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INTRODUCTION 
 

Lung cancer is a high-risk tumor that is the most 

common malignancy in the world and seriously 

endangers human health. It is also the most important 

factor in cancer-related deaths [1, 2]. Lung cancer 

accounted for 18.4% of all cancer deaths (equal to 1.8  

 

million deaths) in 2018, with an age-standardized 

mortality rate of 18.6 (27.1 in men, 11.2 in women) 

per 100,000 persons, and an estimated 1.6 million 

deaths each year [3]. Accounting for approximately 

85% of all lung cancers, non-small cell lung cancer 

(NSCLC) is the most common type of lung tumor, 

including squamous cell carcinoma, adenocarcinoma, 
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ABSTRACT 
 

Dysregulation of circular RNAs (circRNAs) has recently been shown to play important regulatory roles in cancer 
development and progression, including non-small cell lung cancer (NSCLC). However, the roles of most 
circRNAs in NSCLC are still unknown. In this study, we found that hsa_circ_0001421 (circ-SEC31A) was 
upregulated in NSCLC tissues and cell lines. Increased circ-SEC31A expression in NSCLC was significantly 
correlated with malignant characteristics and served as an independent risk factor for the post-surgical overall 
survival of NSCLC patients. Reduced circ-SEC31A expression in NSCLC decreased tumor cell proliferation, 
migration, invasion, and malate-aspartate metabolism. Mechanistically, we demonstrated that silencing circ-
SEC31A downregulated GOT-2 expression by relieving the sponging effect of miR-520a-5p, which resulted in 
significantly reduced malate-aspartate metabolism in NSCLC cells. Taken together, these results revealed the 
important role of circ-SEC31A in the proliferation, migration, invasion, and metabolic regulation of NSCLC cells, 
providing a new perspective on circRNAs in NSCLC progression. 
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and large cell carcinoma [4]. Lung cancer often has no 

obvious symptoms in the early stage, as its symptoms 

and signs appear later, so most patients are in middle-

late stages at the time of treatment, and most have local 

spread or distant metastasis. The overall 5-year survival 

rate is approximately 15%, while for patients with 

distant metastasis, the 5-year survival rate is <4% [5]. 

 

Circular RNAs (circRNAs) are a special type of non-

coding RNA that usually do not encode proteins and 

exist in any genomic region. The recent development 

of high-throughput sequencing technology and 

bioinformatics [6] has allowed a large number of 

endogenous circRNAs to been found in mammals [7]. 

Recent studies on circRNAs have led to the 

recognition that transcripts of many human genes can 

be reverse-cleared, nonlinearly [7] or by gene 

rearrangement [8], to form circRNAs. Moreover, 

circRNAs are abundant in all transcripts, structurally 

stable, sequence-conserved, and have the charac-

teristics of tissue- and time-specific expression [9–

14]; thus, they have good potential as biomarkers. At 

the same time, it was found that circRNAs play 

important roles in proliferation, apoptosis, invasion, 

and metastasis in various tumor cell types, including 

bladder cancer [15], liver cancer [16], colorectal 

cancer [17], gastric cancer [18, 19], and pancreatic 

cancer [20]. CircRNAs play important roles in 

regulating mRNAs at the transcriptional and/or post-

transcriptional level: circular intronic RNAs or 

intronic sequence exon-intron circRNAs are primarily 

located in the nucleus and participate in regulating 

parental gene transcription by binding to RNA 

polymerase II (Pol II) complexes [21]. The circulated 

RNA of the sub-source is mainly located in the 

cytoplasm and binds to miRNAs by a competing 

endogenous RNAs mechanism to block the inhibition 

of the target gene expression [22–24]. Additionally, 

some endogenous circRNAs can be translated into 

polypeptides and proteins [25–27]. 

 

To better study the role of circRNAs in NSCLC 

development, we used high-throughput RNA-

Sequencing (RNA-Seq) to detect differences in the 

expression of circRNAs in tissues of NSCLC patients, 

and combined bioinformatics and metabolomics 

analyses to explore the biological pathways in which 

differentially-expressed circRNAs may be involved. 

The data showed that circ-SEC31A was upregulated 

in NSCLC and that high circ-SEC31A expression 

predicted a poor prognosis. Mechanistic in vitro and 

in vivo experiments showed that silencing circ-

SEC31A in NSCLC decreased tumor cell pro-

liferation, migration, invasion, and malate-aspartate 

metabolism by regulating the miR-520a-5p/GOT-2 

axis.  

RESULTS 
 

High circ-SEC31A expression predicted an 

unfavorable prognosis in NSCLC patients 
 

To uncover the role of circRNAs in NSCLC 

development, the circRNA expression signatures of 

NSCLC tissues were explored by RNA-Seq. The data 

showed that circ-SEC31A was significantly upregulated 

in NSCLC tissues (Figure 1A). Circ-SEC31A is derived 

from exon 2 of the SEC31A gene, whose mature spliced 

sequence length is 403 bp. This gene is located on 

chromosome 4: 83799882-83803090 (Figure 1F). We 

also detected circ-SEC31A level by RT-qPCR in 20 

paired NSCLC cancer and adjacent noncancerous lung 

tissues. Compared with normal tissues, circ-SEC31A 

was highly expressed in NSCLC tissue (Figure 1B). 

Furthermore, associations between circ-SEC31A 

expression and clinicopathological factors and the 

prognosis of NSCLC patients were explored (Table 1). 

The samples were divided into relatively high (above 

the adjacent normal tissues; n=50) and relatively low 

(below the adjacent normal tissues; n=42) levels of circ-

SEC31A expression. We found no relationship between 

circ-SEC31A expression and clinical factors, including 

sex (males and females) or patient age (≤60 years and 

>60 years). However, there were significant differences 

in the circ-SEC31A expression groups regarding lymph 

node metastasis (negative and positive), TNM stage (I/II 

and III/IV), and tumor size (≤3 cm and >3 cm). Thus, 

high circ-SEC31A expression was associated with 

increased lymph node metastasis, higher TNM stage, 

and larger tumor size compared with the low circ-

SEC31A expression group. NSCLC patients with high 

circ-SEC31A levels had shorter overall survival times 

than those with low circ-SEC31A levels according to 

Kaplan–Meier survival curve analysis (p<0.05) (Figure 

1E). FISH analysis revealed that circ-SEC31A copy 

number was significantly increased in NSCLC tissues 

compared with normal tissues (Figure 1D). The level of 

circ-SEC31A was increased in three NSCLC cell lines 

(A549, PC9 and H1650), compared with normal lung 

epithelial cells BEAS-2B, with the highest expression 

levels observed in A549 and H1650 cells (Figure 1C). 

Consequently, A549 and H1650 were selected to 

evaluate the role of circ-SEC31A in further 

experiments. 
 

Downregulation of circ-SEC31A suppressed NSCLC 

proliferation, invasion, and migration both in vitro 

and in vivo 
 

To clarify the role of circ-SEC31A in NSCLC, we 

constructed siRNA vectors against circ-SEC31A 

(sicircRNA1 and sicircRNA2) to inhibit the level of 

circ-SEC31A; we used sicircRNA2 for subsequent 
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Figure 1. The expression of circ-SEC31A predicted an unfavorable prognosis in non-small cell lung cancer (NSCLC) patients. 
(A) Heat map of all differentially-expressed circRNAs between normal and tumor tissues. (B) RT-qPCR showing the relative expression of the 
circ-SEC31A from 20 NSCLC tumor tissues and adjacent non-tumor tissues. Data are presented as mean ± SD; **p<0.01. (C) RT-qPCR 
detection showing the relative expression of circ-SEC31A in A549, PC9, H1650, and normal lung epithelial cells (BEAS-2B). Data are presented 
as mean ± SD; ***P<0.001 vs. the normal group. (D) The expression of circ-SEC31A in NSCLC was analyzed by in situ hybridization on a NSCLC 
tissue chip (90 cases). (E) Prognostic significance of circ-SEC31A expression for NSCLC patients was performed with FISH values by using the 
median value as the cut-off; the observation time was 60 months. (F) The genomic loci of the SEC31A gene and circ-SEC31A. N, non-tumor 
tissues; T, tumor tissues. 
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Table 1. The clinic-pathological factors of 92 NSCLC patients. 

Characteristics Numbers 
hsa_circ_0001421 

P value 
Low (N = 42) High (N = 50) 

Sex    0.823 

male 50 22 28  

female 42 20 22  

Age    0.923 

≤50 45 21 24  

>50 47 21 26  

TNM stage    0.035 

I and II 54 31 23  

III and IV 38 11 27  

Lymph node metastasis    0.021 

negative 41 27 14  

positive 51 15 36  

Tumor size    0.018 

≤ 3 cm 50 28 22  

> 3 cm 42 14 28  

 

 

studies. As expected, 48 h following transfection, RT-

PCR data from both A549 and H1650 cells showed that 

the si-circRNA vector significantly downregulated circ-

SEC31A expression (Figure 2A and 2B). The fraction 

of cells in G0/G1, S, and G2/M phases were calculated 

in Figure 2C and 2D. Si-circRNA treatment caused a 

significantly higher fraction of NSCLC cells in the 

G2/M phase (20.02% in A549 and 33.77% in H1650) 

than in the NC cells (8.34% in A549 and 8.42% in 

H1650), whereas the fraction of cells in S phase was 

reduced (17.57% in A549 and 20.02% in H1650) 

compared with NC cells (27.77% in A549 and 46.38% 

in H1650), suggesting that downregulating circ-

SEC31A might induce a G2/M arrest in NSCLC cells. 

CCK8 assays showed that downregulation of circ-

SEC31A inhibited the growth of A549 and H1650 cells 

(Figure 2E and 2F). Furthermore, colony formation 

assays indicated that si-circRNA resulted in a 

significant reduction in colony numbers compared with 

the NC groups in A549 and H1650 cells (Figure 2G and 

2H). To determine if silencing circ-SEC31A suppressed 

tumor growth in nude mice, we constructed stably-

transfected A549 cells with circ-SEC31A knockdown 

and established a xenograft mouse model in which an 

equal number of A549 cells were injected into the mice 

(n = 6). The results showed that silencing circ-SEC31A 

significantly reduced tumor volume compared with the 

NC group (Figure 2I and 2J). Ki67 is a marker of cell 

proliferation, and the number of proliferating cells 

evaluated by Ki67 immunohistochemistry was lower in 

the sh-circRNA group (Figure 2K and 2L). Transwell 

results also showed that silencing circ-SEC31A inhibited 

the migration and invasion abilities of A549 and H1650 

cells (Figure 3A and 2B). Furthermore, we used a small 

animal live imaging system to obtain fluorescence 

images of nude mice 30 d after tail-vein inoculation 

(Figure 3C). The fluorescence intensity in the si-circRNA 

group was consistently weaker than the NC group. 

 

Metabolic analysis showed the effect of circ-SEC31A 

on NSCLC cell metabolism 
 

Score plots of OPLS-DA in A549 cells (Figure 4A) 

revealed a strong separation of the si-circRNA and NC 

groups in both positive and negative mode. Different 

metabolites were examined by OPLS-DA and variable 

importance in projection (VIP>1) and t-test (p<0.05) 

were used for screening. Finally, 138 metabolites in 

A549 cells were found, 26 of which were identified by 

searching the library (Figure 4B). We discovered many 

markedly changed pathways in the solasodine groups at 

the metabolomic level, including Glutathione 

Metabolism, Spermidine and Spermine Biosynthesis, 

the Malate-Aspartate Shuttle, Urea Cycle, Phenyl-

alanine and Tyrosine Metabolism (Figure 5A). 

Compound reaction networks of the metabolites and 

genes were visualized using Metscape Analysis 

Software and the KEGG database. The results showed 

that Aspartic acid and GOT2 were significantly down-

regulated after silencing circ-SEC31A (Figure 5B and 

5C).  

 

The relationships among miR-520a-5p, circ-

SEC31A, and GOT2 
 

RT-qPCR analysis also found that GOT2 expression 

was increased in NSCLC tissues compared with 

adjacent normal tissues (Figure 6A). A positive 
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Figure 2. Downregulation of circ-SEC31A suppressed NSCLC proliferation both in vitro and in vivo. (A and B) RT-qPCR detection 
showing the expression of circ-SEC31A in both A649 (A) and H1650 (B) cells after transfection with siRNA against circ-SEC31A (si-circRNA) or 
negative control (NC). Data are presented as mean ± SD; ***P<0.001 vs. the normal group. (C and D) Flow cytometry detection showing the 
percentages of cells in G1, S, or G2 phase in both A549 (C) and H1650 (D) cells. (E and F) CCK8 assays were used to evaluate cell proliferation. 
Data are presented as mean ± SD; ***P<0.001 vs. NC. (G and H) Colony formation assay showing proliferation in both A549 and H1650 cells. 
Data are presented as mean ± SD; ***P<0.001 vs. NC. (I and J) Xenograft tumor studies. A549 cells transfected with NC or sh-circRNA were 
subcutaneously injected into nude mice, and tumor growth curves were plotted. Data are presented as mean ± SD; **P<0.01, ***P<0.001 vs. 
NC. (K) Immunohistochemistry showing the percentage of Ki-67-positive cells. (L) The relative levels Ki-67-positive cells were calculated. Data 
are presented as mean ± SD; ***P<0.001 vs. sh-NC.  
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correlation between circ-SEC31A expression and GOT2 

levels was observed in NSCLC tissues (Figure 6B). RT-

qPCR and western blot analyses showed that 

downregulating circ-SEC31A decreased the protein and 

mRNA levels of GOT2 in A549 and H1650 cells 

(Figure 6C and 6D). To further study the mechanism of 

circ-SEC31A, bioinformatics analysis (https://circin 

teractome.nia.nih.gov/) was used to select potential 

miRNA targets with shared common binding sites for 

circ-SEC31A (Figure 7A). We designed a circ-SEC31A 

luciferase reporter screen for these miRNAs. We found 

that miR-520a-5p reduced the luciferase activity from 

the circ-SEC31A luciferase reporter by at least 80% 

(Figure 7B). These results revealed that miR-520a-5p 

had a conserved binding site for circ-SEC31A (Figure 

7C). A dual-luciferase reporter assay was consequently 

performed in HEK293T cells. Wild-type and mutant 

circ-SEC31A sequences were cloned to construct the 

reporter plasmids and mutant vectors, respectively. 
 

 
 

Figure 3. Downregulating circ-SEC31A suppressed NSCLC 
invasion and migration both in vitro and in vivo. (A, B) Cell 
migration (A) and invasion (B) were assessed in both A549 and 
H1650 cells using Transwell assays. Data are presented as mean ± 
SD; ***P<0.001 vs. NC. (C) Live imaging showing the effects of 
hsa_circ_000142 on the metastasis of A549 cells 30 d after 
intravenous tail injection.  

While it was found that co-transfection of the miR-

520a-5p mimics with the reporter plasmids decreased 

luciferase activity, conversely, co-transfection of miR-

520a-5p mimics and mutated vectors showed no 

significant changes in luciferase activity. Hence, these 

data proved that miR-520a-5p is a direct target of circ-

SEC31A (Figure 7D). A negative correlation between 

circ-SEC31A expression and miR-520a-5p levels was 

also observed in NSCLC tissues (Figure 7E). RT-qPCR 

detection also found that miR-520a-5p expression was 

decreased in NSCLC tissues compared with adjacent 

normal tissues (Figure 7F). Next, bioinformatics 

analysis (http://www.targetscan.org/) showed that 

GOT2 was a potential target of miR-520a-5p. To 

confirm that GOT2 is a target of miR-520a-5p, the 

wild-type and mutant GOT2 sequences were cloned to 

construct reporter plasmids and mutant vectors, 

respectively (Figure 7G). These data revealed that, 

while co-transfection of miR-520a-5p mimics and 

reporter plasmids visibly suppressed luciferase activity, 

co-transfection of miR-520a-5p mimics and mutated 

GOT2 vectors had no significant effect on luciferase 

activity. Hence, these results prove that miR-520a-5p 

directly targets GOT2 (Figure 7H). Next, RT-qPCR 

results showed that circ-SEC31A levels were 

unchanged after transfecting the miR-520a-5p inhibitor 

(inhibitor), miR-520a-5p mimic, or overexpressing 

GOT2 (GOT2), compared with the control groups in 

A549 cells (Figure 8A). Levels of miR-520a-5p were 

significantly increased after transfecting si-circRNA or 

miR-520a-5p mimic, while they were decreased after 

transfecting the miR-520a-5p inhibitor in A549 cells 

(Figure 8B). RT-qPCR and western blot showed that si-

circRNA and miR-520a-5p mimic decreased the 

protein and mRNA levels of GOT2, while the miR-

520a-5p inhibitor or GOT2 overexpression increased 

GOT2 in A549 cells (Figure 8C). CCK8 assays showed 

that si-circRNA and miR-520a-5p mimic suppressed 

the growth of A549 cells, while the miR-520a-5p 

inhibitor or GOT2 overexpression promoted growth 

(Figure 8D). Colony formation assays using A549 cells 

confirmed these results (Figure 8E). Furthermore, 

Transwell results showed that si-circRNA and miR-

520a-5p mimic inhibited A549 cell migration and 

invasion, while miR-520a-5p inhibitor or GOT2 

overexpression promoted migration and invasion 

(Figure 8F and 8G). The in vivo xenograft mouse 

models using A549 cells also showed that down-

regulating miR-520a-5p or upregulating GOT2 restored 

the in vivo tumor growth ability of A549  

cells after circ-SEC31A knockdown (Figure 8H and 

8I). Together, these findings suggest that miR-

638/GOT2 is a downstream target of circ-SEC31A, and 

that circ-SEC31A promotes NSCLC progression by 

sponging miR-520a-5p, which increases GOT2 

expression. 

https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
http://www.targetscan.org/
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Figure 4. Cell metabolites analysis showing the effect of circ-SEC31A on NSCLC cell metabolites. (A) OPLS-DA score plot showing 
the difference between the si-circRNA and NC groups of A549 cells. (B) Heatmap identifying metabolites in A549 cells. Colors in the heatmap 
change with the metabolite contents, red indicates high content, while blue indicates low content. 

 

 
 

Figure 5. Pathway analysis of the differentially-expressed proteins. (A) Pathway analysis of significantly altered metabolites in A549 
cells compared with baseline. (B and C) Compound reaction networks of the metabolites and genes were visualized using Metscape: genes 
(circles), metabolic enzymes (squares) are presented as nodes, and relationships are presented as edges. Input genes are shown in blue, input 
metabolites are shown in red. The metabolite-gene association network was primarily related to malate-aspartate metabolism.  



 

www.aging-us.com 10388 AGING 

DISCUSSION 
 

Recently, circRNAs have been found to be involved in 

the development of various diseases, including 

arteriosclerosis [28], nervous system disorders [29, 30], 

aging [31, 32], heart failure [33, 34], and malignant 

tumors [35, 36]. In NSCLC, circRNAs have also been 

shown to play important roles in tumor growth, 

apoptosis, and metastasis [37–39]. In this study, we 

found a novel circRNA (hsa_circ_0001421, circ-

SEC31A) that was increased in human NSCLC tissues 

by high-throughput RNA-Seq. We also found 20 

patients in which we confirmed the association between 

circ-SEC31A and NSCLC by RT-qPCR. Moreover, our 

study revealed that decreasing circ-SEC31A could limit 

cell proliferation and stimulate apoptosis, as well as 

suppress NSCLC growth in vitro and in vivo. 

Nevertheless, various studies have reported that NSCLC 

patients bearing KRAS mutations not only have a 

significantly better prognosis than their KRAS-wild type 

counterparts, but typically present with low survival 

rates [40, 41]. Hence, we will confirm associations 

between KRAS mutational status and circ-SEC31A 

levels in NSCLC patients in future studies. 

MiRNAs are a class of small non-coding RNAs that are 

associated with the inhibition or degradation of mRNAs 

by binding to complementary sequences in target 

messages. MiRNAs play a central role in various 

biological processes, including cell differentiation, 

colonization, and apoptosis [42]. With the gradual 

development of research in this field, miRNAs are more 

frequently being found to play key roles in NSCLC 

development either through the direct regulation of 

various NSCLC signaling pathways or of the 

microenvironment, which regulates tumor growth [43–

45]. As the nucleic acid sequences of the miRNAs and 

target regions do not have to be perfectly com-

plementary, miRNAs can simultaneously regulate the 

expression of hundreds of genes [46]. Aberrant miR-

520a-5p levels have been found in many diseases, 

including psoriasis [47] and cardiomyocyte injury [48], 

but miR-520a-5p has controversial roles in the 

development of various human cancers. Previous 

studies of colorectal cancer [49], hepatocellular 

carcinoma [50, 51], and chronic myelogenous leukemia 

[52] have found that miR-520a-5p inhibits tumor 

development. Many studies have shown that circRNAs 

could play a role as sponges that absorb miRNAs [11]. 

 

 

 

Figure 6. The relationship between circ-SEC31A and GOT2. (A) RT-qPCR showing the relative GOT2 expression from 20 NSCLC tumor 
tissues and adjacent non-tumor tissues. Data are presented as mean ± SD; **p<0.01. (B) A significant positive correlation between circ-
SEC31A and GOT2 was detected in NSCLCs tissues; n=20, P=0.0103. (C and D) RT-qPCR and western blot detection showing the expression of 
GOT2 in both A549 (C) and H1650 (D) cells. Data are presented as mean ± SD; ***P<0.001 vs. NC.  
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Our study analyzed the regulatory mechanism of circ-

SEC31A at the post-transcriptional level. Using 

bioinformatics, we found that the circ-SEC31A 3ʹ-UTR 

shares identical miR-520a-5p response elements and 

could competitively bind to miR-520a-5p. These results 

indicated that circ-SEC31A could act as competitive 

endogenous RNAs to sponge miR-520a-5p during 

NSCLC progression. 

Aspartate is essential for cell cycle progression, and it is 

the most essential intermediary for amino acid, purine 

nucleotide, and pyrimidine nucleotide synthesis [53]. 

Glutamate Oxaloacetate Transaminase (GOT) is also 

known as aspartate aminotransferase. There are two 

kinds of GOT in eukaryotes, GOT1 and GOT2 [54]. 

The involvement of GOT2 in cancer cell metabolism is 

mainly reflected in the following three aspects: (1) 

 

 
 

Figure 7. The relationships among miR-520a-5p, circ-SEC31A, and GOT2. (A) A schematic model showing the putative binding sites 
of 12 predicted miRNAs on circ-SEC31A. (B) Luciferase activity of circ-SEC31A in HEK293T cells transfected with miRNA mimics, which 
putatively bind to the circ-SEC31A sequence. Luciferase activity was normalized to Renilla luciferase activity. (C) The predicted binding sites of 
miR-520a-5p in circ-SEC31A. The mutated (Mut) version of circ-SEC31A is also shown. (D) Relative luciferase activity was determined 48 h 
after transfection with miR-520a-5p mimic/normal control (NC) or with the circ-SEC31A wild-type/Mut in HEK293T cells. Data are presented 
as mean ± SD; ***P<0.001. (E) A significant negative correlation between circ-SEC31A and miR-520a-5p was detected in NSCLCs tissues; n=20, 
P=0.0114. (F) RT-qPCR showing the relative expression of miR-520a-5p from 20 NSCLC tumor tissues and adjacent non-tumor tissues. Data 
are presented as mean ± SD; ***P<0.001. (G) The predicted binding sites of miR-520a-5p within the 3′-UTR of GOT2. The mutated version of 
the 3′-UTR of GOT2 is also shown. (H) Relative luciferase activity was determined 48 h after transfection with miR-520a-5p mimic/normal 
control or with the 3′-UTR-GOT2 wild-type/Mut in HEK293T cells. Data are presented as mean ± SD; ***P<0.001.  
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Figure 8. Overexpression of miR-520a-5p or downregulation of GOT2 reversed the suppressive effect of circ-SEC31A silencing 
on NSCLC cell proliferation, invasion, and migration. (A and B) RT-qPCR detection showing the expression of circ-SEC31A and miR-
520a-5p in A649 cells. Data are presented as mean ± SD; ***P<0.001 vs. NC; ###P<0.001 vs. si-circRNA. (C) Western blot analysis showing the 
expression of GOT2 in A649 cells. Data are presented as mean ± SD; ***P<0.001 vs. NC; ###P<0.001 vs. si-circRNA. (D) CCK8 assays were used to 
evaluate cell proliferation after 72 h culture. Data are presented as mean ± SD; *P<0.05, ***P<0.001 vs. NC; ###P<0.001 vs. si-circRNA. (E) 
Colony formation assays showing the proliferation of A549 cells. Data are presented as mean ± SD; ***P<0.001 vs. NC; ###P<0.001 vs. si-
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circRNA. (F and G) Cell migration (E) and invasion (F) were assessed in A549 cells using Transwell assays. Data are presented as mean ± SD; 
***P<0.001 vs. NC; #P<0.05, ##P<0.01, ###P<0.001 vs. si-circRNA. (G) Xenograft tumors in nude mice from the four treatment groups (NC, si-
circRNA, si-circRNA + miR-520a-5p inhibitor, si-circRNA + GOT2) after subcutaneous injection of A549 cells. (H, I) Xenograft tumor volumes 
from the four treatment groups were measured at the indicated time points. Data are presented as mean ± SD; ***P<0.001. 
 

GOT2 catalyzes the formation of glutamic acid and 

oxaloacetate from aspartic acid and α-glutaric acid, which 

participate in the Krebs cycle and may provide energy for 

tumor cells; (2) GOT2 is a key enzyme in the transfer of 

malate-aspartate in glycolysis and participates in the amino 

acid metabolism of tumor cells [55, 56]. Finally, (3) 

GOT2-derived glutamate that is produced from aspartic 

acid can be converted into glutamine. According to 

previous studies, glutamine is a transitional demand for 

growth of tumor cells, which can have the characteristic of 

glutamine addiction [57]. Son et al. found that after 

reducing GOT2 activity and cutting off the reaction 

pathway of intracellular glycolysis and TCA, pancreatic 

cancer and breast cancer cells will undergo dystrophic 

metabolism and acquire glutamine restriction, thereby 

inhibiting proliferation [58]. Metabolomics analysis of 

NSCLC cells were performed to verify the mechanism of 

circ-SEC31A. OPLS-DA and Metscape were applied to 

assess the metabolomics data. Our results showed that 

GOT2 had abnormal expression in the aspartic acid 

pathway. Dual-luciferase reporter assays confirmed that 

miR-520a-5p interacted with the 3′-UTR of GOT2, 

inhibiting GOT2 at the post-transcriptional level. 

Furthermore, we found that GOT2 overexpression 

promoted A549 cell proliferation, migration, and invasion. 

 

CONCLUSIONS 
 

This study indicated that circ-SEC31A plays an important 

role in regulating NSCLC cell proliferation, migration, 

invasion, and malate-aspartate metabolism by sponging 

miR-520a-5p, verifying it as a promising prognostic 

biomarker in NSCLC. Finally, we discovered that the circ-

SEC31A/miR-520a-5p/GOT2 axis is a potential 

therapeutic target for NSCLC treatment. 

 

MATERIALS AND METHODS 
 

Tissue samples 
 

In total, 92 fresh NSCLC tissues and paired adjacent 

noncancerous lung tissues were collected after obtaining 

informed consent from patients at Renji Hospital of 

Shanghai Jiaotong University, China. The data were 

censored at the last follow-up visit or at the time of the 

patient’s death without relapse. Histological and 

pathological diagnostics for NSCLC were evaluated based 

on the Revised International System for Staging Lung 

Cancer (this revised system has been used since 1986 and 

includes modifications to the rules for staging the tumor, 

node, metastasis (TNM) anatomic subsets [45], more 

specific staging categories and consistency for reporting 

the end results for Stage I, Stage II, and Stage IIIA disease 

are also provided). Patients received neither chemo-

therapy nor radiotherapy before tissue sampling (Table 1). 

The samples were snap-frozen in liquid nitrogen and 

stored at −80 °C prior to RNA extraction. This study was 

approved by the Ethics Committee of Renji Hospital at 

Shanghai Jiaotong University. 

 

Strand-specific RNA-Seq library construction and 

high-throughput RNA-Seq 
 

Total RNA was extracted from three paired NSCLC 

tissues and adjacent noncancerous lung tissues using 

TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). 

Approximately 3 μg of total RNA from each sample was 

subjected to the VAHTS Total RNA-seq (H/M/R) Library 

Prep Kit from Illumina (Vazyme Biotech Co., Ltd, 

Nanjing, China) to remove ribosomal RNA while 

retaining other types of RNA, including mRNA and 

ncRNA. Purified RNA was treated with RNase R 

(Epicenter, 40 U, 37 °C for 3 h), followed by purification 

with TRIzol. RNA-seq libraries were prepared using the 

KAPA Stranded RNA-Seq Library Prep Kit (Roche, 

Basel, Switzerland) and subjected to deep sequencing 

with an Illumina HiSeq 4000 at Aksomics, Inc., Shanghai, 

China (Accession code: H1712024). 

 

Cell lines and culture 

 

The normal human lung epithelial cell line, BEAS-2B, 

and the NSCLC cell lines, A549, PC9, and H1650 were 

obtained from the Cell Bank of the Chinese Academy of 

Sciences and cultured in Dulbecco’s Modified Eagle’s 

Medium (Life Technologies, Carlsbad, CA, USA) 

supplemented with 100 IU/mL penicillin, 100 μg/mL 

streptomycin, and 10% fetal bovine serum (FBS; 

Invitrogen) at 37 °C in a humidified atmosphere with 

5% CO2. 

 

Fluorescence in situ hybridization (FISH) 
 

Specific probes for circ-SEC31A (Dig-5′-CCTTTAAC 

TTCATCCTGGAAAATGTTCACA-3′-Dig) were 

prepared by Geneseed Biotech (Guangzhou, China). 

Signals were detected by Cy3-conjugated anti-digoxin 

and FITC-conjugated anti-biotin antibodies (Jackson 

ImmunoResearch Inc., West Grove, PA, USA). Nuclei 

were counterstained with 4,6-diamidino-2-phenylindole 
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(DAPI). Finally, images were obtained on a Zeiss LSM 

700 confocal microscope (Carl Zeiss, Oberkochen, 

Germany).  

 

Bioinformatics analysis 

 

The circRNA/miRNA target genes were predicted using 

the website, https://circinteractome.nia.nih.gov/. The 

interactive relationship between miR-520a-5p and 

GOT-2 was predicted using the website, http://www. 

targetscan.org/.  

 

Total RNA isolation and quantitative reverse 

transcription polymerase chain reaction (RT-qPCR) 
 

Total RNA was isolated from tumor tissues or cells 

using TRIzol reagent (Invitrogen), following the 

manufacturer’s protocol. The purity and concentration 

of RNA samples were examined spectrophotometrically 

by measuring absorbance at 260 nm, 280 nm, and 230 

nm with a NanoDrop ND-1000 (Thermo Fisher 

Scientific, Wilmington, DE, USA). Specifically, 

OD260/OD280 ratios between 1.8 and 2.1 were deemed 

acceptable, and OD260/OD230 ratios >1.8 were also 

deemed acceptable.  

 

Total RNA was reverse transcribed before RT-qPCR 

detection. Primers specific for circ-SEC31A, miR-520a-

5p, and GOT-2 were obtained from GenePharma 

(Shanghai, China). RT-qPCR was performed using an 

AB7300 thermo-recycler (Applied Biosystems, 

Carlsbad, USA) with primers and TaqMan Universal 

PCR Master Mix. GAPDH was used as the reference 

gene for circRNAs and mRNAs. U6 was used as an 

internal control for the level of miRNA expression. 

Gene expression was quantified using the 2−ΔΔCt 

method. The primers used to assay circ-SEC31A 

expression included forward, 5′-TCTCTGGAGTTCT 

GATTGCAGGTGG-3′ and reverse, 5′-TGCTAGGTA 

AATGGGGTGATTCTGG-3′. The miR-520a-5p 

primers were forward, 5′-ACACTCCAGCTGGGC 

TCCAGAGGG-3′ and reverse, 5′-CTCAACTGGTGTC 

GTGGAGTCGGCAATTCAGTTGAGAGTTTGTAC-

3′. The GOT-2 primers were forward, 5′-GAGCA 

GGGCATCAATGTCTG-3′ and reverse, 5′-GTTGGAA 

TACAGGGGACGGA-3′. The U6 primers were 

forward, 5′-CTCGCTTCGGCAGCACA-3′ and reverse, 

5′-AACGCTTCACGAATTTGCGT-3′. The GAPDH 

primers were forward, 5′-GCACCGTCAAGGCT 

GAGAAC-3′ and reverse, 5′-GGATCTCGCTCCT 

GGAAGATG-3′. 

 

RNA interference and overexpression 
 

The miR-520a-5p inhibitors (5′-CUCCAGAGGGAAG 

UACUUUCU-3′), miR-520a-5p mimics (5′-CUCCA 

GAGGGAAGUACUUUCU-3′), and siRNA against 

circ-SEC31A (5′-CCGGCTCTGGAGTTCTGATTGC 

ATTCTCGAGTGCAATCAGAACTCCAGAGTTTTTT

TG-3′) were purchased from GenePharma. Transfections 

were performed in accordance with the supplier's 

protocol. Briefly, cells were transferred to 6-well culture 

plates and transfected using Lipofectamine 2000 

(Invitrogen). To induce GOT-2 overexpression, a 

pCDNA3.0 vector was transfected, as described above. 

For xenograft experiments, lentiviral-mediated circ-

SEC31A-silencing (si-circRNA) A649 were constructed. 

 

Dual-luciferase reporter assay 
 

The binding site of circ-SEC31A and the 3'-UTR of 

GOT-2, termed circ-SEC31A-WT, circ-SEC31A-Mut, 

GOT-2-3'UTR WT, and GOT-2-3'UTR-Mut were 

inserted into the KpnI and HindIII sites of the pGL3 

promoter vector (Realgene, Nanjing, China) in a dual-

luciferase reporter assay. First, cells were plated into 

24-well plates. Then, 80 ng plasmid, 5 ng Renilla 

luciferase vector pRL-SV40, 50 nM miR-520a-5p 

mimics, and negative control were transfected into cells 

with lipofectamine 2000 (Invitrogen). The cells were 

then collected and measured 48-h after transfection 

using a Dual-Luciferase Assay (Promega, Madison, WI, 

USA), following the manufacturer’s instructions. All 

experiments were independently repeated three times. 

 

Cell proliferation assay 
 

The Cell Counting Kit-8 (CCK-8) assay was used to 

detect cellular proliferation. Transfected cells were seeded 

into 96-well plates at a density of 5,000 cells/well in 

triplicate. Cell viability was measured using the CCK-8 

system (Gibco) at 0, 24, 48, 72, and 96 h after seeding, 

according to the manufacturer’s instructions. 

 

For colony formation assays, transfected cells were 

seeded into six-well plates at a density of 2,000 

cells/well and maintained in DMEM containing 10% 

FBS for 10 d. Colonies were imaged and counted after 

they were fixed and stained. 

 

Transwell migration assay 
 

Cell migration was analyzed using Transwell chambers 

(Corning Inc., Corning, NY, USA) in accordance with the 

manufacturer’s protocol. After incubation for 24 h, cells on 

the upper surfaces of Transwell chambers were removed 

using cotton swabs, and cells located on lower surfaces 

were fixed with methanol for 10 min, followed by crystal 

violet staining. Stained cells were imaged and counted in 

five randomly selected fields. In invasion experiments, 

chamber inserts were coated with 200 mg/mL Matrigel and 

dried overnight under sterile conditions.  

https://circinteractome.nia.nih.gov/
http://www.targetscan.org/
http://www.targetscan.org/
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Flow cytometry analysis of cell cycle progression 
 

Cells were fixed in 70% ethanol overnight at 4°C. Then, 

fixed cells were resuspended in staining solution 

(Beyotime, Shanghai, China) and incubated for 30 min at 

4 °C. Finally, stained cells were measured by flow 

cytometry (Beckman Coulter, Franklin Lakes, NJ, USA). 

 

Animal studies 

 

To examine the role of circ-SEC31A in a lung cancer 

metastasis model, 1×106 stable lentiviral-mediated 

circ-SEC31A-silenced (si-circRNA) or negative 

control (si-NC) A549 cells were intravenously 

injected into male nude mice through the tail vein 

(Chinese Science Academy, Shanghai, China). After 

a month, lung metastases were measured and 

quantified using an in vivo bioluminescent imaging 

with an IVIS Lumina series III in vivo Imaging 

System (PerkinElmer, New York, NY, USA). 

 

For xenograft assays, 1×106 modified (circ-SEC31A 

downregulation, circ-SEC31A downregulation+miR-

520a-5p inhibitor, and circ-SEC31A down-

regulation+GOT2 overexpression) or control (wild-

type) A549 cells were injected subcutaneously into the 

right side of each male nude mouse (Chinese Science 

Academy). Tumor volumes (length × width2 × 0.5) were 

measured at the indicated time points, and tumors were 

excised 4 weeks after injection. 

 

For metastasis analysis, wild-type or circ-SEC31A 

downregulation A549 cells (2×105) were transfected 

with luciferase expression vectors, and the cells were 

injected intravenously into the tails of mice. After 30 d, 

A549 cell metastasis was analyzed by bioluminescence 

imaging following an intravenous injection of luciferin 

(150 mg luciferin/kg body weight) into the tails. 

 

All mice were maintained and handled according to 

protocols approved by the Animal Care Committee of 

Renji Hospital of Shanghai Jiaotong University. 

 

Immunohistochemistry 

 

Tumor tissue samples were fixed in a 10% formalin and 

embedded in paraffin. Sections (5 μm-thick) were 

stained with Ki67 to evaluate proliferation. Sections 

were examined using an Axiophot light microscope 

(Zeiss) and imaged with a digital camera. 

 

Metabolomics data collection and analysis 
 

A549 cells with or without silencing circ-SEC31A were 

used for metabolomics analyses. Briefly, cells were plated 

into 6-well plates at an initial density of 1×106 per well. 

After culture, the supernatant was discarded, and each 

well was washed with PBS three times. Then 2 mL of 4 

°C methanol was added, and cells were scraped. Cells 

were lysed with a cell pulverizer to fully extract 

metabolites. Finally, the supernatant was centrifuged at 

14000 ×g for 10 min before analysis. LC/MS data were 

processed by Compound Discoverer 2.1 software 

(Thermo Company). Principal component analysis (PCA) 

and orthogonal partial least squares discriminant analysis 

(OPLS-DA) were performed using SMICA-P 14.0 

software. Metabolites were identified according to 

accurate masses and product ion spectra, and pathway 

analysis was performed using MetaboAnalyst 4.0. 
 

Statistical analysis 
 

Statistical significance was evaluated by one-way 

analysis of variance followed by the Tukey–Compare 

all pairs of columns. A Pearson’s correlation test was 

used to determine the association between two groups 

using GraphPad Prism 5.02 software (GraphPad Inc., 

San Diego, CA, USA). The cumulative recurrence and 

survival rates were analyzed using Kaplan-Meier’s 

method. Results are presented as the mean ± SEM. P-

values <0.05 were considered significant.  
 

Ethics approval  
 

The study has been examined and certified by the Ethics 

Committee of Renji Hospital of Shanghai Jiaotong 

University, and informed consent was obtained from all 

participants included in the study, in agreement with 

institutional guidelines. 
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