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Abstract

Environmental stresses influence the growth and development of plants by influencing pat-

terns of gene expression. Different regulators control gene expression, including transcrip-

tion factors (TFs) and microRNAs. MicroRNAs (miRNAs: ~21 nucleotides long) are

encoded by miRNA genes transcribed by RNA polymerase II (RNP-II) and play key roles in

plant development and physiology. There is little knowledge currently available on miRNAs

and their function in response to environmental stresses in safflower. To obtain more infor-

mation on safflower miRNAs, we initially used a comparative genomics approach and suc-

ceeded in identifying 126 miRNAs belonging to 29 conserved families, along with their

target genes. In this study, we investigated the expression profiles of seven conserved miR-

NAs related to drought, salinity, heat, and Cd stress in the leaf and root organs using qRT-

PCR, for the first time. Gene Ontology (GO) analysis found that target genes of miRNAs are

often TFs such as AP2/ERF and HD-ZIP as well as NAC domain-containing proteins.

Expression analyses confirmed that miRNAs can play a vital role in keeping safflower

stress-tolerant. Differential expression of miR156, miR162, miR164, miR166, miR172,

miR398, and miR408 regulate the expression of their respective target genes. These genes

activate several pathways leading to physiological and biochemical responses to abiotic

stresses. Some conserved miRNAs were regulated by abiotic stresses. Our finding provides

valuable information to understand miRNAs in relation to different abiotic stresses in

safflower.

Introduction

Safflower (Carthamus tinctorius L.) is one of the most desirable oilseed crops with remarkable

yields (about 32–40% seed oil) [1], and can tolerate environmental stresses, including high

temperatures, salinity, and dehydration. This oilseed crop has the ability to grow in most

regions of the world, particularlywhere climatic and soil limitations prevent the cultivation of
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conventional food and cash crops [2, 3]. However, there are only a few published reports on

the response of safflower to heavy metal stress. Some of these studies indicate that it may be

planted as a hyper-accumulator crop to expedite the amelioration of soils pollution caused by

heavy metals such as Cd [4]. Therefore, an understanding of the basis of the drought, salinity,

heat, and Cd stress responses in safflower is important, because it can offer insights in to the

tolerance mechanisms against these environmental stresses at the molecular level. Considering

the discovery of microRNAs (miRNAs) and the recognition of their function in recent years, it

is feasible that these may play an important role in safflower development and plant feedback

to biotic and abiotic stresses.

MiRNAs include novel ncRNA molecules and are about 21–25 nt in length. They negatively

adjust the expression of a wide range of genes at the post-transcriptional level via inhibition of

gene translation or repression of target mRNAs through pairing with their target mRNAs[5,

6].Following the report of involvement of miRNAs in the molecular response to some abiotic

stresses [7], extensive studies have been conducted, which show that the expression levels of

miRNAs have been altered in plants exposed to various environmental stresses such as viral

and fungal infections [8, 9], phosphate and nitrogen starvation [10, 11], mechanical stresses

[12], drought [13, 14], temperature [15, 16], salinity[17, 18], and heavy metal stress [19, 20]. In

addition, researchers have found that plant miRNAs are involved in different physiological

activities, for example, flowering time, development of root, and seed germination [21–23].

Gutierrez et al.[22] reported that miRNA160 and miRNA167 are genes targeted by the ARF

transcription factor through interference with auxin regulation. This showed an important

aspect of growth and development of plant under abiotic stress. The expression of AGO,

which is controlled by miRNA403, has an antiviral role [24–26]. These are also examples of dif-

ferential expression of miRNA and gene targets against various environmental conditions

[26].

Currently, 463,906 contigs of safflower obtained as findings of safflower Whole Genome

Shotgun (WGS) project have been deposited in the GenBank WGS database (based on data

collected on April 17th, 2016). Based on valuable WGS resources, using bioinformatics meth-

ods, Kouhi et al. [27] have identified and reported 107 miRNAs in safflower. Nevertheless,

their expression patterns under various environmental conditions have not been exhaustively

surveyed.

In the study ahead, Kouhi et al.[27] first compared all safflower WGS sequences with plant

miRNAs in the mirBase database to identify potential miRNA homologs in safflower. In addi-

tion, we identified the potential target genes of miRNA and their potential functions [27]. To

confirm the anticipated miRNAs and the mutual relationship between miRNAs and their tar-

get genes, as well as analyze the miRNAs expression pattern, SL RT-PCR and qRT-PCR was

performed to illustrated the expression levels of seven putative miRNAs and seven target

genes, respectively in the root and leaf organs of safflower seedlings under various abiotic

stresses (Table 1). Recent reports have indicated that the seven mentioned miRNAs (miR156,

miR162, miR164, miR166, miR172, miR398, and miR408) play crucial roles in plant responses

to both biotic and abiotic stresses [28].

Results

Experimental validation of predicted miRNAs with putative targets and

analysis of their expression patterns in response to abiotic stress by

qRT-PCR

The qRT-PCR analysis was carried out to verify the sequences of the amplicon obtained by

bioinformatic analysis and investigate the expression patterns of seven miRNAs including

Differential expression of conserved miRNAs and target genes against abiotic stress in safflower
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miR156, miR162, miR164, miR166, miR172, miR398 and miR408 and their target genes at

vegetative phases under salt, Cd, heat, and drought stresses.

In the present study, concentrations of Cd, Na, and K, expression of the HSP70 protein and

changes in leaf relative water content (RWC)were used to measure the effectiveness of stressors

on the various physio-molecular characteristics of plantlets.RWC is a criterion of stress-adap-

tation that describes osmoregulation in response to water stress in higher plants. During

drought treatment, plantlets showed a significant decrease in RWC after 12, 24 and 48 h of

readily available water uptake(Table 2).Following heat shock at 42˚C, HSP70 expression

increased in leaf and root organs(S1 Table).Flame spectrometryanalysisindicates that Na and

Cd accumulated significantly in the root than in leaves, especially under more severe stress

(Table 3).In addition to these results, the results obtained on proline content show that plant-

lets were remarkably affected by the stresses and the intensity of stresses had forced them to

respond (S2 Table).Therefore, the change patterns, measured by these physiological and

molecular parameters prove that the difference seen in qPCR results below was affected by the

applied stressors.

qRT-PCR analysis of candidate drought-responsive miRNAs and their

targets

Quantification of seven candidate mature miRNAs and their targets was performed for root

and leaf organs using three biological replicates for each stress level. All seven miRNAs showed

differential expression at each drought stress level and were significantly down-regulated

(P<0.05)in leaves (except the expression of miR172,miR162,miR166, andmiR408 after 12h)

with the lowest expression levels seen at 48 h. In roots exposed to drought, miRNAs show

increased expression at 12h and then were down-regulated as the duration of dehydration con-

tinued. The expression patterns of miRNAs (except miR156),were almost identical in both

organs. Generally, most of the up and down regulation of miRNAs resulted in changes in the

order 22 to 34 fold (Fig 1).

Table 1. Listof stress-responsive potential miRNAs and their candidate target genes in safflower.

miRNA miRNA sequence Predicted targets

mir156 TGACAGAAGAGAGTGAGCAC Squamosa promoter-binding(SPL)

mir162 TCGATAAACCTCTGCATCCAG uncharacterized protein (unknown)

mir164 TGGAGAAGCAGGGTACGTGCA NAC domain-containing protein (NAC)

mir166 TCGGACCAGGCTTCATTCCCC HD-ZIP protein REV (HD-ZIP)

mir172 AGAATCTTGATGATGCTGCAT AP2/ERF domain-containing protein (AP2)

mir398 TGTGTTCTCAGGTCGCCCCTG Superoxide dismutase [Cu-Zn] 1 (CSD1)

mir408 TGCACTGCCTCTTCCCTGGCT Cupredoxin(CUP)

https://doi.org/10.1371/journal.pone.0228850.t001

Table 2. Effect of different drought levels on relative water content safflower. Two-tailed t-test was used to com-

pare the three drought treatments with the (100% FC) control sample, in leave.

Treatment levels RWC

Control 85.49%

12h 66.33%��

24h 55.18%��

48h 39.83%��

��showed significant at 1%

https://doi.org/10.1371/journal.pone.0228850.t002
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The expression of target genes has increased in both organs and at all levels of stress (except

SPL and AP2).Superoxide dismutase [Cu-Zn] 1 (CSD1) and NAC domain-containing protein

(NAC) showed a similar trend in leaf organs. The respective expression of these two genes

Table 3. Salt tolerance measure (mg/g dw) and cadmium concentration (mg/kg dw) in leave and roots of safflower.

Concentration Organ

Root Leaf

Na+ Control 1.063267 0.9525

75mM 5.0968�� 3.4104��

150mM 9.3261�� 3.81985��

k+ Control 26.77033�� 44.06427

75mM 23.48433� 34.00643��

150mM 18.8029�� 31.79607��

k+/Na+ Control 25.1774 46.2616

75mM 4.6076�� 9.9713��

150mM 2.0161�� 8.3239��

Cadmium Control 1.15 0.9

5mg/L 52.8�� 3.96��

20mg/L 103.5�� 5.27��

��, and � showed significant at 1%, 5%, respectively.

https://doi.org/10.1371/journal.pone.0228850.t003

Fig 1. The relative expression level of selected seven miRNAs and their targets in the leaf and root of safflower under drought stress. For

drought stress, Plantlets were subjected to water deficit for 0 (control), 12, 24 and 48 hours after readily available water (RAW) uptake. (A)

Differential expression of miRNAs in the leaf. (B) Differential expression of miRNAs in the root. (C) Differential expression of the target gene

in the leaf. (D) Differential expression of target genes in the root. All fold changes are marked with ��, � and ns showed significant at 1%, 5%

and non-significant, respectively.

https://doi.org/10.1371/journal.pone.0228850.g001
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were up-regulated in response to the first drought shock, although it eventually decreased

within the 24hwindow.Similarly,in the root expression of NAC, Cupredoxin (CUP) and CSD1

are up-regulated, though with a downward trend (Fig 1).

qRT-PCR analysis of candidate heat-responsive miRNAs and their targets

Based on the fold change and P-value (�0.05), in leaf organ, the expression level of miRNAs in

response to heat shock varies significantly. The expression patterns of miR156, miR164, and

miR398 at all levels were up-regulated within a range of 8 to 25-foldin leaf organs. Between

miRNAs, only the expressions of miR162 and miR172in both organs were down-regulated.

Similarly, in root organs, the expression of miR164 and miR398after the beginning of the treat-

ment, reduced continuously at the 3 and 6 h marks.

The expressions of the targets are often incremental in both organs, especially at the root.

Similarly, the expression pattern of HD-Zip and SPL are down-regulated in photosynthetic

and non-photosynthetic organs (Fig 2).

qRT-PCR analysis of candidate salt responsive miRNAs and their targets

Salinity treatments have led to differential expression of miRNAs and potential gene targets in

leaves and roots (Fig 3).Two expression change patterns were observed in leaves and roots

under salt treatments. The expression of miR164 was down-regulated at 75 mM and 150mM

NaCl concentration treatment and vice versa; the salt induced the expression of miR398.Gen-

erally, the expression of all miRNAs at the 150mM NaCl concentration reached the lowest

value.

Fig 2. The relative expression level of selected seven miRNAs and their targets in the leaf and root of safflower under heat stress.

For heat stress Plantlets subjected to 25± 1˚C (control) and 42 ± 1˚C for 1.5, 3 and 6 hours. (A) Differential expression of miRNAs in

the leaf. (B) Differential expression of miRNAs in the root. (C) Differential expression of target gene in the leaf. (D) Differential

expression of the target genes in the root. All fold changes are marked with ��, � and ns showed significant at 1%, 5% and non-

significant, respectively.

https://doi.org/10.1371/journal.pone.0228850.g002
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The expression of miRNA targets in leaves was induced under the treatment, although they

showed a downward trend at the 150mM NaCl concentration level. However, unlike other tar-

gets, uncharacterized proteins (unknownproteins) showedlower levels in the leaves. The

expressions of an unknown protein, along with NAC, AP2, and CSD1 were significantly

increased at the lowest NaCl concentrations but declined slightly in the severe saline treatment.

Meanwhile, the SPL, HD-ZIP and CUP expression was continually stimulated by increasing

the salt concentration.

qRT-PCR analysis of candidate Cd-responsive miRNAs and their targets

Cd treatment stimulated the expression of miRNAs in the root organ, with documented fold-

changes between 1.8 and 26. In leaf tissues, the maximum and minimum values came from

miR172 in 5 μM and miR408 in 20 μM Cd, respectively. In addition,the expression level of

miR156, miR164, miR166, and miR408 decreased steadily and the maximum reduction was

seen at a concentration of20μM.Contrarily,in the root, most of the miRNAs are continually

up-regulated(Fig 4).

Transcripts of the uncharacterized protein, HD-ZIP, and CUP showed a similar trend in root

organs. The expression of each of these is reduced at all treatment levels at a rate of less than 18

fold. In addition, Cd suppressed the expression of NAC and CSD1 less intensely (Fig 5).

Heat-map based clustering approach of miRNAs and target genes

Heat-map based clustering approach was performed separately for miRNAs and target genes.

Specific clusters has to be identified which are stress-responsive in safflower. Expression profile

Fig 3. The relative expression level of selected seven miRNAs and their targets in leaf and root of safflower under salt stress. Salt

treatments were applied in 0 (control), 75 and 150 mM NaCl concentration (A) Differential expression of miRNAs in the leaf. (B)

Differential expression of miRNAs in the root. (C) Differential expression of target gene in the leaf. (D) Differential expression of the

target genes in the root. All fold changes are marked with ��, � and ns showed significant at 1%, 5% and non-significant, respectively.

https://doi.org/10.1371/journal.pone.0228850.g003
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Fig 4. The relative expression level of selected seven miRNAs and their targets in the leaf and root of safflower under cadmium

stress. Cadmium treatments were applied in 0 (control), 5 and 20 μM Cd concentration. (A) Differential expression of miRNAs in the

leaf. (B) Differential expression of miRNAs in the root. (C) Differential expression of target gene in the leaf. (D) Differential

expression of the target genes in the root. All fold changes are marked with ��, � and ns showed significant at 1%, 5% and non-

significant, respectively.

https://doi.org/10.1371/journal.pone.0228850.g004

Fig 5. The function of miR398 in removing ROSs arising from drought stress in safflower, and the effect of drought stress

on reproductive phase timing in safflower.

https://doi.org/10.1371/journal.pone.0228850.g005
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of seven miRNAs in both leaf and root was conducted to explore their expression of tissue-spe-

cific profiles to different abiotic stress conditions. Clustering expression patterns of the studied

miRNAs showed 2 groups. Cluster I consisted miRNA398 and miRNA408. Cluster II included

miRNA166, miRNA172, miRNA162, miRNA164 and miRNA156 and discriminated an alter-

native pattern in leaves and roots in different conditions stress (Fig 6).

These miRNAs also separately categorized for candidate target genes based on expression

patterns in 2 clusters. Cluster I consisted candidate target genes of SPL1, HD-Zip, CUP which

have similar patterns in condition stress, but CFFM24164b1 (as unknown protein) was showed

different expression pattern. Cluster II visualized AP2, NAC and CSD target genes (Fig 7).

Discussion

The most detrimental factors such as environmental stresses influence the crop production

and quality of plant species due to their wide distribution [29]. Crop species due to no-escape

from unfavorable stress conditions sounding them, have to develop various physio-molecular

mechanisms to cope with stress [30]. Laterally, miRNA have proved new players in tolerance

of plant to abiotic stresses such as drought, saline, cold, heat [31] and much attempt has been

specified to clarified the role of miRNA in the responses of various abiotic stresses in several

plant species [32–35].The status of in RWC, Na+, K+ and Cd status in both tissues of leaf and

root provide additional information on environmental stress conditions in safflower.

Fig 6. Heat-map based clustering approach of miRNAs. Heat-map based clustering of miRNA expression in

different conditions of abiotic stress. The sample and treatment are given in the column and reach row illustrated

miRNA.

https://doi.org/10.1371/journal.pone.0228850.g006
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In this study, we employed WGS analysis to identify 126potential conserved miRNAs

belonging to 29different families in safflower [27]. Of the miRNAs, miR393, miR477, miR530,

miR6111, miR6113, and miR6114 have not been previously reported in safflower. In contrast,

at least one member of the 23 other miRNA families has already been identified in safflower

[36, 37], which has been verified based on the utility of the computational prediction of poten-

tial miRNAs.

In later years, a large number of conserved and species-specific miRNAs involved in stress

responses have been recognized in many important crops. However, the miRNA expression

profiles in safflower organs still had not been investigated in response to abiotic stresses. Dur-

ing this investigation, qRT-PCR indicated that seven miRNAs have different expression mod-

els in both leaves and root of plants under stress and normal conditions. This is in accordance

to prior results reported in wheat and rice [38, 39]. In fact, miRNAs are expressed only in

some organs and in response to environmental stresses [40, 41].

In the present study, expression patterns of the seven miRNAs have been consistent with

reports of some previous studies and are inconsistent with some other reports that may be due

to differences in plant species and severity or duration of stresses. For example, in response to

drought, the expression of miR164, miR398,and miR408 in safflower exhibited results similar

to results of high-throughput sequencing and qRT-PCR in Medicago truncatula, Arabidopsis,

Fig 7. Heat-map based clustering approach of target genes. Heat-map based clustering of target genes expression in

different conditions of abiotic stress. The sample and treatment are given in the column and reach row illustrated

target genes of miRNAs.

https://doi.org/10.1371/journal.pone.0228850.g007
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and rice (down-regulated) [11, 42, 43].miR408 in safflower, radish, rapeseed, and soybean

roots responded similarly (up-regulated) to Cd stress [44–46].Results obtained on miR172 and

miR166 expression under salinity are consistent with observations in radish (down-regulated)

[47], and an increase in the levels of mature miRNA was observed for miR156 and miR166 in

response to heat, which is concordant with results observed in wheat and barley [48, 49].

The role of miRNA172 during drought, heat, cold and Cd have suggested by several studies

[31, 32]. The different gene expression patterns of miRNA172 observed in saline, heat and

drought stresses. miRNA172 regulate AP2 gene family and involved in various process includ-

ing flowering time [44]. Over-expression of miR172 reduced flowering time significantly [23].

We found that miR172 is especially down-regulated in leaf tissues during salt and heat stress

while it is up-regulated under drought stress. Beyond this, changes in flowering time and the

expression pattern of miR172 have been shown, AP2 domain-containing TFs to be effective in

mediating stress tolerance [50].

The miR398 family has shown a variety the patterns of expression in response to stresses in

safflower. Interestingly, we found that the level of miR398 was down-regulated after drought

treatment in both root and leaf organs, and also has a negative correlation with their target

gene (CSD1) indicating a response of tissue-specific directed by this miRNA. Considering that

the ‘Sina’ cultivar is a dry land variety, it can be concluded that in this variety, at the molecular

level, miR398 can play an important role in drought resistance regulatory networks (Fig 5).

This is in accordance with previous studies [33].The miR398 family in plants, which is related

to detoxification processes, can directly interact with stress regulatory networks because their

targets are genes encode Cu/Zn-SOD enzymes (CSD1 and CSD2). In this study, CSD1 was

evaluated as a potential target for miR398.A secondary effect caused by most abiotic stresses in

plants is the rapid accumulation of reactive oxygen species (ROS) [51]. Superoxide dismutases

(SODs) are enzymes that can change the highly toxic superoxide radicals into H2O2, which is

less toxic [52]. Differential expression of miRNA398 in response to environmental stresses

conditions have been shown in different plant species including Brassica, Arabidopsis, Nico-
tina, Wheat and sunflower [27, 32–35]. All of these results are deduced that miRNA398 may

be involved in detoxification of ROS accumulation during abiotic stresses.

The miR408 has been described in different plant species to be differential expressed in

responses to different abiotic stresses. In this study, miRNA408 expression was measured

under drought, saline, heat and Cd stresses [43, 36]. Contrary to our previous conception, our

results demonstrated an increased expression of miR408 in response to salinity and drought. It

is possible that another similar condition is required for drought tolerance and salinity.On the

other hand, the expression of miR408 in the root organs after Cd treatment is up-regulated.

The miR408 family was suggested as Cu-miRNA [37]. In Arabidopsis at low and high Cu

concentration, Cu-miRNA accumulated and disappeared, respectively [38, 39].The main tar-

get genes of miR408 encode blue copper proteins, including those in the phycocyanin family

[53, 54]. The biological function of Cu is entirely related to the reconstruction of its properties.

Since free copper is toxic, even in small amounts, its homeostasis is controlled by precise

molecular mechanisms. Copper ion (II) is reduced to copper (I) before entering the cell

through high-affinity copper transporters of the CTR family [55]. In Cupredoxin, Cu+ is stabi-

lized by a constrained His2Cys coordination environment [56]. Up-regulation of miR408 due

to abiotic stress decreased the expression of genes associated with unnecessary cuproproteins

(such as plantacyanin, cupredoxin, uclacyanin, and LAC3); this process leads to enhanced cop-

per level available to those cuproproteins that are essential for coping with stress, such as the

Cu/Zn SODs [41]. Jovanovic et al. [57] was reported miRNA408 expression down-regulated in

pea upon drought stress. The results of this study provide sufficient evidence of an important

role for miR408 in response to abiotic stress.

Differential expression of conserved miRNAs and target genes against abiotic stress in safflower
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In this study, miRNA164 show expression down-regulated under drought and salinity

stresses. This discovery is similar to down-regulation miRNA164 in M. truncatula after

drought treatment [58]. In our study, NAC TF is one of the targets identified for miR164 in

safflower. The results of qRT-PCR show a negative correlation between miR164 and the NAC

gene in response to salinity and drought stress. Fang et al. [58] found that miR164 and NAC

TFs show a significant function in regulating drought tolerance in rice, such that up-regulation

of miR164 against NAC TFs can cause drought sensitivity. Further studies have shown that

NAC TFs directly bind to the promoters of drought-responsive genes [59, 60]. Also, transgenic

plants that expressed miRNA164-resistant NAC1 in Arabidopsis increased the number of lat-

eral roots [61]. Therefore, it is conceivable that miR164 expression suppression in safflower

may assist in increasing the root/shoot ratio under salt and drought stress.

The miRNA165 and miRNA166 family members regulate the expression class III homeodo-

main-leucine zipper (HD-ZIP III) TF which are regulate leaf morphology and auxiliary meristem

initiation [62, 63–65]. In this study, miRNA166 was down-regulated in response to salinity which

is in agreement with results obtained in maize [66].n former studies, miR166 displayed temporal

up-regulation in leaves and roots in response to heat stress. Expression of miR166 showed an

inverse correlation with its target HD-ZIP protein, REV. The down-regulation of miR166 in salt-

tolerant safflower and the up-regulation of the HD-ZIP transcript might enhance salt tolerance.

Interestingly, the pattern of miR162 was different in each stress treatment. Its expression

was up-regulated in salinity. In contract, miR162 illustrated down-regulated under heat stress.

This is proffer that miR162 may specified to stress-specific response explored by this miRNA.

Meanwhile, the mRNA encoding DCL1 has been known as the target of miR162 [67], but this

result was not seen in safflower. In this study, the expression of an unknown gene is considered

the potential target of miR162. It was observed that miR162 expression under salt stress, like

maize [66], is up-regulated. Also, the unknown protein expression changes in response to abi-

otic stressors significantly, which indicates its involvement in the stress response. On the con-

trary, the negative correlation between miR162 and the unknown protein confirms the

existence of a relationship between them and can be better understood.

Several studies have suggested role for miR156 during environmental stress conditions in

various plant species [68–71]. In this study, the target of miR156 was SPL TF which may alter

expression of downstream genes. Our findings suggest that the expression of miR156 has

decreased in particular in the leaves of plantlets under drought stress. Perhaps it can be con-

cluded that if the safflower seedlings are subjected to mild drought stress for a long time, they

can continue to survive with an increased flowering rate. In contrast to drought stress, heat

stress has led to an increase in mir156 expression. We observed down-regulation of SPL

genes in leaves and roots under salinity and heat stress indicating that miR156 accelerates the

cleaveage of SPL o modulate stress responses in safflower. In Arabidopsis, miR156 temporally

controls phase change and trichome development by targeting the distribution of SPL tran-

scription factors [72, 73]. Both miR156 and miR172 were shown to participate in the regula-

tion of developmental timing in Arabidopsis [74]. Since the transcription of miR172 was

directly regulated by SPLs transcription factors [74], increasing its expression leads to the

expression of miR172, which in turn targets and cleaves AP2-LIKE transcripts. By decreasing

the expression of the SPL TFs, the expression of the miR172 was also reduced. The findings

showed that high temperature can change the expression of all components in the miR156-

SPL-miR172-AP2 pathway through a complex mechanism and probably delay the flowering of

young safflower seedlings. We propose that miR156 and miR172 expressions in apical meri-

stems should also be studied to validate these results.

The identification of miRNA in safflower under different environmental stress conditions

in the previous study by Kohi et al. [27] and expression analysis in the present study, would be
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a starting point to understand regulatory mechanisms and biological functions of identified

miRNA in the future.

Methods

Plant materials and biological samples

Safflower seeds (Carthamus tinctorius L., ‘Sina’ (PI- 537598)), obtained from the Deputy of

Kermanshah, Sararood Dry Land Agricultural Research Institute, Iran) were surface-sterilized

for 10 min with sodium hypochlorite (5%), then completely washed with distilled water and in

order to obtain uniformity, the seedlings were germinated at room temperature and under

dark conditions for 3 days in sterile Petri dishes on water-moistened filter papers. After germi-

nation, the seedlings were cultured in different media.

To apply the heat stress treatment, three sprouted seeds were planted in jardinières filled

with sterile and moist cocopeat and for the drought treatment three germinated seed were

planted in pots containing 1kg of sandy clay loam soil. Safflower seedlings were grown under

normal conditions in the greenhouse at Shahid Chamran University in Ahvaz, Iran. Irrigation

was performed according to seedlings’ water requirements in cocopeat and soil, using ¼
strength Hoagland’s solution [75] and water, respectively. To prevent the accumulation of

nutrient elements and occurrence of high salinity in cocopeat, irrigated using a solution con-

taining water and Hoagland’s solution in 1:4 ratio.

For salinity and Cd stress, after germination, seedlings were transferred to 5Lplastic con-

tainers containing¼ strength Hoagland’s nutrient medium and grown hydroponically for six

weeks. To avoid contamination and decreases in nutrient concentrations, the nutrient solution

was changed twice a week. pH of the solution was maintained at ~5.8.

Abiotic stress treatments

Drought, heat, saline and heavy metals are the main stress sources in the plant kingdom [76,

77]. The safflower plantlets (8–10 leaf stages) were exposed to the above-mentioned stress

treatments.

Drought stress

To create drought stress, plantlets were exposed to a water deficit through water restriction

over 0 (100% FC as a control group), 12, 24, and 48 h after readily available water (RAW)

uptake (S1 Fig), and then recovery was conducted by re-irrigation. To characterize the status

of plant water, RWC was determined in the youngest fully expanded leaf, according to Catsky

[78].

Heat stress

Heat stress was applied by transferring watered plantlets to a growth chamber with 70% rela-

tive humidity. The plantlets were subjected to 25± 1˚C (control group) and42 ± 1˚C (heat

stress) for 1.5, 3, and 6 h (S1 Fig). To confirm the effect of heat stress on roots and leaves, plant

tissue was analyzed to detect the presence of Hsp70 protein-coding gene (GenBank ID:

EL400852.1).Heat shock proteins (HSPs) are a category of conserved and ubiquitous proteins

and their expression arises in response to abiotic stress like high temperature [79].

Saline stress

To impose salt stress, six-week-old plantlets were transferred to fresh culture solution contain-

ing 0 mM (control group), 75 or 150 mM of NaCl and the roots and leaves were separately
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collected from samples after 24 h. In order to investigate different salinity stress levels, 0.1 g of

sample from each of the oven-dried leaf and root sample(70˚C for 48 h), was digested with 10

mL 0.1N glacial acetic acid; then, Na+ and K+ content of samples (mg g-1dw) were measured

by flame photometer (Jenway, PFP-7, Cole-Parmer Ltd, Stone, Staffordshire, UK) [80].

Heavy metal stress

Cd stress treatments were performed under the same conditions by feeding hydroponic solu-

tion supplemented with 0 (control), 5 or20 μM CdSO4. After 24h of Cd treatment, leaves and

roots of treated plants were harvested separately. To assess the severity of stress, combusted

samples (550˚C for 2/5 h) were digested with 2N hydrochloric acid. Cd content was measured

as a measure of stress by flame atomic absorbance spectrometry (Perkin-Elmer Spectropho-

tometer, Model 460, USA).

Determination of proline content

The content of proline from 500 mg of leaf and root samples was extracted separately using 3%

(w/v) sulphosalicylic acid (SA) and then estimated with the application of ninhydrin reagent

following the procedure demonstrated previously [81]. The proline absorbance was measured

at 520 nm. The proline concentration was ascertained by comparison with a standard curve

and expressed as mg proline g−1fw.

Total RNA extraction

Total RNA was extracted from the fresh leaf and root samples using a total RNA extraction kit

(EZ Spin Column Total RNA Isolation Kit, BioBasic Inc., Canada), according to the manufac-

turer’s instructions, and then treated with DNase I (Takara) to eliminate remaining gDNA.

The quality of the RNA samples was appraised by electrophoretic separation on a 0.8% agarose

gel. The RNA concentration was ascertained using a biophotometer spectrophotometer

(Eppendorf, Germany).

Stem-loop reverse transcription (SL RT) and quantitative Real-Time PCR

The expression patterns of 7 mature miRNAs in response to abiotic stress were considered by

SL RT-PCR.SL RT-PCR primers for C. tinctorius mature miRNAs (miR156, miR162, miR164,

miR166, miR172, miR398, and miR408) were designed manually according to the procedure

illustrated by Chen et al. [82]) and Varkonyi-Gasic et al. [81](S3 Table).Immediately after the

total RNA extraction, the miRNA-specific SL RT reactions were performed pursuant to Varko-

nyi-Gasic et al. [83] via minor adjustments, using PrimerScriptTMRT reagent kit (TAKARA,

Japan).The RT reaction was performed as 16˚C, 30 min for 1 cycle; 30˚C, 30 s; 42˚C, 30 s;

50˚C, 1 s for 60 cycles and terminated by incubation at 85˚C for 5 min.

The qRT-PCR was used with SYBR Premix Ex TaqTM (TAKARA, Japan) and monitored

with the Master Cycler System (ABI, Biosystem, USA). Using 1 μL RT stem-loop cDNA prod-

ucts, quantitative PCR reactions were performed as 5 μL SYBR Premix Ex TaqTM (2×), 0.2 μL

forward (10 μM), 0.2 μL reverse (10 μM) primers, 0.2 μL Reference Dye II (50X) and 3.4 μL

nuclease-free water were mixed. Forward primers were specifically designed for each individ-

ual miRNA and the reverse primer was universal for all sets of stem-loop primers [83]. The

qRT-PCR reactions were done based on the following conditions; 5 min at 95˚C, 40 cycles for

5 s at 95˚C for denaturation, 10 s at 60˚C for annealing and 5 s at 72˚C for elongation. The

melting curve analysis was performed by denaturation at 95˚C for 15 s, followed by default

increasing ramp rate of the instrument from 60˚C to 95˚C.All of these reactions were
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performed for three biological repeats with technical duplicates. Relative expression levels for

each sample were obtained using the comparative Ct (2−ΔΔCt) method, also β-actin and glycer-

aldehyde-3-phosphate hydrogenase (GAPDH) were used as two reference genes to normalize

expression values [84]. The statistical analysis was performed using SPSS 22 software at a 5%

level of significance. The heat map of gene expression of miRNAs and target gens was illus-

trated using HemI 1.3.7 [85].

Expression analysis of miRNA targets genes by qRT-PCR

To distinguish the expression of miRNA targets and the possibility of discovering new miRNA

target genes under salinity, Cd, heat and drought stress in safflower, the expression levels of

the miRNA-associated predicted sequences were assayed with qRT-PCR. Primers were

designed for target and reference genes using Primer3, in accordance with the criteria

described by Thornton and Basu [84] (S4 Table).

Total cDNAs synthesis was carried out with 1μg RNA using PrimerScriptTMRT reagent kit

(TAKARA, Japan) according to the manufacturer’s instructions. The qRT-PCR was performed

using gene-specific primers in a total volume of 10 μL as follows: 5 μLSYBR PremixExTaq™
(Takara, Japan), 0.2 μL Reference Dye II (50X), 0.2 μL of each specific primers, 1 μL of the

cDNAs as a template. Reaction conditions were as follows: 95˚C for 5 min, 40 cycles at 95˚C

for 10 s, 55˚C for 30 s, and 72˚C for 30 s, followed by a final 10 min extension at 72˚C and then

was done disassociation stage (melting curve analysis).
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