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Nitrogen-doped mesoporous 
SiC materials with catalytically 
active cobalt nanoparticles 
for the efficient and selective 
hydrogenation of nitroarenes
Mirco Eckardt1, Muhammad Zaheer2 & Rhett Kempe1

Mesoporous nitrogen-doped silicon carbide catalysts with integrated cobalt nanoparticles (Co@N-
SiC) were synthesized by the thermal decomposition of a microphase-separated block copolymer 
of polycarbosilane and polyethylene. The catalysts are highly active, reusable and offer selective 
hydrogenation of the nitro group in the presence of hydrogenation-sensitive functional groups.

Intensive efforts have been devoted recently to designing novel catalysts with enhanced catalytic properties 
utilizing earth-abundant transition metals1–3. Cobalt, among other metals, has attracted many researchers and 
numerous homogeneous4–6 and heterogeneous cobalt catalysts7–18 have been developed for various catalytic 
transformations. Beller and co-workers19, for instance, developed a cobalt-oxide@N-carbon catalyst by the ther-
mal decomposition of a specific cobalt complex for the selective hydrogenation of nitroarenes. This is an indus-
trially important reaction, as aniline and its derivatives find applications in the synthesis of pharmaceutical, dyes, 
polymers, agrichemicals and other fine chemicals20,21. Moreover reduction of nitroarenes has served as a bench-
mark reaction to test the activity of nanoparticles (NPs)22. Thus, the development of new catalysts with important 
features, such as economy, activity, selectivity and reusability, is highly relevant23. In the past various catalysts 
based on Au24, Ag25, Ni26, Fe27 and Cu28 has been designed for the reduction of nitroarenes. Since the pioneer 
work of Beller, a variety of Co and especially Co@N-carbon catalysts have been developed29–43. Recent studies 
have shown that the stability of Co-N-C bond plays a vital role in the temperature-dependent formation of cobalt 
single atoms to NPs44. N-functions of the support are crucial not only for the stabilization of metal NPs, but also 
for the dispersion of the catalyst in polar solvents used for the catalysis45. Moreover, an increase in the activity 
with an increase in nitrogen content of the catalyst was observed46. Silicon carbide (SiC) and silicon carbonitride 
(SiCN), being refractory materials, could extend the application profile of cobalt-based solid catalysts if used as 
a catalyst support. We have demonstrated the catalytic potential of metal@SiCN materials for various transfor-
mations47–54, including a cobalt-based catalyst for the reduction of nitroarenes and the direct synthesis of imines 
and benzimidazoles from nitroarenes and aldehydes55. In addition, we introduced an approach for the one-step 
synthesis of porous SiC materials56.

Here, we report the development of a N-doped mesoporous SiC cobalt nanocomposite material (Co@N-SiC) 
which affords remarkable activity, selectivity and reuse in the hydrogenation of nitroarenes.

Results and Discussions
The synthesis of Co@N-SiC is summarized in Fig. 1, while details are provided in the supporting information 
(SI). A commercial polycarbosilane (PCS) was reacted with a hydroxyl-terminated polyethylene (PEOH)57 to 
synthesize a PCS-block-PE (PCS-b-PE) polymer via dehydrocoupling of Si-H and O-H bonds56. A cobalt com-
plex ([Co(phen)2](OAc)2 where phen: phenanthroline and OAc: acetate) was added to this block copolymer and 
the melt was slowly cooled to room temperature to achieve nanostructuring. The PEOH and the cobalt complex 
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decompose upon pyrolysis (under nitrogen) (see TGA in Figure S1), leaving behind an amorphous SiC material 
with integrated cobalt NPs. The formation of SiC ceramics was confirmed by FT-IR analysis (see Fig. S2 in SI). 
The absence of characteristic bands at 2852 and 2926 cm−1 (C-H stretching vibration) and those at 2200 cm−1 
(Si-H) confirmed the removal of the organic block and the formation of SiC material.

Co@N-SiC was investigated by transmission electron microscopy. A piece of the catalyst, as shown in Fig. 2a, 
indicates a structured, but not highly ordered material. A magnified view of the region selected (red square in 
Fig. 2a) shows metallic NPs (Fig. 2b) with an average size of 5 nm. Elemental composition of the material was 
investigated by energy-dispersive X-ray analysis and the results are presented in Fig. 2c. Characteristic peaks 
corresponding to cobalt can be seen along with those of carbon and some oxygen. The formation of graphitic 
carbon, as reported earlier56, is likely from the decomposition of the organic block. A small amount of oxygen 
could arise from the PEOH block. Presence of nitrogen (2.5 wt%) in Co@N-SiC material was confirmed through 
elemental analysis, which is an indication that nitrogen has been successfully incorporated in the material. It 
would be worth mentioning at this stage that pyrolysis of PCS only provides a non-porous SiC material with no 
nitrogen doping.

The presence of permanent porosity in the material was confirmed by nitrogen physisorption. The cata-
lyst showed a high specific surface area (400 m2/g) and rather widely distributed mesopores (about 4–15 nm, 
see Fig. 3b). A hysteresis and closure of the loop near 0.4 P/P0 is typical of mesoporous materials in an 
adsorption-desorption isotherm (Fig. 3a). Although t-plot method58 suggested almost no contribution of micro-
pores to the total surface area, the presence of micropores, however could not be ruled out completely because of 
the significant adsorption of nitrogen at relative pressure values <0.05.

Catalytic activity of the material for the hydrogenation of nitroarenes with molecular hydrogen was investi-
gated without using any catalyst promoter or a base. Firstly, nitrobenzene was used as a substrate and the effect 
of various parameters, for example, solvent, temperature, reaction time and catalyst loading, was investigated. 
The highest yield of aniline (90%) during solvent screening (Table T1 in SI) was obtained in water (entry 1) and 
water ethanol mixture (entry 2), whereas THF was found to be the least effective (entry 3). However, activity of 
the catalyst decreased in pure ethanol and only 42% of nitrobenzene was hydrogenated under screening condi-
tions. Although the highest activity of the catalyst was found in water, a mixture of ethanol and water was used 
for further studies due to the insolubility of many of the tested compounds in pure water. The other reaction 
parameters, such as temperature, time and hydrogen pressure, were also varied and optimized. A complete con-
version of nitrobenzene to aniline was achieved under optimized reaction conditions [0.5 mmol nitrobenzene, 
90 °C, 4.0 MPa H2, 0.5 mol% catalyst metal, 4 mL solvent (EtOH and water 1:1), 20 h]. We tried different ligands 
(Table T2 in SI) for the synthesis of the Co@N-SiC catalysts and only the complex with phen ligand (entry 3) 
showed catalytic activity. This observation could be attributed to the ability of phen ligand to retain higher nitro-
gen content in the catalyst as compared to other ligands tested46,59. The catalyst can be used in several successive 
runs without losing any activity, as can be seen in Fig. 2d. From this, it can be concluded that the cobalt particles 
are well embedded in the support and that N-functions of the support may play a crucial role regarding the strong 

Figure 1.  Synthesis of mesoporous Co@N-SiC ceramics; (I) block copolymer formation; (II) microphase 
separation; (III) metallation with a Co complex [Co(L2)(OAC)2] where L: phenanthroline, OAc: acetate; (IV) 
pyrolysis.

Figure 2.  Transmission electron microscopy images of Co@N-SiC catalysts (a and b), magnified view of 
selected area from (a) is shown in (b), where the inset shows the size distribution of Co NPs (encircled). The 
EDX of the catalyst is presented in (c). Reusability of the catalyst is presented in (d).
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Figure 3.  Nitrogen adsorption-desorption isotherm (a) and pore size distribution (b) of synthesized catalyst.

Entry Product (Yield) Entry Product (Yield) Entry Product (Yield)

1 7 13

2 8 14

3 9 15

4 10 16

5 11 17

6 12 18

Table 1.  Hydrogenation of various nitroarenes using the Co@N-SiC catalyst[a]. [a] Reaction conditions: 
0.5 mmol nitroarene, 100 °C, 4.0 MPa H2, 2 mol% catalyst (0.59 mg Co, 0.01 mmol, 22 mg) [b] 1 mol% of catalyst 
(0.30 mg, 0.005 mmol of Co, 11 mg); [c] 90 °C, 100 μL H2O, 4 mL EtOH; [d] 100 μL H2O, 4 mL EtOH; [e] 4 mol% 
catalyst (1.18 mg Co, 0.02 mmol, 44 mg). *Hydrogenation took place here. Turnover numbers (TON) are 
provided in parenthesis.
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catalyst support interactions. A small reduction in catalytic activity was noted only in the fourth cycle, which falls 
under the GC error. In the last step, selective hydrogenation of the nitro group in the presence of other functional 
groups was studied and the results are presented in Table 1. Selective hydrogenation of the nitro group without 
any dehalogenation was observed in the case of nitroarenes with chloro (entries 2–4), bromo (entries 5–7), fluoro 
(entry 9) and iodo (entry 8) groups. C-C double bond (entry 14), carbonyl group (entry 13) and nitrile (entry 
10) functional groups, usually highly sensitive towards hydrogenation, were also not hydrogenated. Sterically 
demanding arenes, such as 5-nitroisoquinoline (entry 17), were also converted in high yields. The yields were 
above 95% for all reactions, except for the substrates with sterically demanding substituents, such as bromine 
(entry 5), phenyl (entry 16), amine (entry 18) or primary alcohol (entry 11) at the ortho position. A dinitro com-
pound was also hydrogenated upon doubling of the catalyst amount (entry 15).

Conclusions
One-pot synthesis of a nitrogen-doped SiC material containing cobalt NPs (Co@N-SiC) is feasible via the for-
mation, microphase separation and pyrolysis of a polycarbosilane-block-polyethylene polymer modified with a 
cobalt phenanthroline complex. The porous nanocomposite catalysts subsequently obtained show a high surface 
area and large mesopores. The Co@N-SiC materials are active, robust, selective and reusable in the hydrogena-
tion of nitroarenes to anilines. Selective hydrogenation of the nitro group in the presence of functional groups 
sensitive towards hydrogenation, such as the C-C double bond, carbonyl moiety, iodo and nitrile groups, was 
achieved successfully. We expect that the catalyst synthesis protocol introduced here can be used for the synthesis 
of a variety of highly active and reusable base metal catalysts.

Methods
Synthesis of Co@N-SiC.  OH-terminated polyethylene (Mn = 1194 g/mol, Mw = 1506 g/mol, PDI = 1.26) 
was first dissolved in pyridine followed by the addition of PCS in the weight ratio of 30/70 (PE-OH:PCS). 
Dehydrocoupling of the Si-H and O-H groups leads to the formation of a block copolymer (PCS-b-PE) in which 
both organic (PE) and inorganic (PCS) blocks are covalentally bonded. As both blocks are immiscible and cova-
lentally bonded, microphase separation leads to the formation of a nanostructured material. Afterwards cobalt 
complex [Co(phen)2](OAc)2 was added to achieve a metal to silicon ratio of 1 to 20 (3 wt% Co). The cross-linking 
of PCS block was started by the addition of dicumyl peroxide (5 wt% with respect to PCS). Preceramic cross-
linked material is called a “greenbody”.

Green body was pyrolysed at 750 °C with a heating rate of 1 K/min up to 300 °C and afterwards 5 K/min up to 
final temperature. The material was held for two hours each at 300, 400 and 500 °C.

Catalysis.  In a typical catalysis run, nitroarene (0.5 mmol), solvent (4 mL) and catalyst (0.5–2 mol%) were 
charged in a Parr autoclave and reactor was pressurized with hydrogen (4.0 MPa). The autoclave was heated with 
stirring to a specified temperature and cooled to room temperature at the end of the reaction. The catalyst was 
separated by centrifugation and products were extracted in diethyl ether and quantified using GC.
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