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Abstract

Background: Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation,
competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia,
obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the
Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role
in symbiosis/virulence, and none of its substrates are known.

Results: Superimposition of T4SS structural/functional information over previously identified Rickettsia components
implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved
features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins
conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly
identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical
inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/
VirB9 to ComB7/ComB9 proteins of e-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the
Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host.
Modern modifications of these systems likely reflect diversification with various eukaryotic host cells.

Conclusion: We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown
role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also
identifies the Legionella lvh T4SS as a suitable genetic model.
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Introduction

Type IV secretion systems (T4SSs) are multi-component

membrane-spanning transporters present in many Gram-negative

bacteria, including medically and agriculturally important species.

Derived from ancient conjugation machineries [1], T4SSs are

presumably used by many species for the exchange of genetic

material [2,3,4,5]. However, T4SSs have garnered significant

attention for their role in pathogenesis, acting as syringes that

inject virulence factors into eukaryotic host cells [6]. These

translocated virulence factors, more commonly referred to as

‘effector molecules’ (DNA, protein or nucleoprotein complexes),

have a broad range of host-altering functions, such as highjacking

of vesicular trafficking [7], cytoskeletal modification [8], ubiqui-

tination system exploitation [9], and genome introgression

[10,11,12,13,14,15]. T4SSs are found in a variety of etiological

agents of human disease, including Bordetella pertussis (whooping

cough), Coxiella burnetii (Q fever), Brucella spp. (brucellosis), Bartonella

henselae (cat-scratch disease), Campylobacter jejuni (gastroenteritis),

Helicobacter pylori (gasteric ulcers), and Legionella pneumophila

(Legionnaires’ disease) [16,17,18,19,20,21,22]. However, compi-

lation of genome sequences has revealed the evolutionary

persistence of T4SS genes (e.g., vir, tra, trw, etc.) from numerous

Gram-negative (and now Gram-positive [23]) bacterial species,

many of which have not been linked to pathogenesis. Conse-

quently, the exact function(s) T4SSs bestow to the bacterial species

that harbor them remain largely unknown, with roles in

conjugation, pathogenesis, DNA uptake, or DNA release, or any

combination of these processes, only determinable on an

individual basis. Indeed, while considerable conservation of Vir

and Vir-like components allows for comparison of T4SSs across

divergent bacterial species [2,6,24,25,26,27,28,29] (Figure 1A),

identified protein effectors usually are conserved only in closely

related species, suggesting common modes of type IV secretion
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have numerous divergent functions in both Gram-negative

bacteria and Gram-positive bacteria, likely arising from multiple

progenitors [26].

Much of what is known about the structure and function of

T4SSs has been generated from paramount studies on the

phytopathogen Agrobacterium tumefaciens [30]. Thus, the virB/virD

T4SS of A. tumefaciens is considered the archetype to which most

other vir and vir-like T4SSs (typically referred to as ‘type A’ T4SSs)

are compared. In A. tumefaciens, the virB operon and virD locus on

the Ti (tumor inducing) plasmid encode 12 single copy genes

(virB1Ti-virB11Ti, virD4Ti) whose products comprise a molecular

scaffold that spans the inner and outer membranes (IM and OM,

respectively), culminating in a transfer pilus (T pilus) that

protrudes from the bacteria [6,31,32,33,34,35]. A. tumefaciens uses

its vir T4SS, which is regulated by the VirA/VirG two-component

system [36], to introduce a nucleoprotein complex, the T-strand

DNA plus VirD2 and VirE2 proteins, into the nuclei of various

host plant cells [37]. The byproduct of this interkingdom

introgression is crown gall disease, which allows the bacteria to

reside and multiply within a modified host niche [38].

The rudimentary functions of most components of the A.

tumefaciens vir system have been characterized. VirD4Ti is an IM

ATPase that couples the nucleoprotein complex (and other

substrates) to the T4SS channel [39,40]. VirB4Ti and VirB11Ti

are additional IM ATPases that presumably fuel the delivery of

substrates to the core periplasmic-spanning channel [32,41,42,43,

44,45,46,47,48,49,50,51,52]. VirB6Ti-VirB10Ti form the core

periplasmic-spanning channel [42,45,46,51,52,53,54,55,56,57,58,

59,60,61], while VirB2Ti and VirB5Ti are the major and minor

constituents of the T pilus, respectively [42,44,46,62,63,64].

VirB1Ti is a member of the specialized lytic transglycosylase

family of proteins implicated in the local degradation of

peptidoglycan, allowing the channel to span the periplasm

[42,65,66,67]. The C-terminal portion of VirB1Ti (VirB1*) is

cleaved and functions in cell-cell contact and virulence [65].

Despite the vast body of research on vir systems, the function of

VirB3Ti, an exported OM protein presumably involved in host cell

attachment, remains unknown [42,64]. Studies implicating the

interaction of Vir components in A. tumefaciens as well as several

other bacteria are rapidly growing and, coupled with recent

structural studies, the architecture of the Vir scaffold is coming to

light (Figure 1B).

A decade has passed since the first genome sequence was

published for Rickettsia, obligate intracellular bacteria of the class

Alphaproteobacteria [68,69,70]. The R. prowazekii str. Madrid E

genome sequence (1.1 Mb) exposed an extraordinary trend toward

genome reduction via pseudogenization, with major constituents

of biosynthetic pathways deleted relative to other bacteria [71]. It

also revealed a reduced T4SS as compared to the virB/virD T4SS

of A. tumefaciens, with only six genes annotated as coding for Vir

components (virB4, virB8-virB11, virD4). Interestingly, two of these

Vir genes were duplicated (virB4 and virB9, the latter gene

annotated as trbG), and the arrangement of the Vir genes was non-

canonical relative to most other T4SSs, being scattered in three

well-separated locales of the genome. Subsequently sequenced

rickettsial genomes have confirmed this atypical nature of the

Rickettisa T4SS [72,73,74,75,76,77,78,79], and consensus genome

annotation revealed a T4SS devoid of only the VirB1, VirB2,

VirB5, and VirB7 components [80,81].

Despite intense laboratory effort, a paucity of characterized

virulence factors exists for Rickettsia [82], with, to date, no genes

identified as coding for effectors of the T4SS. This is surprising, as

the virulent species of Rickettsia are of great interest both as

emerging infectious diseases [83] and for their potential deploy-

ment as bioterrorism agents [84,85]. Given the relatively close

evolutionary relationship of Agrobacterium (Rhizobiales) and Rickett-

sia (Rickettsiales) within the Alphaproteobacteria tree [86], as well as

the availability of 13 genome sequences of Rickettsia spp. (R. bellii

str. RML369-C, R. bellii str. OSU 85 389, R. canadensis str. McKiel,

R. prowazekii str. Madrid E, R. typhi str. Wilmington, R. felis str.

Figure 1. Characteristics of the archetypal bacterial type IV secretion system (type A). (A) Schema depicting several of the type A T4SSs
used in this investigation for comparison with the Rickettsia T4SS. At vir = Agrobacterium tumefaciens Ti plasmid; Ec tra = Escherichia coli IncN plasmid
pKM101; Ec trw = Escherichia coli plasmid R388; Lp lvh = Legionella pneumophila; Bs vir = Brucella suis; Bp ptl = Bordetella pertussis; Rt vir? = Rickettsia
typhi. (B) Map of Vir-Vir physical interactions based on a survey of the literature. Specific studies demonstrating the mapped interactions are
discussed in the text and in supporting Document S1. Solid black lines depict direct physical interactions. Dashed lines depict energetic effects of
ATP hydrolysis of VirD4 and VirB11 on VirB10 [100], as well as the stabilization effect of VirB6 on VirB3, VirB5, and VirB7 dimerization [184] and the
VirB7/VirB9 heterodimer [131]. VirB1 and VirB1* are modeled accordingly [65] and the VirB7/VirB9 complex is boxed to illustrate interactions with the
heterodimer rather than individual components.
doi:10.1371/journal.pone.0004833.g001
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URRWXCal2, R. akari str. Hartford, R. massiliae str. MTU5, R.

rickettsii str. Sheila Smith CWPP, R. rickettsii str. Iowa, R. conorii str.

Malish 7, R. sibirica str. 246, and R. africae str. ESF-5), it is timely to

assess the atypical nature of the Rickettsia T4SS with an attempt to

better understand the function (if any) this transporter has in

rickettsial pathogenesis. We provide here a bioinformatic analysis

of the Rickettsia T4SS, with each component evaluated in light of

the latest structural and functional information from studies of vir

and vir-like (e.g., tra, trw, trb, ptl) T4SSs from other bacteria. We

address the nature of Vir gene duplication in Rickettsia and discuss

the potential role the vir T4SS plays not only in rickettsial

pathogenesis, but also lateral gene transfer (LGT). These results

shed new light on the origin and function of the rickettsiae Vir-like

genes and lay a much needed foundation for future laboratory

assessment of the function of the Rickettsia T4SS.

Results and Discussion

Previously Identified Rickettsia T4SS Components
Fifteen highly conserved genes previously annotated in

rickettsial genome sequencing projects have similar counterparts

in the T4SSs of other bacteria (Table 1). These 15 genes comprise

eight of the Vir components well characterized in the A. tumefaciens

T4SS that are involved in substrate (DNA and/or protein)

presentation (virD4), translocation energetics (virB4, virB11), mating

channel structure (virB6, virB8-virB10), and host cell attachment

(virB3) [26,37]. Thus, consensus genome annotation supports prior

findings that the Rickettsia T4SS is reduced in complexity relative

to the A. tumefaciens model (missing genes encoding the components

VirB1, VirB2, VirB5, and VirB7), with the various components

present in three scattered genomic locales in all sequenced

Rickettsia genomes (Figure S1). Accordingly, we evaluate the

characteristics of each Vir component to propose that the T4SS in

Rickettsia is a functional transporter. Important background

information regarding these eight Vir components is compiled in

Document S1.

Substrate presentation (VirD4). The Rickettsia VirD4 gene

is conserved across 13 genomes (8.1% div.), and the corresponding

amino acid sequence (4.2% div.) is highly conserved when

compared across divergent pathogenic bacterial type IV

coupling proteins (T4CPs), particularly within the five conserved

motifs of the two large C-terminal domains (CTDs) (Figure S2).

Unpublished data from our laboratories also suggests that Rickettsia

VirD4 is capable of binding putative effectors of the T4SS using a

bacterial 2-hybrid assay.

Translocation energetics (VirB4 and VirB11). Two VirB4

genes are present in all sequenced Rickettsia genomes (virB4a and

virB4b), and both encoded proteins are large and similar in size and

composition to VirB4 and VirB4-like proteins from other bacteria

(Figure 2). In most Rickettsia genomes, virB4a is clustered with

virB3 and the virB6 duplicates, while virB4b is not located near any

other Vir genes (Figure S1). virB4a is more conserved across

Rickettsia genomes than virB4b at the nucleotide (6.7% versus 9.2%)

and amino acid (3.7% versus 9.9%) level, with more indels in

VirB4b relative to VirB4a and other bacteria. In the protein

alignment, 11 variable residues are VirB4a-specific, whereas 43

variable residues are unique to VirB4b, illustrating more

conservation of VirB4a with non-Rickettsia proteins. Strikingly,

seven of the VirB4b-specific substitutions alter critical residues in

the NTP-binding cleft, which is essential for T-DNA export in A.

tumefaciens [41], casting doubt on the ability of VirB4b to function

as a T4SS ATPase.

The Rickettsia VirB11 gene is conserved across 13 genomes

(9.7% div.) and the corresponding amino acid sequence (4.8% div.)

is highly conserved when compared to VirB11 and VirB11-like

proteins from other bacteria, particularly within the four

conserved motifs of the CTD (Figure S3). Not surprisingly, the

least conserved region in our alignment maps to the major

difference between the two VirB11 crystals, a domain swap in the

N-terminal domain (NTD)-CTD linker region of Brucella suis

relative to H. pylori [87]. Like most other VirB11 and VirB11-like

proteins, Rickettsia VirB4 contains the domain swap and likely

forms an additional helix, aC2, in the linker B region that allows

for additional interactions at the subunit-subunit interface. Finally,

a search within all rickettsial genomes for the recently identified

regulator of H. pylori VirB11, HP1451 [88], proved unsuccessful.

Mating channel structure (VirB6, VirB8-VirB10). An

extraordinary five copies of the VirB6 gene (virB6a-e) are found

in most Rickettsia genomes (Figure 3A), with exception to R.

massiliae, which is missing virB6e [72]. Additionally, virB6d is split in

the R. bellii str. OSU 85 389 genome [81]. These findings, coupled

with blast results (Table 1), suggest that these VirB6 genes are the

most variable components of the Rickettsia vir system, particularly

when the regions flanking the VirB6/TrbL domains are

considered. Individual full length VirB6 genes are conserved

across 13 genomes and range in nt divergence from 10.3% (12.4%

aa) to 13.2% (15.2% aa); however, the five duplicates are

extraordinarily different from one another, averaging ,80% aa

divergence in the VirB6/TrbL domains alone (alignment of full

length proteins was confounded by variability in the flanking

sequences). This lack of conservation, coupled with conflicting

Table 1. Relative Conservation of Rickettsia Vir Proteins to Vir
and Vir-like Proteins from Other Bacteria.

Protein1 L query2 No. hits3 Distribution4
Other5

a b c d e

VirD4 591 500 229 64 36 3 31 137 (6)

VirB4a 805 500 244 60 75 2 76 43 (15)

VirB4b 810 456 218 53 59 2 73 51 (28)

VirB11 334 500 200 109 107 18 8 58 (4)

VirB6a 1061 151 130 2 5 0 1 13 (2)

VirB6b 668 181 147 1 13 0 1 19

VirB6c 967 202 158 5 20 1 1 17 (2)

VirB6d 890 197 172 4 18 0 0 3 (1)

VirB6e 1154 247 174 14 35 1 9 14 (3)

VirB8a 228 101 65 4 11 1 3 17 (3)

VirB8b 242 153 80 10 36 0 16 11 (4)

VirB9a 247 411 203 74 73 3 36 22 (13)

VirB9b 158 342 197 53 63 1 8 20 (11)

VirB10 481 380 193 52 69 4 47 15 (11)

VirB3 95 80 65 1 7 0 6 7

1Consensus annotation. Grouped by function: substrate presentation (VirD4),
translocation energetics (VirB4, VirB11), mating channel (VirB6, VirB8-VirB10),
attachment (VirB3).

2Length (aa) of R. typhi query sequence.
3Number of blastp subjects yielding significant alignments (maximum hits set
to 500).

4Distribution of subjects across five classes of proteobacteria.
5Non-proteobacterial subjects, with number of plasmid encoded proteins in
parentheses. Note: plasmid encoded Vir and Vir-like proteins were not
assigned to a taxonomic class, hence some may be from plasmids found in
proteobacteria.

doi:10.1371/journal.pone.0004833.t001
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evidence and hypotheses for VirB6 channel structure formation

[89,90] (Figure 3B), makes it difficult to predict the functionality of

any of the five duplicate VirB6-like proteins in Rickettsia. The regions

flanking the VirB6/TrbL domains are particularly divergent across

the five duplicates (Figure 3A) and are similar only in a few

instances to the sister taxon of Rickettsia, Orientia tsutsugamushi (Figure
S4). The contribution of additional flanking sequences to the

structure and function of these expanded VirB6/TrbL domain-

containing ORFs, especially regarding substrate transport to VirB2

and VirB9 in the OM, is worthy of exploration as they are seemingly

unique to Rickettsiaceae (Figure 3C). Comparison of the VirB6/

TrbL domains of all five VirB6 proteins to VirB6 and VirB6-like

proteins from other bacteria supports previous observations that

conservation within this domain is limited to the transmembrane-

spanning (TMS)-cytoplasmic region involved in substrate transfer to

VirB8 [89,91]. Of the conserved residues in this region, the

invariant Trp is essential [92] and required for polar localization of

VirB6 [90]. Little conservation in sequence length and composition

exists in the functionally important N-terminal large periplasmic

region, and a TMS region prediction program [93] calculated at

least one additional TMS region in this location of the domain in

most analyzed taxa (Figure 3C).

Two VirB8 genes are present in Rickettsia genomes (virB8a and

virB8b), separated by one small ORF (discussed below) and

Figure 2. Characteristics and comparative analysis of VirB4 and VirB4-like amino acid sequences across six divergent bacterial
species. Bars above alignment depict interactions between VirB4 and other Vir components as revealed by bacterial two-hybrid screen [208] with
color scheme as follows: purple = VirB4-VirB10, yellow = VirB4-VirB8, green = VirB4-VirB1, blue = VirB4-VirB11. Residues colored white depict mutations
in one rickettsial sequence in otherwise conserved positions in the alignment. Coordinates for each sequence are shown to the right in each block,
with numbers in parentheses depicting flanking residues of the alignment not shown. Conservation color scheme as follows: yellow = identical;
green = identical in five of six sequences; orange = identical in four of six sequences or a position comprised of only two residue states. See text for
alignment details. Taxon abbreviations and associated NCBI accession numbers are as follows: At = Agrobacterium tumefaciens VirB4, NP_059802;
Rta = Rickettsia typhi VirB4a, AAU03521; Rtb = R. typhi VirB4b, AAU04227; Xf = Xylella fastidiosa conjugal transfer protein (VirB4-like), Q9PHJ8;
Rhizobium etli VirB4, Q8KIM8; Bartonella tribocorum VirB4, Q8GJ64. (A) Alignment of the C-terminal portion of VirB4 containing the conserved DNA-
binding domain. Walker A (WA) and Walker B (WB) boxes are enclosed with red and blue boxes, respectively. The highly conserved Gln predicted to
be involved in NTP-binding is denoted with an asterisk and underlined, with additional structurally proximal residues forming the purported NTP-
binding cleft also underlined [209]. Seven residues within conserved NTP-binding domains mutated only in Rtb are shaded in black. (B) Schematic of
the entire VirB4 protein depicting the interactions with four other Vir components [208]. Alignment depicts conservation outside of the conserved
NTP binding domains. The CagE_TrbE_VirB domain (PF03135) plus WA and WB boxes are depicted in black, red and blue respectively.
doi:10.1371/journal.pone.0004833.g002
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encoded on opposite strands (Figure S1). virB8a flanks virB9a on

the minus strand while virB8b is within a larger vir cluster (virB8b-

virB9b-virB10-virB11-virD4) on the plus strand. virB8b is more

conserved across Rickettsia genomes than virB8a at the nucleotide

(9% versus 10%) and amino acid (9.4% versus 13.4%) levels. Both

VirB8 proteins are similar in size and composition to other VirB8

and VirB8-like proteins, with many residues within superimposed

a-helices and b-strands of the solved crystal structures [94,95]

conserved in both proteins (Figure 4A). However, limited

conservation is seen in residues implicated in dimerization

[94,95,96] as well as positions previously demonstrated as lethal

mutants [96,97], even in an expanded comparison of 200 VirB8

and VirB8-like proteins (Figure 4B). Furthermore, VirB8a has

two critical residues mutated within the highly conserved ‘‘NPxG’’

motif (XPxX across the 13 Rickettsia genomes), which is not

expected to adopt its critical sharp turn confirmation between

Figure 3. Characteristics of the highly duplicated VirB6-domain-containing proteins of Rickettsia, with comparison to VirB6 and
VirB6-like amino acid sequences from six divergent bacterial species. (A) Schema of five Rickettsia typhi ORFs (Rta-e) containing putative
VirB6 domains, as predicted by the Conserved Domains Database (NCBI) following blastp searches. All searches retrieved COG3704 (VirB6) and
PF04610 (TrbL, TrbL/VirB6) domains, with Rtd also scoring limited similarity with COG0558 (PgsA, phosphatidylglycerophosphate synthase). (B)
Competing topology models for Agrobacterium tumefaciens VirB6 in the IM (named here on the basis of the number of predicted TMS regions). Top:
5TMS model [89] with bar at top depicting regions of VirB6 required for formation of T-strand close contacts with several Vir components, as revealed
by transfer DNA immunoprecipitation; bottom: 4TMS model [90]. Color scheme of protein as follows: black = periplasm, blue = IM, red = cytoplasm.
TMS regions are labeled with Roman numerals sequentially from N- to C-terminus. Shaded (gray) portion depicts alignment in C. (C) Multiple
sequence alignment of the central portion of the VirB6 domain of five (a–e) R. typhi ORFs and five VirB6 and VirB6-like sequences from diverse
bacteria species. Bars above alignment depict shaded region in B, with competing models illustrated accordingly. Bold-shaded residues depict TMS
regions as predicted by TMHMM [93]. The essential Trp residue [90,92] is denoted with an asterisk above the alignment. Coordinates for each
sequence are shown to the right in each block, with numbers in parentheses depicting flanking residues of the alignment not shown. Bold numbers
for the rickettsial sequences depict regions not included in the VirB6 domain alignment. Conservation color scheme is the same as in Figure 2
legend, except orange = identical in seven of eleven sequences or a position comprised of only two residue states. See text for alignment details.
Taxon abbreviations and associated NCBI accession numbers are as follows: Rta = R. typhi plasmid conjugal transfer protein VirB6 (VirB6a), YP_067002;
Rtb = R. typhi TrbL/VirB6 plasmid conjugal transfer protein (VirB6b), YP_067001; Rtc = R. typhi plasmid conjugal transfer protein VirB6 (VirB6c),
YP_067000; Rtd = R. typhi hypothetical protein (VirB6d), YP_066999; Rte = R. typhi plasmid conjugal transfer protein TrbL/VirB6 (VirB6e), YP_066998;
At = A. tumefaciens VirB6, AAF77166; Bh = Bartonella henselae VirB6, AAF00944; Sm = Sinorhizobium meliloti VirB6, NP_435960; Bs = Brucella suis VirB6,
NP_699271; St = Salmonella typhimurium (IncN plasmid R46) TraD, NP_511193; Lp = Legionella pneumophila LvhB6, AAM0824.
doi:10.1371/journal.pone.0004833.g003
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helix a4 and strand b4 if altered [95]. This, coupled with

one of two essential residues mutated in the NTD (G78Q)

relative to identical residues in VirB8b and VirB8Ti, as well

as the extraordinary overall variation in the NTD (Figure 4C),

casts doubt on VirB8a as a functional component of the

Rickettsia T4SS. However, predicted structural models for both

Rickettsia VirB8 proteins are similar to the VirB8Ti crystal

(Figure 4D).

Rickettsia genomes contain two VirB9 genes (virB9a and virB9b)

encoded immediately downstream of the two VirB8 genes (Figure
S1). virB9a is more conserved across Rickettsia genomes than virB9b

at the nucleotide (7.6% versus 8.2%) and amino acid (4.7% versus

10.8%) levels. While the entire NTDs of both proteins are

comparable to other VirB9 and VirB9-like proteins from other

bacteria (data not shown), the CTD of VirB9b is highly truncated

and contains residues only in the first b-strand, B1, of the

Figure 4. Comparative analysis of VirB8 and VirB8-like proteins with emphasis on two Rickettsia orthologs. (A) Multiple sequence
alignment of the C-terminal regions of VirB8 and VirB8-like sequences corresponding to regions of the solved crystal structures of VirB8 from Brucella
suis [95] and Agrobacterium tumefaciens [94]. Secondary structural model is shown above the alignment with arrows (b-strands B1–B4) and bars (a-
helices A1–A4) with color scheme as follows: gray = agreement across both models, stippled = disagreement between models, red = alignment too
variable to support either model. Structural notation follows the earlier model [95]. Red box encloses the highly conserved ‘‘NPxG’’ motif. Blue dots
depict residues involved in VirB8 homo-dimerization [94,95,96], and red dots depict previously determined lethal mutants [96,97]. In B. suis VirB8,
residues implicated in interactions with VirB10 (T201) and VirB4 (R230) are underlined. Boxed regions are further described in B. Residues colored
white depict mutations in one rickettsial sequence in otherwise conserved positions in the alignment. Coordinates for each sequence are shown to
the right in each block, with numbers in parentheses depicting the number of flanking residues of the alignment not shown. Conservation color
scheme is the same as in Figure 2 legend. See text for alignment details. Taxon abbreviations and associated NCBI accession numbers are as follows:
At = A. tumefaciens VirB8, NP_059806; Rta = Rickettsia typhi VirB8a, YP_067240; Rtb = R. typhi VirB8b, YP_067242; Bs = Brucella suis VirB8, AAN33274;
Bq = Bartonella quintana VirB8, AAM43802; Bp = Bordetella pertussis VirB8 homolog (PtlE), G47301. (B) Sequence logos [198,199] illustrating consensus
sequences for the three boxed regions in A generated across an alignment of 200 VirB and VirB-like bacterial sequences (sequences retrieved from
NCBI with blastp using R. typhi VirB8a as a query). The ‘‘NPxG’’ motif is enclosed in red box. (C) Alignment of the N-terminal sequences of VirB8a and
VirB8b from R. typhi. Identical residues are depicted with asterisks, with red dots as described above in A. (D) Predicted structure of Rta (left) and Rtb
(right) using SWISS-MODEL v8.05 [200] with the A. tumefaciens VirB8 as a template (PDB ID code 2cc3A). The critical ‘‘NPxG’’ motif is enclosed in red
dashed box.
doi:10.1371/journal.pone.0004833.g004
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superimposed NMR structure of E. coli TraO (a VirB9 analog)

(Figure 5A). Thus, if at all functional, Rickettsia VirB9b proteins

lack the necessary domain to interact with VirB7 and VirB7-like

lipoproteins. Interestingly, Rickettsia VirB9a proteins contain the

conserved Cys residue implicated in disulphide bridge formation

with VirB7 (discussed below), despite a lack of conservation of the

Cys residue in most other VirB9 proteins. This Cys residue is also

conserved in ComB9 proteins of H. pylori and C. jejuni [98]

(Figure 5B), perhaps lending insight into the origin of the

Rickettsia T4SS. Finally, despite its highly truncated nature, VirB9b

shares mild similarity with VirB9a in the NTD, and both proteins

are predicted to contain signal peptides (Figure 5C), with the

VirB9b signal peptide of R. typhi recently confirmed to mediate

secretion in an E. coli-based alkaline phosphatase gene fusion

system [99].

The Rickettsia VirB10 gene is conserved across 13 genomes (11%

div.), and the corresponding amino acid sequence (10.5% div.) is

highly conserved when compared across related proteins from

divergent pathogenic bacteria, particularly within the periplasmic

CTD for which a crystal has been solved for H. pylori ComB10

[95] (Figure S5). Like many other (but not all) VirB10 and

VirB10-like proteins [100], the Rickettsia sequences contain a

proline-rich tract in the periplasmic region of the NTD that is

predicted to form an a-helical coiled-coil [98], which could

mediate oligomerization [95]. Interestingly, the Rickettsia sequences

contain unique insertions flanking a-helix A3 on both the N- (73

aa) and C- (10 aa) terminal sides. The effects these insertions have

on the structure/function of Rickettsia VirB10 remain to be

determined.

Attachment (VirB3). Like many other bacteria harboring

T4SSs, Rickettsia contain a VirB3 gene that encodes a small protein

(,95 aa) with a predicted signal peptide and a hydrophobic N-

terminal region (Figure S6). Many of the hydrophobic residues

map to predicted TMS regions, which are characteristic of all

sampled VirB3 proteins, and two motifs within the N-terminal

region, ‘‘(GAT)L(ST)RP’’ and ‘‘GV’’, comprise the most

conserved sequences of these proteins. Such an occurrence of

conserved motifs within predicted signal peptides with such close

Figure 5. Comparative analysis of VirB9 and VirB9-like proteins with emphasis on two Rickettsia orthologs. In all panels, coordinates for
each sequence are shown to the right in each block, with numbers in parentheses depicting flanking residues of the alignment not shown. (A)
Multiple sequence alignment of ten VirB9 and VirB9-like sequences corresponding to regions of the NMR structure for the VirB9 (TraOCT)/VirB7 (TraN)
interaction in Escherichia coli (IncN plasmid R46) [141]. Secondary structural model is shown above the alignment with arrows (b-strands B1–B9) and a
bar (310 helix). Dashed box indicates the region demonstrated to protrude extracellularly from the OM. Blue cysteines in At (C262) and Rta (C241)
depict the residues that participate in the disulfide bridge between VirB9Ti and VirB7Ti [53,54,116,135]. Region underlined in VirB9Ti (G242–G271) is
depicted in B. Conservation color scheme is the same as in Figure 2 legend, with calculations adjusted for four additional sequences. See text for
alignment details. Taxon abbreviations and associated NCBI accession numbers are as follows: Ec = E. coli TraO (IncN plasmid R46), NP_511196;
At = Agrobacterium tumefaciens VirB9, NP_396496; Rta = Rickettsia typhi VirB9a, YP_067240; Rtb = R. typhi VirB9b, YP_067243; Bs = Brucella suis VirB9,
NP_699268; Bp = Bordetella pertussis VirB9, NP_882293; Bp2 = Bordetella pertussis TraK (plasmid pSB102), NP_361041; Aa = Aggregatibacter
actinomycetemcomitans magB09, NP_067575; Ec2 = E. coli TrwF (plasmid pR388), CAA57030; Bh = Bartonella henselae TrwF, CAF28337. (B) Illustration
of the conserved Cys residue shared between VirB9Ti, R. typhi VirB9a and the ComB9 proteins of Helicobacter pylori (CAA10656) and Campylobacter
jejuni (NP_863299) [98]. Identical residues are depicted with asterisks and the conserved Cys residue is shaded. (C) Alignment of the N-terminal
sequences of VirB9a and VirB9b of R. typhi. Identical residues are depicted with asterisks and predicted signal peptides [196,197] are shaded.
doi:10.1371/journal.pone.0004833.g005
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proximity to TMS regions is unusual, and coupled with a growing

number of virB3/virB4 fusions identified from other T4SSs, raises

the possibility that VirB3 has more of an IM-periplasmic function

[101]. Few other residues are conserved across the sampled taxa.

The gene is highly conserved at the nucleotide (6.2%) and amino

acid (4%) level across Rickettsia, suggesting an essential function for

this poorly characterized protein.

Bioinformatic prediction of three additional scaffold
components

Our previous phylogenomic study on Rickettsia collectively

suggested through consensus genome annotation that, relative to

the A. tumefaciens archetype T4SS, Rickettsia genomes are devoid of

Vir scaffold genes encoding VirB1, VirB2, VirB5 and VirB7 [81].

Below, we discuss the various methods used to uncover a Rickettsia

T4SS that is only lacking a virB5 homolog. We provide

background information for these genes, as they may be prone

to misidentification via standard genome automation methods for

a variety of reasons discussed below.

virB1. VirB1 and related proteins belong to a class of soluble

lytic transglycosylases (LTs), enzymes involved in maintaining the

integrity of the bacterial cell wall [102]. Specifically, LTs manage

the turnover of the murein layer by degrading peptidoglycan,

working in concert with murein synthesizing enzymes in a

housekeeping fashion [103,104,105]. LTs are part of an ancient

glycohydrolase superfamily that includes plant chitinases, bacterial

chitosanases, goose and hen g-type lysozymes, and phage T4

lysozymes [106]. The specific class of LTs encompassing VirB1

and VirB1-like proteins also includes proteins from other secretion

systems and related enzymes present in bacteriophages

[66,67,107,108,109]. This class of ‘‘specialized’’ LTs [110]

differs from housekeeping LTs in that peptidoglycan is locally

disrupted for specific purposes [107], and in the case of VirB1 and

related proteins, this purpose is to accommodate the assembly of

the T4SS apparatus across the entire cell envelope [66]. Whereas

all other Vir components in A. tumefaciens have been shown to be

essential for type IV secretion, VirB1 is not, as deletion/mutation

of virB1 greatly reduces virulence but does not eliminate tumor

formation [42,111,112,113]. VirB1-like proteins are also non-

essential in other systems [66,114], although a VirB1 homolog

(HP0523) in the cag T4SS of H. pylori is critical for both CagA

translocation/phosphorylation and interleukin-8 induction in host

cells [115]. Aside from self-oligomerization, VirB1 interacts with

several other Vir components, namely VirB4 and VirB8-VirB11

[116,117], illustrating its periplasmic role in peptidoglycan

degradation. Apart from the LT domain of VirB1Ti, the C-

terminal VirB1* is released by cleavage in the periplasm [65] and

acts independent of VirB1Ti in tumorigenesis [118]. Specifically,

VirB1* interacts with VirB2Ti and VirB5Ti to promote T pilus

formation [119]. Despite the conserved consensus sequence

‘‘(YH)Vx(KRQ)V’’ near the cleavage site in VirB1Ti, such

processing has not been demonstrated in any other VirB1 or

VirB1-like sequence to date, although a cleaved VirB1 product

was reported in the cell lysate of Brucella abortus [113].

Searches of the Rickettsia database [80] for genes annotated as

coding for LTs yielded two conserved families. The first family

contained genes annotated as either ‘‘soluble lytic murein

transglycoslyase’’ or ‘‘hypothetical protein’’. This gene family

encodes proteins of an average length 650 aa, consistent with the

size of the product of E. coli slt. Considerable variation in

annotation existed for the second gene family, ranging from

‘‘hypothetical protein’’ to ‘‘invasion protein’’ to ‘‘soluble lytic

transglycosylase’’. These genes encode proteins averaging 290 aa,

a size typical of many specialized LTs. Interestingly, one member

of this family, R. prowazekii ORF 457, was previously suggested as a

possible candidate for VirB1 in a comparison of several divergent

T4SSs [26]. This prediction was never incorporated into genome

annotation. A search of the NCBI protein database for ‘‘VirB1’’

yielded 142 results, of which all results containing ‘‘VirB1’’ in the

protein annotation were selected for comparison with the smaller

rickettsial LT domain containing proteins. These proteins were

aligned and a subset of this alignment illustrates the limited

conservation in VirB1 and VirB1-like sequences across divergent

bacteria (Figure 6). Collectively, the selected sequences are most

conserved in the regions corresponding to the active site motifs of

the crystal structure of E. coli Slt [120], which are also conserved in

the larger Rickettsia ‘‘soluble lytic murein transglycoslyase’’ family.

The C-terminal region of VirB1* processing is also conserved as

previously reported [119], and all predicted VirB1* sequences

contain tracts of repeated residues, particularly Pro rich tracts.

Across the 13 Rickettsia genomes, these putative VirB1 sequences

exhibit the least conservation of all Vir components at the

nucleotide (13.9%) and amino acid (16.3%) level (after the variable

flanking sequences of VirB6 proteins are excluded, see above).

Accordingly, we suggest that Rickettsia genomes contain both

housekeeping LTs orthologous to E. coli Slt and related Slts, as well

as specialized LTs similar to VirB1, which are likely to play a role

in type IV secretion via the localized degradation of peptidogly-

can.

virB2. VirB2 and related proteins comprise the major pilin

subunit of the T pilus [121,122] and are also essential components

of the mating channel [42,62,123,124]. The signal sequences of

these proteins are cleaved in the periplasm, followed by additional

species-specific processing of the N- and C-termini

[92,125,126,127,128,129,130]. In A. tumefaciens, VirB2Ti is made

circular through a cyclization process mediated by an

uncharacterized chromosomal-encoded gene product [126,127].

Various laboratory strategies have identified VirB2 in complexes

with VirB5 and VirB7 [55,131,132,133,134,135], supporting its

role in T pilus formation. The VirB2-VirB5 pilus complex is

dependent on the periplasmic interaction between VirB4 and

VirB8, which results in the formation of extracellular pili [135].

However, all VirB2 and VirB2-like proteins are incorporated into

the IM [2], as evident by at least two predicted TMS regions in all

analyzed sequences. Polymers [134] of the protein are critical for

substrate transfer in the mating channel [124,136] and possibly

span the entire periplasm [101]. Given the recent hypothesis that

T4SSs have dual (and independent) biogenesis roles in T pilus

formation and substrate transfer [101], it is apparent that VirB2

and VirB2-like proteins are essential for both processes [2].

VirB2 proteins were previously identified in only two Rickettsia

genomes, R. canadensis and R. bellii str. OSU 85-389. Thus, our

recent generation of orthologous groups (OGs) using consensus

annotation across 10 genomes labeled this family as a conserved

hypothetical protein [81]. A search of the NCBI protein database

for ‘‘VirB2’’ yielded 636 results, of which the top 50 were selected

for comparison with the rickettsial putative VirB2 proteins. A

subset of this comparison illustrates the limited conservation across

related VirB2 and VirB2-like proteins (Figure 7). Both automated

alignment and manual alignment based on a prior homology

model for VirB2 [122] support a conserved Ala residue at the

predicted signal peptide cleavage site, as well as two hydrophobic

TMS regions. Our automated alignment corroborated a previous

study that reported several (unspecified) conserved Gly residues

across a VirB2 alignment [101], as two conserved Gly residues

were recovered within the N-terminal TMS region. However,

these conserved Gly residues were not predicted in the prior

homology model [122] or in a more recent comparison of diverse
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VirB2 and VirB2-like proteins [137]. Across the 13 Rickettsia

genomes, the putative VirB2 sequences are conserved at the

nucleotide (10.5%) and amino acid (11.6%) level, suggesting these

proteins function in substrate transfer through the mating channel.

virB7. VirB7 and related proteins are typically the smallest

components of T4SS scaffolds and are seemingly not present

within all identified systems [18]. However, the extremely small

size of these lipoproteins poses a challenge for detection with blast,

thus leaving open the possibility that VirB7 and related

lipoproteins have yet to be characterized within some T4SSs.

VirB7 is secreted to the periplasm [58,138] and interacts with the

CTD of VirB9, stabilizing the OM-associated protein

[53,54,58,59,139] and other Vir components in the mating

channel [45,131]. As discussed above, the critical disulphide

bond linking VirB7Ti and VirB9Ti [53,54,116,135] is not

conserved in most other T4SSs, suggesting other protein

interactions suffice in heterodimer stabilization [140]. VirB7Ti is

also IM-associated [58] as well as found in the extracellular milieu

in abundant levels [128], even independent of other VirB protein

synthesis [101]. VirB7Ti forms homodimers via intermolecular

disulphide bonds, and also interacts with VirB2 and VirB5

[128,132,134]. Dimerization in other VirB7 proteins via Cys-Cys

bridges should be possible given the highly conserved nature of the

lipo-processing site (Cys-24 of VirB7Ti).

In a comparison of several divergent T4SSs, R. prowazekii ORF

288 was suggested as a possible candidate for VirB7 [27], a

conclusion likely reached based on synteny, as the gene for RP288

is located directly upstream of virB8b (Figure S1). However, this

ORF is not annotated as VirB7 in any Rickettsia genome [80,81], a

likely consequence of its small size and zero blastp hits to related

sequences from other bacteria. We took RP288 and orthologous

proteins from the additional 12 Rickettsia genomes and aligned

them to 70 VirB7 and VirB7-like proteins retrieved from

GenBank, a subset of which reveals the limited sequence

Figure 6. Comparison of soluble lytic transglycosylase (LT) domains of two rickettsial proteins to the LT domain of Escherichia coli
Slt70 and ‘‘specialized’’ LT domains within VirB1 proteins from four pathogenic bacteria. Alignment below horizontal line of entire VirB1
and VirB1-like sequences performed using MUSCLE [194,195] (see text). Above the horizontal line is the alignment of the LT domains of E. coli Slt70
and the larger rickettsial sequence using EMBOSS (Needle algorithm). This alignment was fitted to the alignment below the horizontal line based on a
second needle alignment for E. coli Slt70 and the VirB1 protein from Brucella suis [116]. Conserved residues previously implicated in enzymatic activity
are within boxes [210]. An asterisk depicts the essential active-site Glu [67,120,211,212]. Interactions between VirB1 and other T4SS components as
revealed by peptide array mapping [65] are shown over the alignment with the following symbols: 8 = VirB8; 9 = VirB9; E = VirB11; A = VirB8+VirB9;
B = VirB9+VB11; C = VirB8+VirB11. Conservation color scheme is the same as in Figure 2 legend, except orange = invariant over 70% of sequences
and blue = invariant across all VirB1 and VirB1-like sequences, with conserved contrasting residues in the LT domain alignment also colored blue (if
applicable). Conservation was not assessed for columns including gaps. Black arrow depicts the cleavage site of Agrobacterium tumefaciens VirB1
protein [65] (NOTE: cleavage in other VirB1 and VirB1-like proteins has not been definitely demonstrated). Entire CTDs are shaded and Pro residues
are colored white and di- and poly-repeat residues underscored white. Shaded N-terminal residues depict signal peptides predicted by SignalP 3.0
[196]. Taxon abbreviations and associated NCBI accession numbers are as follows: Ec = E. coli Slt70, P0AGC3; Rt1 = Rickettsia typhi putative
transglycosylase, YP_067347; Rt2 = R. typhi putative soluble lytic murein transglycosylase, YP_067402; At = A. tumefaciens VirB1, NP_053381;
Bc = Burkholderia cepacia genomovar III VirB1, AAK50141; Bs = B. suis VirB1, AAN33281; Ps = Pseudomonas syringae VirB1, AAR02172.
doi:10.1371/journal.pone.0004833.g006
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conservation in this protein family (Figure 8). The Cys

lipoprotein-processing site was invariant across all 82 proteins in

the larger alignment, however the remaining C-terminal region

was poorly aligned with a high rate of length heterogeneity. In the

smaller alignment, manual adjustment was made to the C-

terminal region around the conserved ‘‘P[ILV]NK’’ motif [141],

and the Cys residues of VirB7Ti and Rickettsia VirB7 were

homologized (Figure 8A). Unless using excessive gap insertion,

both landmark features could not be homologized across the

alignment, as the Rickettsia protein has an extended sequence

between the Cys residue and the P[ILV]NK motif. In the

TraOCT/TraN NMR structure of the E. coli pKM101 T4SS,

TraN (VirB7) winds around part of the b-sandwich formed by

TraO (VirB9), with the P[ILV]NK motif of TraN embedded

within a deep hydrophobic pocket of TraO [141]. The authors

suggested the distance from the lipidated Cys to this conserved

motif (,16 aa) could be critical in orienting TraO in the OM. The

effect the longer sequence in Rickettsia VirB7 proteins has on a

Figure 7. Characteristics and comparative analysis of VirB2 and VirB2-like sequences from six divergent bacterial species. (A)
Schema illustrating the processing (cleavage and cyclization) of Agrobacterium tumefaciens VirB2 [125,126,127]. (B, C) Automated (top) and manual
(bottom) alignment of VirB2 and VirB2-like proteins across six bacterial species. For automated alignment, conservation color scheme is the same as
in Figure 2 legend. See text for alignment details. Manual alignment shows a putative Rickettsia VirB2 protein threaded to a prior homology model
[122]. Boxes with colored borders depict further support for this model with the addition of the rickettsial sequence. Gaps (versus dots) depict
adjustments to the original model. Taxon abbreviations and associated NCBI accession numbers are as follows: At = A. tumefaciens VirB2, AAB28331;
Rt = Rickettsia typhi hypothetical protein, YP_067147; Lp = Legionella pneumophila lvhB2, CAB60051; Bs = Brucella melitensis suis VirB2, ABM66830;
Bp = Bordetella pertussis pertussis toxin transport protein, NP_882287; Bh = Bartonella henselae VirB2, AAD48919. (B) Predicted signal peptides based
on Signal P v.3.0 output [196] (top) and laboratory-defined processed sites [122] (bottom). Bolded residues (top) depict conserved Ala residues
implicated by both methods as the cleavage site. (C) Core regions of the processed VirB2 and VirB2-like proteins. Blue residues (top) depict predicted
TMS regions [93], and these regions are enclosed over the predicted TMS regions (black bars) in the prior homology model [122].
doi:10.1371/journal.pone.0004833.g007
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potential VirB7/VirB9 interaction is unknown, but given a

predicted lipo-processing site, a second conserved Cys residue, a

potential P[ILV]NK motif, and a conserved genomic position

immediately upstream of virB8b, we suggest these small ORFs are

strong candidates for VirB7 proteins. Interestingly, a manual

alignment of VirB7Ti with the putative Rickettsia VirB7 and the

ComB7 proteins of H. pylori and C. jejuni revealed a conserved

motif ‘‘[KI]KSP’’ directly flanking the second conserved Cys in

the latter three taxa (Figure 8B). Perhaps this feature accommo-

dates the extra length in the Rickettsia sequences, and at very least

presents the possibility that the VirB7/VirB9 structural interaction

is flexible and variable across different T4SSs.

Rickettsia T4SS: an evolutionarily conserved archipelago
Whether encoded on plasmids (common) or chromosomes

(rare), the components of T4SSs are typically arranged in one

operon or several adjacent operons [101,142]. Regarding T4SSs

closely related to the vir system, genes encoding T4CPs (when

present) are commonly not arrayed with VirB and VirB-like genes,

but located in nearby operons that often include additional genes

related to substrate processing [142]. Collectively, the 18 Vir genes

within Rickettsia genomes are scattered throughout the circular

chromosomes, with the T4CP gene (virD4) arrayed with other Vir

components (Figure 9A). Given the conserved synteny in Rickettsia

genomes, especially in regards to the three derived groups [81], the

various Vir components, now expanded to five genomic regions in

most cases, can be organized into five ‘‘islets’’ (A–E) comprising an

archipelago that spans the entire genome of each taxon. Ten of the

13 analyzed genomes have the five islets in similar locations, with

islets C and D in R. canadensis and islet B in R. felis within regions of

rearrangement unique to both genomes. The large rearrangement

of most of the R. bellii str. RML369-C genome relative to all other

Rickettsia genomes positions its T4SS in a mirror image relative to

the conserved arrangement.

Operon prediction [143] within these islets was variable across

the 13 genomes, and several islets were predicted to contain

additional genes outside of those encoding the T4SS scaffold

(Figure 9B, Table 2). Given the propensity for T4SS effectors

and regulators to be encoded within close proximity to the scaffold

genes [144], these genes will be of interest to future studies that

aim to identify protein substrates (if any) specific to this

transporter, as well as factors that regulate its expression. Two

genes in particular are interesting in part due to their presence in

all 13 genomes. gppA encodes an enzyme similar to RelA/SpoT

homologs that functions as a mediator of the stringent response,

hence coordinating a range of cellular activities in reaction to

Figure 8. Comparative analysis of VirB7 and VirB7-like lipoproteins with emphasis on the similarities between Rickettsia VirB7 and
ComB7 proteins. In both panels, coordinates for each sequence are shown to the right, with numbers in parentheses depicting flanking residues of
the alignment not shown. Green Cys = predicted lipoprotein cleavage site [197] and orange Cys = residue in disulphide bridge with VirB9/VirB9-like
proteins. The ‘‘[KI]KSP’’ motif shared by Rickettsia spp. VirB7 proteins and ComB7 proteins from Helicobacter pylori and Campylobacter jejuni is shaded
gray. See text for alignment details. (A) Multiple sequence alignment of nine VirB7 and VirB7-like sequences. Gray bar depicts region of the NMR
structure for the VirB9 (TraOCT)/VirB7 (TraN) interaction in Escherichia coli (IncN plasmid R46), with the conserved ‘‘P[ILV]NK’’ motif in blue [141]. Taxon
abbreviations and associated NCBI accession numbers are as follows: Ec = E. coli TraN of IncN plasmid R46, NP_511194; At = Agrobacterium
tumefaciens VirB7, NP_536291; Rt = R. typhi hypothetical protein, YP_067241; Bs = Brucella suis VirB7, AAN33275; Bp = Bordetella pertussis TraI protein
of plasmid pSB102, NP_361043; Bp2 = B. pertussis putative bacterial secretion system protein, NP_882291; Aa = Aggregatibacter actinomycetemco-
mitans lipoprotein, NP_067577; Ec = E. coli TrwH protein, FAA00034; Bartonella henselae TrwH-like protein, AAM82208. (B) Multiple sequence
alignment of VirB7Ti, R. typhi putative VirB7 and the ComB proteins of H. pylori (CAA10654) and C. jejuni (NP_863349). Invariant residues are denoted
with an asterisk under the alignment.
doi:10.1371/journal.pone.0004833.g008
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Figure 9. Structure of the Rickettsia T4SS archipelago garnered from the comparison of 13 genomes. Vir genes are grouped into five
islets as follows: red = islet A (virB3, virB4a, virB6a-virB6e), blue = islet B (virB2), green = islet C (virB9a, virB8a, virB7, virB8b, virB9b, virB10, virB11, virD4),
black = islet D (virB1), and orange = islet E (virB4b). (A) Illustration of the conserved genomic locale of the vir T4SS genes (left), as well as minor
deviations in the genomes of R. bellii (str. RML 369-C), R. canadensis and R. felis. (B) Schema illustrating the composition of the five islets across 13
genomes. Genes are not drawn to scale (see Table 1 and Figure S1 for approximate ORF lengths). White ORFs depict non-Vir genes nestled
between Vir genes: HP = hypothetical protein, Inv = invasion protein (Note: a fourth protein within this orthologous group from R. conorii is not found
within the T4SS archipelago). ORFs within predicted operons [143] are enclosed in boxes: gray = strictly vir operons, yellow = vir operons containing
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changes in nutritional abundance [145]. Given that expression of

the T4SS of Brucella spp. has been demonstrated to be gppA-like

dependent [146], this protein is a potential candidate for

regulation of the Rickettsia T4SS. The second conserved non-Vir

gene encodes a conserved hypothetical protein within the

predicted VirB1 operon, an ideal location for an effector protein

given the role of VirB1 in murein degradation. blastp results using

this protein as a query showed little similarity to other proteins

(data not shown). In silico characteristics, such as lack of predicted

signal peptides and a skew in positively charged residues in the C-

terminal region, a common attribute of some T4SS effectors [2],

make this curious protein a candidate for type IV secretion.

Interestingly, the protein from R. sibirica bound VirB8 in a

bacterial two-hybrid screen [74]. Finally, several of the remaining

non-Vir genes within predicted vir operons are attractive and open

avenues for exploring lineage specific virulence factors associated

with the Rickettsia T4SS.

Combined phylogeny estimation from all 18 components of the

Rickettsia T4SS corroborated the species tree generated from an

analysis of over 700 core Rickettsia genes (Figure 10, Figure S7).
The inclusion of additional genomes released subsequent to our

prior analyses, namely R. massiliae, R. africae and R. rickettsii str.

Iowa, does not overturn our tree-based classification of Rickettsia

into four major groups: ancestral group (AG), typhus group (TG),

transitional group (TRG), and spotted fever group (SFG)

rickettsiae [81,147]. All but one of the phylogeny estimations of

non-Vir genes (NB: see Table 2 for non-Vir genes associated within vir operons). Genes predicted by fgenesb but not PATRIC are within dashed white
boxes and annotated as ‘‘?’’. Genome codes are as follows: Br = R. bellii str. RML369-C, Bo = R. bellii str. OSU 85 389, Ca = R. canadensis str. McKiel, Pr = R.
prowazekii str. Madrid E, Ty = R. typhi str. Wilmington, Fe = R. felis str. URRWXCal2, Ak = R. akari str. Hartford, Ma = R. massilae str. MTU5, Ri = R. rickettsii
str. Sheila Smith CWPP, Rw = R. rickettsii str. Iowa, Co = R. conorii str. Malish 7, Si = R. sibirica str. 246, and R. africae str. ESF-5. The genome codes are
colored to reflect classification [81,147]: red = ancestral group rickettsiae (AG), turquoise = typhus group rickettsiae (TG), blue = transitional group
rickettsiae (TRG), and brown = spotted fever group rickettsiae (SFG).
doi:10.1371/journal.pone.0004833.g009

Table 2. Non-Vir Genes Within Predicted Operons Encoding the Rickettsia T4SS.

Islet1 vir2 Associated non-Vir genes3 Distribution4

A B3 argB, acetylglutamate kinase Br, Bo, Fe, Ak, Ri, Rw

CHP, 95 aa Br, Bo, Fe, Ak, Ri

GTP-binding CHP, 212 aa Fe, Ak, Ri, Rw

A B3-B4a argB, acetylglutamate kinase Ma

GTP-binding CHP, 213 aa Ma

A B3-B6c putative ORF (fgenesb), 61 aa Af

argB, acetylglutamate kinase Co, Si, Af

GTP-binding CHP, 213 aa Co, Si, Af

putative ORF (fgenesb), 56 aa Co, Si, Af

A B6e vapB, antitoxin of VapB/VapC system Fe

vapC2, COG1487: PIN domain protein Fe

C B8a-B9a mrpD, Na(+)/H(+) antiporter subunit D Co, Si, Af

mrpC, Na(+)/H(+) antiporter subunit C Br, Ca, Fe, all SFG genomes

putative ORF (fgenesb), 49 aa Fe

C B9a mrpC, Na(+)/H(+) antiporter subunit C Bo

C D4 gppA, GTP dp pyrophosphatase All 13 genomes

vapB1, antitoxin of VapB/VapC system Br, Bo

vapC1, toxin of VapB/VapC system Br, Bo

ndhF, NAD(P)H dehydrogenase 5 Br

ptrB, protease 2 Br, Bo

D B1 COG0536, predicted GTPase Br

putative ORF (fgenesb), 84 aa Bo

putative ORF (fgenesb), 72 aa Bo

HP, 101 aa Fe

CHP, ,171 aa All 13 genomes

HP, ,130 Br, Fe

rickettsial palindromic element Fe

E B4b HP, 74 aa Fe

1Corresponding to islets A (virB3-virB6e), C (virB9a-virD4), D (virB1), E (virB4b) (See Figure 9).
2According to operon prediction by fgenesb [143].
3Consensus annotation from PATRIC [80] or fgenesb prediction. HP = hypothetical protein, CHP = conserved hypothetical protein.
4Taxa included within operon prediction. Underlined taxa depict split ORFs.
doi:10.1371/journal.pone.0004833.t002
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the independent Vir components failed to recover the species tree

topology (Table 3; Figure S8), however deviations were minor

and can be explained by the properties of the data (too few

informative sites or homoplasy). In these latter cases, either the

independent analyses failed to resolve the highly similar derived

members of the SFG rickettsiae (R. rickettsii, R. conorii, R. sibirica, R.

africae), for which the assignment of species names has received

recent criticism [82], or failed to place R. canadensis as basal to the

TG, TRG and SFG rickettsiae. We previously reported that the

fluctuating position of R. canadensis was dependant upon the

analyzed gene(s) and phylogenetic utility of the said gene(s) [81],

and our current analysis, as well as a very recent study [148],

further supports this phenomenon. Altogether, phylogeny estima-

tion supports a single inheritance of the 18 Vir components from

the Rickettsia ancestor, with one gene loss (virB6e in R. massiliae), one

split gene (virB6d in R. bellii str. OSU 85 389), three major gene

rearrangements (Figure 9A), and several minor switches of coding

strand (Figure 9B) the defining diversifying factors of this

conserved system. Our analysis corroborates a recent study that

analyzed a subset of Vir components (VirB3, VirB4, VirB8, VirB8,

VirB11) from 31 taxa of Alphaproteobacteria and demonstrated

vertical inheritance of Vir genes across the entire Rickettsiales

[149].

Lateral acquisition of Rickettsiales T4SS
Our synteny and phylogenetic analyses of the Rickettsia T4SS

yield results consistent with previous studies on the T4SS operon

structure of the closely related rickettsiae Anaplasma, Ehrlichia and

Wolbachia, as these genomes have at least two vir clusters (virB3-

virB4-virB6 and virB8-virB9-virB10-virB11-virD4) in well-separated

regions of their genomes, often with duplications of the VirB4,

VirB6, VirB8, and VirB9 components [149,150,151,152]. Inter-

estingly, the genome sequence of the sister taxon to Rickettsia,

Orientia tsutsugamushi, revealed an unprecedented degree of Vir-like

gene duplication (mostly comprising components of the E. coli tra

operon), with 359 ORFs putatively coding for various components

of a T4SS throughout 79 sites in the genome [153]. Thus a

remarkable array of diverse T4SSs exists across species in the

Rickettsiales, yet intrageneric conservation of these systems is

apparently high. Interestingly, archipelagos of vir islets seem to be

Figure 10. Phylogeny estimation of 18 putative vir genes of the Rickettsia T4SS. Single most parsimonious tree of 12716 steps (6858
parsimonious characters of 28554 total characters). Branch support is from 1 million bootstrap replications. Taxon codes and coloring scheme as
described in the Figure 9 legend. Statistics to the right of taxon codes: number of T4SS genes; number of nts encoding T4SS; percentage of genome
encoding T4SS. Cladogram on right depicts phylogeny of core orthologous groups (proteins) [80]. Inset shows statistics computed for eight nodes of
the tree, following our classification scheme [81].
doi:10.1371/journal.pone.0004833.g010
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characteristic of all genomes in the Rickettsiales, and it has been

shown in one system (Ehrlichia chaffeensis) that the same protein,

EcxR, regulates all of its vir islets [150]. A search for a protein

orthologous to EcxR in all of the Rickettsia genomes proved futile,

although the small size of this protein (108 aa) is likely confounding

blastp searches. It is expected that similar T4SS regulators will be

identified in other Rickettsiales genomes, given the need to tightly

regulate all of the scaffold components for efficient transporter

function.

Collectively, conserved features across rickettsial T4SSs hint at a

single inheritance that possibly fostered the route to obligate

intracellular symbiosis (mitochondria, symbiotic rickettsiae) and

subsequent pathogenesis after the divergence of the rickettsial

ancestor from its free-living marine relative Pelagibacter ubique [86].

Given that phylogeny estimation [18] and protein homology

network-based clustering [29] of T4SSs imply the Rickettsiales vir

system is closely related to the T4SSs from certain c- (Legionella

spp. and Photobacterium profundum) and e-proteobacteria (H. pylori,

Wolinella succinogenes and C. jejuni), it is likely ancestors of these

distantly related organisms resided in a common environment and

acquired similar T4SS genes from one or several progenitors.

Several lines of evidence support this. First, Rickettsia bellii str.

RML369-C [78], Legionella pneumophila [154] and H. pylori [155] are

all capable of growth in various species of amoeba. Given the role

of protozoa as reservoirs for amoeba-resistant organisms

[156,157,158], it is likely amoeba provided a breeding ground

for rickettsial species and distantly related microbes [78]. Second,

some members of the third class of Rickettsiales, the Holospor-

aceae, are also found in amoeba [159,160,161]. This suggests at

least two lineages branching from the Rickettsiales ancestor were

capable of endosymbiosis within nucleated single-celled organisms

(the mitochondrial endosymbiosis [162] being the other). Third, a

gene encoding a Sec7-domain-containing protein, RalF, is known

in prokaryotes only from Rickettsia and Legionella spp. [163]. In

Legionella, RalF is a T4SS (Note: of the dot/icm type B T4SS)

effector that functions as a guanine nucleotide exchange factor that

recruits ADP-ribosylation factor to occupied phagosomes, permit-

ting Legionella to replicate free from the host immune system and

subvert vesicular trafficking [7]. While the NTD and associated

central Sec-7-capping-domain are conserved in all Rickettsia

genomes aside from SFG rickettsiae [81], a function for Rickettsia

RalF or association with the T4SS has still yet to be determined.

Finally, the abovementioned similarities between Rickettsia VirB7/

VirB9a proteins and the ComB7/ComB9 proteins of H. pylori and

C. jejuni may hint at a shared OM anchoring system for the mating

channel common to VirB7Ti/VirB9T, although a similar role in

competence (versus protein translocation) in Rickettsia cannot be

ruled out.

Vir gene evolution via duplication and intrachromosomal
recombination

It is not uncommon for bacteria to harbor multiple unrelated

T4SSs; e.g., the cag and comB systems of Helicobacter [164,165], the

dot/icm and lvh systems of Legionella [27,166,167], and the vbh, virB

and trw systems of Bartonella [168,169]. While many T4SSs are

mainstays that define bacterial lifestyles, other T4SSs may be

strain specific and highly plastic throughout bacterial populations,

especially if encoded on plasmids [170]. In Legionella, components

from the lvh system have been shown to complement analogs of the

dot/icm system [27], suggesting functional resilience despite

sequence plasticity. Growing studies utilizing cross-species heter-

ologous complementation attest to this functional resilience

[171,172]. Despite this, gene duplications within individual

T4SSs are not the norm (Seubert et al., 2003; Alsmark et al.,

2004), and the functional redundancy is likely best explained on a

case-by-case basis. For example, a recent study of the trw T4SS

across seven Bartonella taxa revealed 7–8 copies of trwL (virB3) and

2–5 copies of the trwJ-H operon (virB5-7) [173]. Phylogenetic

analysis of the TrwL duplicates revealed probable neofunctiona-

lization within a subset of the duplicates, while the flanking TrwJ

and TrwH duplicates of the trwJ-H operon appeared to be

products of LGT speculated to have arisen due to the coevolution

of these OM proteins with erythrocyte surface structures.

Our recent generation of Rickettsia OGs across 10 [81] and 12

[80] genomes unambiguously delineated the duplicate VirB4,

VirB8 and VirB9 and quadruplicate VirB6 genes into discrete

OGs. Sequence divergence and other summary statistics (Table 3)

as well as phylogenetic analysis (Figure S4, Figure 11) strongly

suggest all of these genes were vertically acquired (i.e., the

duplications were ancestral). Analysis of the three duplicate

components (VirB4, VirB8 and VirB9) suggests pseudogenization

or neofunctionalization has occurred in one member from each

family, as the suspects (virB4b, virB8a and virB9b) comprise the only

three T4SS genes that deviate from the average genomic base

composition and drop below 30% GC (Table 3). The

characteristics of these divergent duplicates (discussed above) are

mapped onto individual phylogeny estimations (Figure 11).

Given that a virB4 active site mutant stabilized VirB3 and VirB8

and promoted T-pilus formation in A. tumefaciens [135], it is

possible VirB4b still can function as an IM gate that stabilizes a

Table 3. Summary Statistics for the Vir Genes Encoding the
Rickettsia T4SS.

Vir aa seqs nt seqs

div1 PI2 Tree3 div1 PI2 Tree3 GC4 ts/tv5 dN/dS6

D4 4.2 54 N 8.1 329 N 0.35 1.9 0.06

B4a 3.7 72 N 6.7 380 N 0.34 2.5 0.05

B4b 9.9 195 N 9.2 570 N 0.28 1.9 0.13

B11 4.8 33 N 9.7 186 N 0.37 1.9 0.06

B6a 14.7 374 N 12.8 1054 N 0.36 1.5 0.23

B6b 13.2 196 N 11.2 565 N 0.34 1.9 0.2

B6c 15.2 285 N 13.2 848 N 0.35 1.2 0.27

B6d 12.9 263 N 10.3 682 N 0.32 1.9 0.18

B6e 12.4 308 N 11.1 871 N 0.33 1.6 0.17

B8a 13.4 63 Y 10 163 N 0.26 1.7 0.26

B8b 9.4 55 N 9 161 N 0.31 1.3 0.13

B9a 4.7 27 N 7.6 130 N 0.35 1.8 0.06

B9b 10.8 43 N 8.2 98 N 0.26 2.5 0.14

B10 10.5 108 N 11 356 N 0.38 1.4 0.14

B3 4 8 N 6.2 43 N 0.31 1.4 0.1

B1 16.3 93 N 13.9 271 N 0.32 1.3 0.6

B2 11.6 35 N 10.5 104 N 0.32 1.9 0.26

B7 15.3 23 N 11 47 N 0.32 1.4 0.21

1Avg. pairwise differences across all sequences divided by avg. sequence
length.

2Number of parsimony informative characters.
3Tree corroborates (Y) or disagrees with (N) species tree. All trees are shown in
Figure S4.

4%GC of all codon positions.
5Ratio of transitions to transversions.
6Ratio of non-synonymous to synonymous substitutions.
doi:10.1371/journal.pone.0004833.t003
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T4SS channel, facilitating (but not powering) the uptake or release

of substrates. A full length VirB8 protein unable to dimerize or

properly interact with other Vir components may still function in

formation of a separate membrane-spanning channel. Also, a

chaperone-assisted process may help VirB8b overcome the critical

mutations in the linker between helix a4 and strand b4. However,

given the asymmetrical position of the VirB8 and VirB9 duplicates

around the putative VirB7 ORF (Figure 9), it is probable that

these genes have experienced an intrachromosomal recombination

event early in their evolution that deleted the CTD of VirB9b. In

Rickettsia, intrachromosomal recombination has been implicated in

the split of the rrs and rrl loci [174] and has likely shaped the

atypical clustering of the Tuf and Fus genes [175]. Thus it is a

common phenomenon in Rickettsia genomes. While neofunctiona-

lization is difficult to suggest for VirB9b, given the deletion of the

entire domain known to interact with VirB7, potential alternative

functions for VirB8a and VirB4b are not unrealistic. However, in-

frame pseudogenes that are still expressed may be degraded post-

transcriptionally given the unusually high amount of genes

involved in RNA degradation in Rickettsia genomes [71].

None of the proliferated VirB6 genes deviate from the average

genomic base composition (Table 3), and given the conservation

of the essential Trp residue in all sequences, as well as the

constraints on hydrophobicity throughout large portions of

proteins from all five duplicates (Figure 3), it is not possible to

rule out any VirB6 ortholog as a functional component of the

Rickettsia T4SS. However, while virB6a-virB6d genes have arrayed

orthologs in O. tsutsugamushi and most of the Anaplasmataceae, a

virB6e ortholog in O. tsutsugamushi is not arrayed with virB6a-virB6d,

and no orthologs are present in the Anaplasmataceae genomes

(data not shown). This correlates with virB6e being the only deleted

T4SS scaffold component across 13 Rickettsia genomes (R. massiliae

str. MTU5). Nevertheless, selection for VirB6 duplications in

Rickettsiales is evident given the trend for genome reduction

[176], and the existence of at least four orthologs hints at a unique

and constrained function. VirB6 proteins are similar to ComEC

proteins [101], DNA channels involved in the uptake of

environmental DNA [177]. Perhaps the Rickettsia VirB6 proteins

are involved in DNA import, seeding multiple diverse uptake

channels to maximize the potential for LGT, particularly in

environments (protozoa, macrophage) with a high rate of congener

contact. In support of this hypothesis, recent studies identified the

Rickettsia accessory genome to be predominantly comprised of

products and facilitators of the bacterial mobile gene pool

[81,178]. The recent identification of plasmids [79,179,180] in

Rickettsia has shed light on the role of LGT in the sculpting of

rickettsial genomes; however, a model for plasmid transfer has not

been identified. Our identification of a Rickettsia T4SS that is

highly similar to the Legionella lvh T4SS, which is primarily involved

in conjugation [170], suggests a role in conjugation/DNA uptake

Figure 11. Phylogeny estimation of duplicate VirB4, VirB8 and VirB9 proteins. All trees estimated under parsimony (see text for details).
Branch support is from 1,000 bootstrap replications. Taxon codes and coloring scheme as described in the Figure 9 legend. Asterisks depict
shortened branches that are shown in their full length below the tree. Skull and crossbones depict lineages leading to probable pseudogenization or
neofunctionalization. Characteristics of these divergent sequences are listed.
doi:10.1371/journal.pone.0004833.g011
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needs consideration, particularly in light of the persistence of

multiple channel proteins that defy the dynamics of rickettsial

reductive evolution.

Lack of virB5 correlates with rickettsial lifestyle
VirB5 and related proteins (e.g., TraC, TrwJ, LvhB5) are the

minor components of the T-pilus [127,181,182,183], as they

cofractionate with VirB2 and VirB7 [128,132] and bind both

proteins in yeast two-hybrid screens [134]. virB6 expression

stabilizes cellular levels of VirB5 as well as VirB3 [184], and a

VirB5/VirB3 interaction via a yeast two-hybrid screen as well as a

pull-down assay further supports the OM localization of VirB5

[134]. Signal sequences are predicted for most of the 157 VirB5

and VirB5-like proteins from diverse bacteria available on

GenBank (data not shown). Like VirB2Ti, VirB5Ti interacts with

VirB1* [119], and immuno-electron microscopy revealed that the

protein localizes to the cell-bound region of the pilus as well as the

distal regions of the pilus that contact other cells [185]. The crystal

structure of TraC (a VirB5 analog) from the IncN plasmid

pKM101 revealed a single domain consisting of three bundled

helices and a globular appendage [186]. Further site-directed

mutagenesis and functional complementation identified 14 highly

conserved surface-exposed residues, as well as additional residues

involved in TraC dimerization [186]. Despite important knowl-

edge from these studies, the exact role VirB5 and VirB5-like

proteins play in T4SS biogenesis and function remains unknown.

blastp searches, as well as other tools designed to detect the

strongly conserved residues located at the surface of TraC, failed

to identify a VirB5 gene in any of the 13 Rickettsia genomes. As

evidence is leaning more toward a role of VirB5 in host-cell

recognition [185,186,187], the lack of a virB5 in Rickettsia is not

surprising. A class of surface exposed proteins, Scas, have

previously been implicated in host cell recognition and may

trigger endocytosis [188]. Also, aside from recent evidence [78,79],

pili have not been observed in Rickettsia, and are not evident from

all species. The structures reported for R. felis [79] and R. bellii str.

RML 369-C [78] better resemble the flexible and tube-like Gram-

negative bacterial conjugative pili, which are quite larger and

easier to visualize than the T pilus and related structures [101].

Indeed, a diversity of extracellular pili and pili-like appendages

associated with T4SSs exists, including needle like appendages

[126,129], large sheathed structures [189,190], and fibrous meshes

[191]. However, there is little evidence that the T pilus serves as a

conduit for substrate transfer [2,140], and in A. tumefaciens T-DNA

transfer occurs in the absence of T pilus production [6,42,131].

The B. pertussis Ptl T4SS also lacks a VirB5 gene, and it has been

suggested that such a gene in B. pertussis would be redundant, given

the absence of cell-cell contact in the secretion of pertussis toxin

[24]. Given the strictly intracellular lifestyle of Rickettsia, a VirB5

protein (and a T pilus) would also be redundant, as substrates

would be secreted and imported directly from the host

environment.

Conclusion
Previous studies on Gram negative bacterial T4SSs have hinted

at a reduced scaffold in Rickettsia spp. relative to A. tumefaciens and

other well characterized systems [27] (observations based largely

on the R. prowazekii genome annotation), and indeed genomic

studies on Rickettsia as well as other Rickettsiales genera have

supported this assessment. However, the composition of the

Rickettsia T4SS became more complex in recent years, with our

past study determining that only four components (VirB1, VirB2,

VirB5, VirB7) are missing compared to the vir T4SS of A.

tumefaciens [81]. Reduced T4SSs, wherein only some genes are

present within genomes (relative to the A. tumefaciens vir archetype),

have been suggested to have evolved different functions in certain

bacteria [18]. However, trouble lurks within reliance on paradigms

(and algorithms). For instance, two T4SSs of H. pylori, which

independently function in pathogenicity (cag) and competence

(comB), have recently been found to contain more components

than automated annotation methods have predicted [164,165].

Regarding the cag system, strong evidence was found for additional

putative T4SS components that are not comparable in aa

sequence to any of the vir proteins [165]. Additionally, diverse

components of the divergent dot/icm and lvh T4SSs of Legionella

have been demonstrated to complement one another, underscor-

ing the functional resilience of divergent T4SS proteins [27]. Thus

caution must be undertaken when depending on automated

genome annotation methods for in silico characterization of multi-

component systems, such as the T4SS. The recent large-scale

informatics analysis of 62 bacterial T4SSs revealed a highly

conserved core set of T4SS components (VirB6, VirB8-VirB11,

VirD4) coupled with a depauperate complex of the remaining Vir

components, of which the latter were suggested to have been

acquired in various independent events [29]. Our identification of

three additional Rickettsia T4SS components (VirB1, VirB2,

VirB7), all of which comprise much shorter sequences than the

more conserved components (Table 4), implies that short (under

250 aa) or hyper-variable components are not easily revealed by

automated methods. Finally, identifying all components of any

secretion system may be hampered when selection does not favor

the clustering of all genes within one operon, an apparent

characteristic of some obligate intracellular bacteria [150,192].

Prior seminal reviews of T4SSs have focused largely on

pathogenic bacteria, and it has been assumed that the Rickettsia

vir-like T4SS plays a role in pathogenesis. Our study reveals a

highly conserved T4SS across 13 genomes, some of which are not

known to be pathogenic to invertebrate and vertebrate hosts.

Despite an unknown function of this transporter, laboratory

evidence is mounting for at least the expression, regulation and

potential secretion of some of its components (Table 4). The lack

of any identified effector proteins of the Rickettsia T4SS, coupled

with an as-yet unknown mechanism for the high occurrence of

LGT in these genomes, suggests that a function in DNA uptake

and translocation, or some modified form of conjugation, cannot

be overlooked. It is also possible that the Rickettsia T4SS is an

amalgam of an effector translocation system and a DNA

competence system, especially considering the redundancy of

several of its components. These redundant components may serve

as environment-specific factors facilitating the persistence of

Rickettsia in its arthropod and vertebrate hosts, and probable

protozoan reservoirs. The affinity to the Legionella lvh T4SS,

which has recently been shown to serve as a virulence factor in the

environmental spreading of Legionnaires’ disease [193], suggests

the more appropriate annotation of rvh (Rickettsiales vir homolog)

for this evolutionarily intriguing and enigmatic T4SS. Thus,

Legionella provides a suitable genetic system for future character-

ization of Rvh scaffold components, as well as for testing the

translocation of predicted effector molecules.

Materials and Methods

Gene and Protein Sequences
Protocols for manual and automated curation and annotation of

predicted rickettsial ORFs are listed at the PATRIC website

(http://patric.vbi.vt.edu/about/standard_procedures.php). For the

compilation of Rvh components, we merged orthologous groups

(OGs) of proteins generated for 12 Rickettsia genomes (R. bellii str.
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RML369-C, R. bellii str. OSU 85 389, R. canadensis str. McKiel, R.

prowazekii str. Madrid E, R. typhi str. Wilmington, R. felis str.

URRWXCal2, R. akari str. Hartford, R. massilae str. MTU5, R.

rickettsii str. Sheila Smith CWPP, R. conorii str. Malish 7, R. sibirica str.

246, and R. africae str. ESF-5) with orthologous sequences from the

R. rickettsii str. Iowa genome. Consensus annotation identified 15

components (RvhB3, RvhB4a-b RvhB6a-e, RvhB8a-b, RvhB9a-b,

RvhB10, RvhB11, RvhD4) and information from the literature

(discussed above) guided the identification of three additional

components (RvhB1, RvhB2, RvhB7). Gene IDs for all analyzed

Vir components across 13 Rickettsia genomes are available at the

PATRIC website.

Sequence alignment
All amino acid sequence alignments were performed locally

with MUSCLE [194,195] using default parameters. At least two

alignments per Rvh component were performed. First, all 13

Rickettsia sequences were aligned (all alignments are shown in

Figure S9). Second, the R. typhi sequences (including duplicate

copies if present) were selected for comparison with related

proteins from other bacterial T4SSs. Subsets of these latter

comparisons (Figure 2–8, Figure S2, S3, S5, S6) differ in their

included taxa, reflecting the variability in component presence/

absence within bacterial T4SSs, as well as the availability of

structural/functional information on particular components.

Previously determined structural and/or functional information

was superimposed over all alignments (Figure 2–8, Figure S2,
S3, S5, S6, S9). The RvhB1 sequences were aligned as follows:

the LT domains of E. coli soluble lytic transglycosylase Slt70 and

the larger rickettsial sequence (RT0388) were aligned using the

EMBOSS Needle algorithm (http://ebi.ac.uk/Tools/emboss/

align/index.html). This alignment was then fitted to a second

alignment based on a needle alignment of E. coli Slt70 and the

RvhB1 protein from Brucella suis [116]. Manual adjustment of the

RvhB2 alignment was made based on a prior homology model

[122]. The RvhB7 alignment was adjusted around the conserved

lipo-processing site and the ‘‘P[ILV]NK’’ motif [141]. The

combined alignment of the five RvhB6 proteins was performed

using only the VirB6/TrbL domains, which average 413 aa in

each duplicate (Figure S4). For all 18 Rickettsia Rvh components,

corresponding nucleotide sequences were aligned with the

EMBOSS tranalign tool (http://embossgui.sourceforge.net), using

the amino acid alignments as template constraints (Figure S9).

In silico characterization
All amino acid sequence comparisons were based on blast

results. The nr (All GenBank+RefSeq Nucleotides+EMBL+
DDBJ+PDB) database was used, coupled with a search against

the Conserved Domains Database. Searches were performed

across ‘all organisms’ with composition-based statistics. No filter

was used. Default matrix parameters (BLOSUM62) and gap costs

(Existence: 11 Extension: 1) were implemented, with an inclusion

threshold of 0.005. All Rvh components were screened for possible

signal peptides using SignalP [196] and LipoP [197] servers.

Sequence logos, when implemented, were created using Weblogo

[198,199]. TMS regions were predicted using the transmembrane

hidden Markov model (TMHMM) v.2.0 server [93]. Structural

modeling, when implemented, was done using SWISS-MODEL

v.8.05 [200].

Genome structure analysis
Thirteen genome sequences were aligned using Mauve v.2.0.0

[201]. Unmodified Fasta files for each rickettsial genome were

used as input, except that the R. sibirica genome sequence was re-

indexed as before [81] using the reverse-complement of its circular

permutation from the original position 668301. Operons were

predicted across all thirteen genomes with the program fgenesb

[143], using R. typhi as the nearest genome and genetic code table

11. The genome browser at PATRIC guided synteny analysis and

determination of the genomic positions of the five rvh islets.

Phylogeny estimation
All amino acid sequence alignments were analyzed under

parsimony in PAUP* version 4.10 (Altivec) [202]. Heuristic

searches implemented 1000 random sequence additions under

the tree bisection-reconnection algorithm, with no more than 50

trees saved per replication. Branch support was assessed with 1000

bootstrap replications, except for the combined analysis of all five

RvhB6 duplicates (Figure S4), in which 500 bootstrap replica-

tions were performed, and the combined analysis (Figure 10), in

which 1 million bootstrap replications were performed. All

nucleotide sequence alignments were analyzed under maximum

likelihood in PAUP*. Modeltest v3.8 [203] was used to select the

Table 4. Bioinformatic and Laboratory Evidence for a
Functional Rickettsiales vir Homolog (rvh) T4SS.

Vir1 Conservation2 Rvh3 Size4 Evidence5

B4 100 B4a 805 A, B, G

B4b 810 C, D, G

B10 100 B10 483 A, D, G, H

B11 100 B11 334 A, D, E, H

B9 97 B9a 250 E, G

B9b 158 A, D, Fa, G, H

D4 92 D4 591 D, G, H

B6 90 B6a 426

B6b 407 B, G

B6c 425 Fa, Fb, G

B6d 420 B, Fa, Fb, G

B6e 389 Fa, Fb, G

B8 90 B8a 232 C, D

B8b 243 A, C, D, E, G

B1 53 B1* 252

B5 52 — — —

B2 37 B2* 123

B3 37 B3 95

B7 23 B7* 59 C, D, Fa, Fb

1Vir and Vir-like proteins, following the nomenclature of the A. tumefaciens vir
system.

2Percentage of 62 bacterial T4SSs that contain each Vir or Vir-like protein [29].
3Rickettsiales vir homolog. Proteins previously not annotated as Vir via
consensus annotation are noted with an asterisk.

4Average size of the Rickettsia orthologs across 13 genome sequences.
Numbers for RvhB6a-e show only the VirB6/TrbL domains; avg, lengths of full
sized RvhB6 proteins are as follows: RvhB6a = 1055 aa; RvhB6b = 674 aa;
RvhB6c = 971 aa; RvhB6d = 886 aa; RvhB6e = 1154 aa.

5Laboratory studies demonstrating putative function. A = gene expression
analysis of R. conorii [213]; B = gene expression analysis of R. prowazekii [214];
C = gene expression analysis of R. typhi [215]; D = bacterial two-hybrid screen of
R. sibirica [74]; E = proteome analysis of R. felis [216]; Fa = PhoA fusion analysis
of R. typhi [99]; Fb = gene expression analysis of PhoA fusion positive proteins
of R. typhi [99]; G = proteome analysis of R. prowazekii str. Madrd E [217];
H = Differential translation analysis between R. prowazekii strains Madrid E and
Breinl [218].

doi:10.1371/journal.pone.0004833.t004
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best-fit models of evolution for each Rvh gene (Table S1).

Heuristic searches implemented 500 random sequence additions,

saving one tree per replication. Branch support was assessed with

100 bootstrap replications, with 10 random sequence additions per

replicate. The combined nucleotide sequences were also analyzed

under maximum likelihood using Bayesian inference with the

program MrBayes v3.1.2 [204,205]. Each codon position was

modeled separately using the most general time reversible model

with gamma distribution and proportion of invariant sites

(GTR+G+I). Two independent analyses from different starting

seeds were run for three million generations, with samples taken

every 1000 generations throughout each analysis using four

Markov chains, keeping all chains at the same temperature and

saving all branch lengths throughout. Flat priors were implement-

ed. For consensus tree building, burn-in values were determined

by plotting log likelihoods and tree lengths over sampled

generations in the program Tracer v1.4 [206]. Ultimately, the

first 250,000 generations from both analyses were discarded from

further evaluation. The estimated sample sizes for all likelihoods,

trees and model parameters from both analyses were determined

using Tracer to ensure that the MCMC procedure was effectively

sampling from the posterior distribution. Tree files from

parsimony, maximum likelihood, and Bayesian analyses were

used to draw trees in PAUP*.

Summary statistics
For all alignments, PAUP* was used to determine percent

sequence divergence, number of parsimony informative charac-

ters, and concordance with the Rickettsia species tree. For the

nucleotide alignments, average base composition and transition/

transversion ratios were also calculated in PAUP*. The ratios of

non-synonymous to synonymous substitutions across all nucleotide

alignments were calculated using Selecton v2.4 [207].

Supporting Information

Document S1 Background information describing prior work

characterizing the Vir genes previously annotated in Rickettsia

genomes.

Found at: doi:10.1371/journal.pone.0004833.s001 (0.30 MB

DOC)

Figure S1 Illustration of the location of the Vir genes within the

R. typhi genome. Note: these 15 Vir genes (green) are a result from

consensus annotation of 10 genomes (Gillespie et al. 2008). Two

non-Vir genes (yellow) were predicted within vir operons.

TU = predicted to be a single transcriptional unit. Operon

prediction was performed using fgenesb (Tyson et al. 2004). Note:

Region A is within the genome rearrangement unique to R. typhi

(McLeod et al. 2004).

Found at: doi:10.1371/journal.pone.0004833.s002 (0.58 MB EPS)

Figure S2 Multiple sequence alignment of VirD4 and VirD4-

like amino acid sequences across six divergent bacterial species.

The secondary structure of TrwB from E. coli plasmid R388

(Gomis-Ruth et al. 2002) is shown above the alignment with

arrows (b-strands B2–B11) and bars (a -helices AC-AR).

Conserved C-terminal domains 1 and 2 (Schroder et al. 2002)

are depicted with black and blue bars, respectively, under the

alignment. Conserved motifs I–V within these domains are boxed

in red, with motifs I and II enclosing the Walker A (WA) and

Walker B (WB) boxes, respectively, involved in ATP binding and

hydrolysis. Six structurally proximal residues (including the highly

conserved Gln in motif III, denoted with an asterisk) forming the

purported NTP-binding cleft (Middleton et al. 2005) are

underlined. Coordinates for each sequence are shown to the right

in each block, with numbers in parentheses depicting flanking

residues of the alignment not shown. Conservation color scheme is

the same as in Figure 2 legend. See text for alignment details.

Taxon abbreviations and associated NCBI accession numbers are

as follows: At = Agrobacterium tumefaciens VirD4, NP_059816;

Rt = Rickettsia typhi VirD4, AAU03764; Bh = Bartonella henselae

VirD4, CAD89507; Bp = Bordetella pertussis TraG, BAF33479;

Lp = Legionella pneumophila LvhD4, CAB60062; Hp = Helico-

bacter pylori Cag5 (TraG/TraD), NP_207320.

Found at: doi:10.1371/journal.pone.0004833.s003 (6.96 MB EPS)

Figure S3 Multiple sequence alignment of VirB11 and VirB11-

like amino acid sequences across six divergent bacterial species. A

consensus secondary structure from the Helicobacter pylori

HP0525 ATPase model (Yeo et al. 2000) and the Brucella suis

VirB11 model (Hare et al. 2006) is shown above the alignment

with arrows (b-strands B1–B13) and bars (a-helices AA-AJ). Minor

discrepancies between both models are stippled over the structural

mask. Two helices not predicted in the HP0525 ATPase model are

within dashed boxes (a-helices AH2 and AJ). The barrier between

the functionally distinct CTD and NTD is shown between b-

strand B6 and a-helix AC (Savvides et al. 2003), with associated

linker A and B regions of the alignment shaded gray. Residues

within linker B that were predicted to form a-helix AC2 (Hare et

al. 2006) are colored white. Residues involved in subunit-subunit

interactions (Yeo et al. 2000) are depicted with blue circles above

the alignment. Residues involved in ADP binding, as well as

supposed ATP-binding and hydrolysis, are within black boxes

(Rivas et al. 1997; Krause et al. 2000). Colored boxes are as

follows: red = Walker A box, green = Asp box, blue = Walker B

box, orange = His box (Rivas et al. 1997; Krause et al. 2000).

Coordinates for each sequence are shown to the right in each

block. Conservation color scheme is the same as in Figure 2

legend. See text for alignment details. Taxon abbreviations and

associated NCBI accession numbers are as follows: Hp = H. pylori

HP0525, BAD14050; Lp = Legionella pneumophila LvhB11,

CAB60061; At = Agrobacterium tumefaciens VirB11, NP_

059809; Rt = Rickettsia typhi VirB11, YP_067245; Bh = Barto-

nella henselae VirB11, YP_034060; Bs = B. suis VirB11,

ABY39090.

Found at: doi:10.1371/journal.pone.0004833.s004 (5.55 MB EPS)

Figure S4 Phylogeny estimation of five VirB6 proteins and

characterization of regions flanking the VirB6/TrbL domain.

Phylogeny estimated under parsimony from the amino acid

alignment of VirB6/TrbL domains only (see text for details).

Branch support is from 500 bootstrap replications. Taxon codes

and coloring scheme as described in the Figure 9 legend. Schema

at right shows amino acid lengths for VirB6/TrbL domains (red)

and flanking additional sequences outside of the VirB6/TrbL

domains (black). Flanking regions were Blasted separately from

each other and the VirB6/TrbL domains. Each result shows

matches to the NCBI conserved domains database and closest

non-Rickettsia subject, including its annotation, bit score and E

value.

Found at: doi:10.1371/journal.pone.0004833.s005 (1.39 MB EPS)

Figure S5 Multiple sequence alignment of VirB10 and VirB10-

like amino acid sequences across six divergent bacterial species.

The secondary structure of ComB10 from Helicobacter pylori

(Terradot et al. 2005) is shown above the alignment with arrows

(b-strands B1a-B8b) and bars (a-helices A1–A3). The 310 helix

flanking b-strand B1a was not supported by the alignment (dashed

box), and bolded residues within this region depict homologous

positions under the previous model (Terradot et al. 2005). A Pro-
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rich tract across the N-terminal region of the alignment is shaded

with Pro residues colored white. Blue and black dots depict

residues in the crystal packing interface. Coordinates for each

sequence are shown to the right in each block. Conservation color

scheme is the same as in Figure 2 legend. See text for alignment

details. Taxon abbreviations and associated NCBI accession

numbers are as follows: Hp = H. pylori ComB, NP_206842-

NP_206843; At1 = Agrobacterium tumefaciens TrbI, AAC82638;

At2 = A. tumefaciens VirB10, AAK90938; Rt = Rickettsia typhi

VirB10, YP_067240; Bs = Brucella suis VirB10, NP_699267;

Bh = Bartonella henselae VirB10, CAF28107.

Found at: doi:10.1371/journal.pone.0004833.s006 (6.47 MB EPS)

Figure S6 Multiple sequence alignment of VirB3 and VirB3-like

amino acid sequences across six divergent bacterial species.

Residues near the N-terminus within predicted TMS regions

(Krogh et al. 2001) are colored blue. Black bar atop of alignment

illustrates portion of alignment wherein all sequences are predicted

to be within the TMS region. Black and red boxes enclose

previously identified conserved ‘‘(GAT)L(ST)RP’’ and ‘‘G’’ motifs,

respectively (Cao and Saier 2001), with an additional invariant Val

residue added to the later motif. Shaded N-terminal residues

depict signal peptides predicted by SignalP 3.0 (Bendtsen et al.

2004). Coordinates for each sequence are shown to the right.

Conservation color scheme is the same as in Figure 2 legend. See

text for alignment details. Taxon abbreviations and associated

NCBI accession numbers are as follows: At = Agrobacterium

tumefaciens VirB3, NP_396489; Rt = Rickettsia typhi VirB3,

AAU03522; Bs = Brucella suis VirB3, AAD56613; Bp = Bordetella

pertussis PtlB (VirB3), NP_882288; Lp = Legionella pneumophila

VirB3, YP_122516; Bh = Bartonella henselae VirB3, AAD48920.

Found at: doi:10.1371/journal.pone.0004833.s007 (1.84 MB EPS)

Figure S7 Phylogenetic analysis using Bayesian inference of the

combined nucleotide sequences of the Rickettsia T4SS. See text

for analysis details. (A) Majority rule consensus of 7400 trees from

two independent analyses with removal of burn-in trees. Branch

support is from the distribution of posterior probabilities for all

branches in the trees. (B) The tree with the best likelihood score

(294170.501) from both independent analysis. (C) Tracer v1.4

plot of the maximum likelihood (LnL) over 3 million generations

(sans burn-in) from two independent analyses (black and blue

lines), with sampling from every 1,000th generation. (D) Mean and

estimated sampling size from the posterior distribution of

likelihood, tree and model parameters.

Found at: doi:10.1371/journal.pone.0004833.s008 (2.13 MB EPS)

Figure S8 Individual protein and nucleotide phylogeny estima-

tions of 18 Vir components from 13 Rickettsia taxa. Taxon codes

and coloring scheme as described in the Figure 9 legend. Protein-

based estimations are shown on the left, and were analyzed under

parsimony (see text for details). Branch support is from 1,000

bootstrap replications. Inset shows total number of characters (T),

number of parsimony informative characters (P), and tree length

(L). Single trees are shown as phylograms, whereas consensus

cladograms summarize contrasting topologies of all equally

parsimonious trees (the number of which are shown in

parentheses). Phylogeny estimations from the nucleotide align-

ments are shown on the right, and were analyzed under maximum

likelihood (see text for details). Branch support is from 100

bootstrap replications, with 10 random addition sequences per

replicate. Inset shows selected model of evolution as reported by

Modeltest, the statistic used to select each model, and the

likelihood of the tree.

Found at: doi:10.1371/journal.pone.0004833.s009 (0.26 MB

PDF)

Figure S9 Amino acid and nucleotide alignments of 18 Vir

components across 13 Rickettsia genomes. All alignments are

unadjusted from the original MUSCLE alignments performed

with default parameters. Structural and functional features for

each Vir component (see Figure 2–8, Figure S2, S3, S5, S6) are

mapped over the protein alignments. Taxon codes as described in

the Figure 9 legend.

Found at: doi:10.1371/journal.pone.0004833.s010 (0.51 MB

TXT)

Table S1 Best-fit models of evolution via the hierarchical

likelihood ratio test (hLRT) and Akaike Information Criterion

(AIC) as reported by Modeltest v3.8.

Found at: doi:10.1371/journal.pone.0004833.s011 (0.06 MB

DOC)
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