New York, NY,
USA, November 1996.

[20] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image ret-
rieval with relevance feedback in MARS,” in Proceedings of the
International Conference on Image Processing, pp. 815–818, Los
Alamitos, CA, USA, October 1997.

[21] J. Z. Wang, J. Li, and G. Wiederhold, “SIMPLIcity: semantics-
sensitive integratedMatching for Picture Libraries,” IEEETrans-
actions on Pattern Analysis andMachine Intelligence, vol. 23, no.
9, pp. 947–963, 2001.

[22] A. Oliva and A. Torralba, “Modeling the shape of the scene: a
holistic representation of the spatial envelope,” International
Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

[23] G. Liu and J. Yang, “Content-based image retrieval using color
difference histogram,” Pattern Recognition, vol. 46, no. 1, pp.
188–198, 2012.

[24] H. Jégou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[25] H. Jegou,M.Douze, andC. Schmid, “Hamming embedding and
weak geometric consistency for large scale image search,” Lec-
ture Notes in Computer Science, vol. 5302, no. 1, pp. 304–317,
2008.

[26] http://www.lcayton.com/code.html.

http://www.lcayton.com/code.html

