
RESEARCH ARTICLE

Using patient biomarker time series to

determine mortality risk in hospitalised

COVID-19 patients: A comparative analysis

across two New York hospitals

Ben LambertID
1,2☯*, Isaac J. StopardID

3☯, Amir Momeni-Boroujeni4, Rachelle Mendoza5,

Alejandro Zuretti6

1 Department of Computer Science, University of Oxford, Oxford, Oxfordshire, United Kingdom,

2 Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of

Exeter, Exeter, United Kingdom, 3 MRC Centre for Global Infectious Disease Analysis, School of Public

Health, Faculty of Medicine, Imperial College London, London, United Kingdom, 4 Department of Pathology,

Memorial Sloan Kettering Cancer Center, New York, NY, United States of America, 5 Department of

Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America,

6 Department of Pathology, SUNY Downstate Health Sciences University and Maimonides Medical Center,

Brooklyn, NY, United States of America

☯ These authors contributed equally to this work.

* ben.c.lambert@gmail.com

Abstract

A large range of prognostic models for determining the risk of COVID-19 patient mortality

exist, but these typically restrict the set of biomarkers considered to measurements avail-

able at patient admission. Additionally, many of these models are trained and tested on

patient cohorts from a single hospital, raising questions about the generalisability of results.

We used a Bayesian Markov model to analyse time series data of biomarker measurements

taken throughout the duration of a COVID-19 patient’s hospitalisation for n = 1540 patients

from two hospitals in New York: State University of New York (SUNY) Downstate Health Sci-

ences University and Maimonides Medical Center. Our main focus was to quantify the mor-

tality risk associated with both static (e.g. demographic and patient history variables) and

dynamic factors (e.g. changes in biomarkers) throughout hospitalisation, by so doing, to

explain the observed patterns of mortality. By using our model to make predictions across

the hospitals, we assessed how predictive factors generalised between the two cohorts.

The individual dynamics of the measurements and their associated mortality risk were

remarkably consistent across the hospitals. The model accuracy in predicting patient out-

come (death or discharge) was 72.3% (predicting SUNY; posterior median accuracy) and

71.3% (predicting Maimonides) respectively. Model sensitivity was higher for detecting

patients who would go on to be discharged (78.7%) versus those who died (61.8%). Our

results indicate the utility of including dynamic clinical measurements when assessing

patient mortality risk but also highlight the difficulty of identifying high risk patients.
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Introduction

As the coronavirus disease 2019 (COVID-19) pandemic continues to overwhelm many health

services, accurate prognosis remains essential to improved clinical care and decisions regard-

ing the equitable allocation of insufficient intensive care resources [1]. Since the beginning of

the pandemic, many novel prognostic factors have been identified and applied in prognostic

models to predict the course of infection of hospitalised COVID-19 patients [2]. Substantial

inequality in the burden of COVID-19 exists, and many social determinants of the outcome of

infection have been identified, such as deprivation [3–7]. External validation of novel COVID-

19 prognostic factors across a range of different settings is therefore vital. Multivariable models

may partially reconcile differences in samples used for model training, though external valida-

tion is essential because overfitting and confounding of unknown, yet important, variables are

likely to limit the out-of-sample predictive accuracy [8]. Indeed, a systematic validation of 22

prognostic models to an external dataset found none performed better than using the best uni-

variable predictor: age [9]. In an additional study of 107 surveyed prognostic models, many

were found to suffer from small sample sizes and have a high risk of bias in the dataset partici-

pants [2].

A number of biomarkers at presentation, including C-reactive protein, lymphocyte count,

oxygen saturation and urea concentration, are important predictors of hospitalised COVID-19

patient deterioration (defined as the requirement of ventilatory support, critical care or death)

and were included in a recently developed prognostic model of patient deterioration which

achieved robust predictive accuracy (C-statistic: 0.77) when internally and externally validated

on a dataset of 66,705 patients [10]. Similarly, peripheral oxygen saturation, urea level and C-

reactive protein at presentation are used to predict patient mortality [11]. Patients are, how-

ever, admitted to hospital at different states of disease progression, and their biomarkers

change throughout the course of hospitalisation [12–15]. Emerging evidence indicates a num-

ber of time-dependent biomarkers changes may therefore be useful prognostic factors:

increases in platelets and eosinophil percentage are indicative of reduced mortality risk, whilst

increases in alkaline phosphatase may indicate increased mortality risk [15]. Incorporating

dynamic changes in biomarkers can improve the predictive accuracy of prognostic models

when internally validated [14, 15], but the external validation of these prognostic factors is still

required. The role of time-dependent biomarkers in different patients remains a key question

[16]. We previously developed a prognostic Markov model, which allows the quantification of

daily mortality risk and the impact of dynamic changes in biomarkers on this quantity and fit

the model to data from State University of New York (SUNY) Downstate Medical Center [15].

In this study, we fit the model to new data from a different New York hospital: Maimonides

Medical Center (henceforth “Maimonides”). We then compare the impact of dynamic changes

in patient biomarkers on in-hospital mortality risk (i.e. patient outcomes), across SUNY and

Maimonides. In doing so, we obtain an external validation of the model. More importantly,

this allows us to appraise the use of dynamic biomarker measurements for determining patient

mortality risk in hospitalised COVID-19 patients, which is our main contribution.

Materials and methods

Case selection, data extraction and processing

Study approval was obtained from the State University of New York (SUNY) Downstate

Health Sciences University Institutional Review Board (IRB#1595271–1) and Maimonides

Medical Center Institutional Review Board/Research Committee (IRB#2020–05-07).

PLOS ONE Using patient biomarker time series to determine mortality risk in hospitalised COVID-19 patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0272442 August 18, 2022 2 / 15

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0272442


A retrospective query was performed among the patients who were admitted to SUNY

Downstate Medical Center and Maimonides Medical Center with COVID-19-related symp-

toms, which was subsequently confirmed by RT PCR, from the beginning of February 2020

until the end of May 2020. Stratified randomization was used to select at least 500 patients who

were discharged and 500 patients who died due to the complications of COVID-19. Patient

outcome was recorded as a binary choice of “discharged” versus “COVID-19 related mortal-

ity”. Patients whose outcome was unknown were excluded. Demographic, clinical history and

laboratory data were extracted from the hospital’s electronic health records. The raw data were

cleaned and processed for analysis as described in §S1.2. We make the data for this study avail-

able through a Zenodo repository [17].

Estimating risk of mortality for variables available at presentation

To compare the factors affecting mortality risk across the two hospitals, we calculated the odds

ratios (ORs) for each of the variables available at presentation. To do so, we converted the ini-

tial biomarker values to binary categories: above (1) or below (0) the pooled sample mean

across the two hospitals (in our Markov model, discussed later in Methods, we allow continu-

ous, opposed to binarised impacts of variables on patient outcomes). Laboratory test values at

presentation were included only if 150 or more patients in each of the hospitals had data for

this test available. If laboratory tests were repeated on the first day of admission, we took the

mean value taken on this day to be the value at presentation. Odds ratios were calculated for

each variable by estimating the proportion dying for each subgroup and then taking the ratio

of these proportions. We assumed the observed counts of individuals expiring were binomially

distributed,

Xj
0 � BðNj

0; y
j
0
Þ; Xj

1 � BðNj
1; y

j
1
Þ; ð1Þ

where j indicates the binary variable under consideration (for example, whether an individual

was aged 0–40 or whether they had a history of asthma); Xj
0 and Xj

1 indicate the counts of indi-

viduals dying for the two subgroups (e.g. whether an individual was aged 0–40 or not); Nj
0 and

Nj
1 are the observed counts of individuals in the two subgroups; and y

j
0

and y
j
1

are the estimated

proportions dying in the corresponding subgroups. Parameters were estimated using a Bayes-

ian framework: the estimated ratio of y
j
1
=y

j
0

defined the OR for variable j and was estimated by

taking 100,000 independent draws from the posterior distributions of each of y
j
1

and y
j
0

assum-

ing uniform priors.

Laboratory value time trends

To determine average trends in laboratory values over the course of a patient’s hospitalisation,

we carried out a series of regressions for each laboratory test stratified by patient outcome and

hospital. To do so, we calculated the percentage change in each patients’ biomarker values

relative to their values at presentation. These were scaled to have a mean of 0 and standard

deviation of 1. Infinite (i.e. when the first biomarker value was zero), missing or extreme

observations (the absolute value of the percentage change exceeded the 98% quantile) were

excluded from the regression so that our results focused on the bulk of observations, opposed

to the extremes. The percentage change in test value was modelled as a function of a quadratic

time trend, allowing for fixed effect trends but including individual patient slopes of both the

linear and quadratic terms of the trend. These models were estimated in a frequentist frame-

work using the lme4 R package [18], and we extracted the fixed effect estimates of the trends

for each model.
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Bayesian Markov models of dynamic risk

The univariate OR estimates described thus far do not account for the impact of other covari-

ates when determining risk. Furthermore, these methods consider a static outcome (whether a

patient dies at some point during their hospitalisation) and do not account for the time taken

for the outcome to occur, or allow dynamic variables to be included. A patient’s underlying

risk of death may, however, change throughout the course of their hospitalisation, which can

be indicated by changes in certain biomarkers [15].

Here, we briefly describe a multivariate discrete time Markov model which aims to identify

the importance of different prognostic factors on COVID-19 mortality risk and estimate the

change in individual patients’ mortality risk throughout the course of hospitalisation. (The

model has previously been described more fully here: [15].) The model specifically accounts

for the competing risks of discharge and death. Note, it is possible to use cause-specific hazards

models (Cox regressions for each event of interest, treating the other event as censored) to esti-

mate the cumulative incidence function but, in these models, it is not possible to assess the

impact of individual covariates on the cumulative incidence function [19, 20]. By considering

the sequence of outcomes for each day each patient was in hospital, Markov models can simul-

taneously account for the risk of discharge versus mortality: on the first day, patients are

admitted and begin in the “hospital” state; at the end of the first day, they either remain in hos-

pital or transition to the “discharged” or “death” states. On subsequent days, patients that

remained in hospital can undergo the same possible transitions. The probabilities different

transitions occur were modelled as a function of each patient’s demographic characteristics,

comorbidities, laboratory test values at presentation and dynamic trends in laboratory test val-

ues (as measured by their percentage changes relative to their values at presentation). A sche-

matic of the model is provided in Fig 1. The un-normalised probabilities of each possible

transition are modelled using a log link:

qdischargedit ¼ expða0i þ α0
1
xitÞ; qdeathit ¼ expðb0i þ β0

1
xitÞ; qhospitalit ¼ 1; ð2Þ

where i indicates a given patient; t indicates the day of hospital stay post-admission for a given

patient; α1 and β1 are vectors of regression coefficients relating to the vector of (potentially

time-varying) regressors in xit; α0i and β0i are patient-specific intercepts. The normalised

probabilities of transitions between the states are then given by the ratio of the un-normalised

Fig 1. Markov model of patient trajectories during clinical care. For two hypothetical patients, we illustrate how the

probability of their observed trajectory is calculated. Note that pit refers to the probability of an observed transition,

which is a function of the patient (i) and day (t): the time-dependence of probabilities is realised through Eq (2) and is

due to (potential) changes in covariates.

https://doi.org/10.1371/journal.pone.0272442.g001
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probabilities to the sum of all these: qtotalit ¼ qdischargedit þ qdeathit þ qhospitalit ; so that, for example,

pdischargedit ¼ qdischargedit =qtotalit .

Using this model, we performed six separate regressions, each with different groups of inde-

pendent variables (i.e. different xit in Eq (2)). In the first of these, we included only a single

variable in an analysis to examine the influence of each variable in isolation. The second

regression included patient demographic characteristics (“patient” variables), including their

age, sex and ethnicity, and the day they were admitted to hospital. The third regression (“pat.

+ comorbidities”) supplemented the patient variables with the recorded comorbidities for each

patient: whether they had hypertension, diabetes etc. (n = 13 conditions in total). The fourth

regression (“admission”) supplemented the third with the initial measurements for each

patient for each of the n = 18 clinical tests common across the two hospitals (one test, MCHC,

was dropped from these regressions since it is directly calculated from MCH and MCV). The

fifth regression (“post-admission”) then included the percentage changes in each clinical test

measurement from the initial values for each patient. Both the initial values and the dynamic

values were scaled to give a mean of 0 and a standard deviation of 1, so that the ORs were esti-

mated on a scale that was consistent across the different laboratory tests and represented the

typical clinical variation in these values. The biomarkers included in the study along with the

acronyms used are given in S1 Table in S1 File. The final regression considered used both the

static variables of the pat. + comorbidities regression and the raw values of the tests (standard-

ised by subtracting the sample mean and dividing through by the sample standard deviation).

The aim of this regression was to investigate whether relative changes from baseline or, rather,

the absolute covariate values which were most predictive of outcomes.

The model was estimated in a Bayesian framework using the Stan’s NUTS sampler [21, 22].

We used priors for the regression coefficients that induce sparsity: meaning that only the most

predictive covariates would be estimated to have non-zero effects. The priors for the parame-

ters are shown in S2 Table in S1 File. The univariate models were run for 2000 iterations; the

multivariate models were run for either 2000 iterations, then a further 2000–6000 iterations if

not converged. In all cases, we ran the model using four chains with the first half of iterations

discarded as warm-up. The Markov chains satisfied R̂ < 1:01 and bulk- and tail-ESS> 400 for

all parameters, consistent with convergence. The Stan code for the model is provided in §S1.3.

Generalisation of predictions

Next, we assessed whether the sets of factors considered in this paper can be used to predict

patient outcomes that generalise across both hospitals. To do so, we fitted the Markov model

to data from each hospital in turn, then used it to predict patient outcomes (i.e. whether the

patient ultimately died in hospital or was discharged) in the other held-out hospital. In this

analysis, we did not consider the time taken for death or discharge to occur, and future work

could consider also these outcomes (although our previous work has demonstrated that pre-

dicting timings is likely difficult [15]). As discussed in Methods, we scaled both the initial labo-

ratory values and the dynamic values using the sample mean and standard deviation. When

performing between-hospital prediction, we used the mean and standard deviation of values

of the training hospital to scale variables in the independent hospital test set. This ensured that

we only used information available in the training set when making predictions.

To check that the Markov model provided a reasonable fit of the underlying data, we per-

formed a series of posterior predictive checks (PPCs) (see, for example, [23, 24]). But, in order

to assess their generalisation of the fitted models, we performed the PPCs on independent

hold-out sets. For the Markov model with the post-admission set of variables, we compared

the model-estimated and actual mortality rates, separately for models trained on data from
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SUNY and Maimonides. In S1 Fig in S1 File, we show the estimated (black point-ranges) and

estimated (orange points) mortalities across groupings of our binary predictor variables for a

model fit to data from SUNY and used to predict the outcome in an independent test set also

from SUNY. These graphs indicate a good correspondence in the majority of cases. In S2 Fig

in S1 File, we show a similar plot but for the dynamic biomarkers where we compare mortality

rates for groups of individuals with last recorded laboratory values above or below the mean:

again, this plot illustrates a reasonable fit. In S3 & S4 Figs in S1 File, we show the same plots

but when fitting to data from SUNY but predicting outcomes in Maimonides. These fits were

noticeably poorer than for the within-SUNY fits, although the general trends in outcome

across the binarised groups tended to be similar. In S5-S8 Figs in S1 File, we repeat the same

analysis, but using Maimonides as the data used to train the model.

Results

There were notable differences in demographics across the hospitals

The hospital cohorts (n = 553 patients in SUNY; n = 987 in Maimonides) differed in demo-

graphic variables and underlying comorbidities (Table 1). Patients of SUNY predominantly

Table 1. Summary characteristics of patient groups from the two hospitals. Note, that in some cases, data were miss-

ing meaning that patients counts across all shown categories do not aggregate to n = 553 for SUNY and n = 987 for

Maimonides.

Variable SUNY Maimonides

outcome: discharged 342 (61.8%) 496 (50.3%)

outcome: expired 211 (38.2%) 491 (49.7%)

sex: female 271 (50.3%) 437 (44.3%)

sex: male 268 (49.7%) 550 (55.7%)

ethnicity: black 472 (86.8%) 119 (12.3%)

ethnicity: hispanic 17 (3.1%) 2 (0.2%)

ethnicity: other or unrecorded 39 (7.1%) 271 (27.5%)

ethnicity: white 25 (4.6%) 595 (61.7%)

age: 0–40 26 (4.8%) 116 (11.8%)

age: 40–50 43 (7.9%) 57 (5.8%)

age: 50–60 93 (17.2%) 112 (11.3%)

age: 60–70 140 (25.8%) 201 (20.4%)

age: 70–80 137 (25.3%) 210 (21.3%)

age: 80+ 103 (19.0%) 291 (29.5%)

asthma 24 (4.4%) 89 (9.0%)

cancer 16 (2.9%) 89 (9.0%)

cerebrovascular disease 25 (4.6%) 80 (8.1%)

congestive heart failure 23 (4.2%) 292 (29.6%)

chronic kidney disease 19 (3.5%) 76 (7.7%)

copd 25 (4.6%) 96 (9.7%)

coronary artery disease 44 (8.0%) 391 (39.6%)

dementia 13 (2.4%) 120 (12.2%)

diabetes 229 (41.9%) 348 (35.3%)

endstage renal disease 54 (9.9%) 50 (5.1%)

hepatitis 4 (0.7%) 24 (2.4%)

hyperlipidemia 103 (18.8%) 270 (27.4%)

hypertension 350 (64.0%) 516 (52.3%)

https://doi.org/10.1371/journal.pone.0272442.t001
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self-reported as black, whereas those of Maimonides predominantly self-reported as white.

Diabetes was more prevalent in the SUNY cohort, whereas coronary artery disease and conges-

tive heart failure were more prevalent in the Maimonides cohort. The presence of multiple

conditions within individual patients differed substantially between the two cohorts (S9 Fig in

S1 File). There were minor differences in the distributions of the laboratory test values at

admission (available across both hospitals) of the two hospital cohorts, with the exception of

BASO PCT and MCHC (S10 Fig in S1 File).

There was consistent mortality risk associated with static factors

To compare the mortality risk for those variables available at presentation (including demo-

graphic variables, comorbidities and laboratory test values at admission), which were common

across the two hospitals, we estimated the ORs measuring the risk of death associated with

each of the variables.

There was a significant positive correlation between the OR estimates of the demographic

and comorbidity variables of the two hospitals (using median posterior estimates: ρ = 0.82,

t19 = 6.33, p< 0.01; here and throughout, ρ indicates Pearson correlation coefficient estimates)

(Fig 2A). In Maimonides, the variables tended to be less associated with risk than for SUNY

(regression slope of posterior median estimates for Maimonides on those from SUNY:

b̂ ¼ 0:65, t19 = 3.48, p< 0.01 against H0: β = 1). Similarly, there was a significant positive cor-

relation between the OR estimates of the laboratory values at admission between the two

Fig 2. Comparing univariate mortality ORs across the hospitals. The two panels compare ORs associated with demographic and disease history variables (panel A)

and initial laboratory test values (panel B). Points show the posterior median ORs; the whiskers display the 25% and 75% posterior quantiles. The orange dashed lines

show the OR = 1 cases; the dashed black lines indicate equality in the ORs across the two hospitals. The blue line shows least squares regression lines using the posterior

median ORs.

https://doi.org/10.1371/journal.pone.0272442.g002
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hospitals (ρ = 0.85, t17 = 6.77, p< 0.01), and the regression slope was not significantly different

from 1 (t17 = 0.22, p> 0.05) indicating there was no systematic differences in ORs between

hospitals for these variables (Fig 2B).

The dynamics of biomarker values were remarkably similar across the

hospitals for patients with the same outcomes

We next considered dynamic changes in the n = 19 laboratory biomarkers which were avail-

able across both hospitals, which we plot in Fig 3. This illustrates that, irrespective of patient

outcome, there is considerable inter-patient variability in the time series of these biomarkers.

To compare the average dynamics of laboratory test values for patients throughout the

course of their hospitalisation, we also estimated hospital-specific time trends for each patient

Fig 3. Comparing time trends in laboratory values across hospitals. The horizontal axis shows the days post admission and the vertical axis shows the

percentage change in biomarker values from their initial values. Each panel displays trends for an individual biomarker; within the subpanels of each of

these, we show the results for each of the hospitals. Individual graphs show the dynamics of the individual patients’ laboratory values (thin coloured

lines) and the time trends (thick coloured lines) estimated assuming a quadratic regression function. Line colouring indicates the outcome of an

individual patient (thin lines) or overall group being considered for regressions (thick lines). Note that for plotting we only display data up until day 15

post admission, since, after this point, there were relatively few patients still hospitalised.

https://doi.org/10.1371/journal.pone.0272442.g003
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group (see Methods). Across the majority of variables, there was a high degree of correspon-

dence in these average trends across the two hospitals (Fig 3). Indeed, the correlation between

the regression estimates of the percentage change in laboratory values at 15 days post admis-

sion (after this point, only a minority of patients were still hospitalised) was correlated across

the hospitals: for both the discharged and expired groups, these correlations were significant

and positive (discharged: ρ = 0.94, t17 = 11.25, p< 0.01; expired: ρ = 0.94, t17 = 11.58,

p< 0.01).

The biomarkers associated with mortality risk were generally similar across

the hospitals

In Fig 4, we compare the ORs associated with daily mortality risk for each of the common bio-

markers across the two hospitals as derived from the Markov model (described in Methods).

Across the univariate and multivariate model estimates, there was strong positive correlation

in the ORs between the hospitals (univariate: ρ = 0.84, t16 = 6.52, p< 0.01; multivariate: ρ =

0.65, t16 = 3.45, p< 0.01; in both cases, using posterior median estimates). With few exceptions

the estimates agreed in terms of their “sign”: for the univariate model, 15/18 tests had posterior

median estimates where either both odds ratios were above one across the two hospitals or

both were below one; for the multivariate model, the corresponding figure was 14/18 tests. A

notable outlier was MCV, which was estimated to have a substantially stronger effect in the

Maimonides cohort in the multivariate model, although this was not recapitulated in the uni-

variate analysis suggesting caution interpreting this further.

Based on these estimates, increases in MCV, decreases in LYM PCT, and decreases in CO2

throughout a patient’s stay were associated with the strongest increase in mortality risk.

Fig 4. Comparing ORs for dynamic laboratory measurements. Panels A/B compare the ORs for the univariate/multivariate

models. The horizontal axes displays the ORs for daily mortality risk from SUNY and the vertical axes show the ORs from

Maimonides. Points show the posterior median ORs; the whiskers display the 25% and 75% posterior quantiles. The orange dashed

lines show the OR = 1 cases; the dashed black lines indicate equality across ORs calculated across the hospitals. The blue line shows

least squares regression lines using the posterior median ORs.

https://doi.org/10.1371/journal.pone.0272442.g004
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The models generalised well across hospitals and fared better in predicting

the outcome of patients who were discharged

Across the different regressor sets, out-of-sample predictive accuracy was consistent across the

hospitals (Fig 5A). In all cases, the posterior median predictive accuracy using data from Mai-

monides resulted in slightly higher prediction accuracy than when using data from SUNY:

likely due to the higher sample size for Maimonides. The results also show the predictive

power of dynamic laboratory measurements (included in the “post-admission” set), which

resulted in a substantial boost in accuracy across both hospitals over a model including only

those available at admission (“admission”).

We next used the model using all available post-admission variables to probe its predictive

performance for those groups of patients who went on to be discharged and died. To do so, we

pooled predictions across both independent hospital testing sets: note, that in both cases, these

predictions were formed using out-of-sample testing sets. The resultant confusion matrix is

shown in Fig 5B. This indicates that the model had a higher sensitivity to determine patients

that would eventually be discharged (posterior mean: 79.2%) compared to those who would go

on to die (61.0%).

We next assessed the reduction in accuracy when predicting patient outcomes in the same

hospital versus a different hospital. We did this by using validation sets either comprised of

separate data from the same hospital (“within’) or a different hospital (“between”). In S11 Fig

in S1 File, we show the predictive accuracy for models fitted using data from SUNY (left panel)

and Maimonides (right panel). Point colour indicates whether the validation set comprised

patients from within the same hospital (green) or a different hospital (orange). Note that, in

this analysis, the requirement for an independent within-hospital datasets to fit the model

Fig 5. Model predictive accuracy in patient outcomes for held-out hospital. Panel A shows the accuracy in predicting outcomes across four regression sets. Colours

indicate the hospital whose data was used to train the model: so, for example, “SUNY” indicates that data from this hospital was used to fit the model which was then

tested on data from Maimonides. The horizontal axis shows the accuracy in predicting patient outcomes (i.e. death or discharge) using a Markov regression model with

covariate sets as named on the vertical axis. The points and whiskers indicate the posterior medians and 2.5%-97.5% posterior intervals for the percentage of patients

whose outcome was correctly determined across posterior draws. Panel B shows a confusion matrix for between-hospital prediction using Markov model with the post-

admission covariate set. Here, the values show the mean percentage of each outcome type correctly predicted across all posterior samples.

https://doi.org/10.1371/journal.pone.0272442.g005
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meant that the training datasets were smaller than those used to produce Fig 5A: resulting in

slightly lower overall accuracy. In almost all cases, median predicted accuracy when predicting

outcomes within the same hospital was higher than that when predicting those in a different

hospital. The difference, however, was relatively small (mean difference in posterior medians:

2.1%), indicating that the predictions generalised well from one location to another.

To determine whether there were subgroups of patients where the model performed better

or worse, we examined the factors that influenced the predictive accuracy for those patients

who went on to die in each of the hospitals. To do so, we used the models that were trained on

all the data from one hospital (i.e. those used to produce Fig 5A). We then used a random for-

est to predict posterior median predictive accuracy for each of the patients, as a function of

their time-invariant characteristics. Then using the “impurity” measure of variable impor-

tance, we identified those variables that were associated with differences in predictive accuracy

(S12 Fig in S1 File). The top three factors were: the time since the first patient was admitted to

that hospital with COVID-19, whether the patient had a history of coronary artery disease and

whether their self-reported ethnicity was categorised as BAME. These three variables were

then included in a linear regression to predict median predictive accuracy. This regression

indicated that having a history of coronary artery disease led to improved predictive power

(β = 0.14, t478 = 5.66, p< 0.01); other factors were insignificant.

Relative changes in biomarker values and their raw values are similarly

predictive of outcomes

We tested the hypothesis that the biomarker values themselves opposed to their relative

changes from a patient-specific baseline were most important in determining outcomes by fit-

ting our multivariate Markov model using the biomarker values as covariates: we term this

model the “absolute values” analysis to distinguish it from the “relative changes” analysis.

To do so, we compared the predictive power of the absolute values analysis with that of the

relative changes one. In S13 Fig in S1 File, we show the predictive accuracy in determining

patients’ outcomes for an independent hold-out hospital across the two analyses. This illus-

trates very similar accuracies across the two analyses, and that it is not possible for us to con-

clude whether the absolute biomarker values or the changes from baseline are most clinically

relevant.

To explore whether the two analyses led to different conclusions about clinically relevant

changes in biomarker values, we compared the ORs for mortality risk across the analyses. The

ORs from the absolute values analysis were, like those from the relative changes analysis, very

consistent across the hospitals (S14 Fig in S1 File; ρ = 0.88, t16 = 7.40, p< 0.01; using posterior

median estimates). We also compared the ORs across the two analyses (S15 Fig in S1 File). The

ORs produced across the two analyses were of the same sign for 15/18 biomarkers for SUNY

and for 15/18 for Maimonides, and the ORs were strongly positively correlated for both hospi-

tals (SUNY: ρ = 0.77, t16 = 4.88, p< 0.01; Maimonides: ρ = 0.94, t16 = 11.4, p< 0.01; both

using posterior median estimates). Overall, there were six biomarkers whose increases were

associated with increases in mortality risk across the two analyses and hospitals: BASO PCT,

Creatine, LYM ABS, MCV, RDW and WBC; and a set of seven biomarkers whose increases

led to reductions in risk: CO2, EOS PCT, Glucose Random, LYM PCT, MCH, MONO ABS

and NEU ABS.

Discussion

A number of studies have demonstrated that dynamic changes in certain laboratory tests

may have potential as COVID-19 prognostic factors [12, 14, 15]. Here, we demonstrate the
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external validation of a number of these dynamic biomarkers. In accordance with existing

studies, we find a number of biomarkers at presentation (or when measured at a single time-

point) increased mortality risk across both hospital cohorts (univariate ORs): these included

eosinopenia [25], thrombocytopenia [26, 27], lymphocytopenia [27, 28] and increased blood

urea concentration (in our case indicated by BUN) [11]. In addition, we quantified the

reduction in mortality risk associated with dynamic variation in biomarkers and, across the

two hospitals found remarkably consistent estimates. Interestingly, we identified biomarkers

that have little prognostic value at presentation whereas their dynamic changes do: increases

in MCV, for example, increased mortality risk. These results highlight the potential impor-

tance of measuring dynamic changes in biomarkers for patient prognosis. Our model could

better predict outcomes for patients who went on to be discharged opposed to those who

eventually died, indicating the challenges in assessing mortality risk in hospitalised COVID-

19 patients.

Our study suffered from a number of limitations. Data availability limited the prognostic

factors tested, and future work is therefore required to quantify the mortality risk associated

with dynamic changes in other prognostic factors that are known to be important at presenta-

tion. These include abnormal biomarkers of inflammation, myocardial injury, acute respira-

tory distress syndrome (ARDS) and coagulopathy [26, 28]. We also did not include time-

dependent changes in certain chemokines and cytokines, which can also indicate disease pro-

gression [12, 29]. Additionally, we did not account for the potential impact of patient treat-

ment on dynamic changes in biomarkers or on outcomes. Mechanical ventilation of patients

with ARDS, for example, is used to maintain certain arterial pCO2 values, and both mechanical

ventilation and certain COVID-19 pharmaceutical treatments can influence inflammatory

markers [30, 31]. We considered patients solely hospitalised during early to mid-2020 within a

single region (New York), but novel variants and existing immunity may alter survival [32].

Within certain settings, patient survival has improved throughout the course of the pandemic

[33], and temporal recalibration of multivariate regression models, which aim to quantify the

OR of survival for different prognostic factors, is therefore necessary to ensure survival is not

under- or overestimated [34]. By using a relatively simple model (which assumed a linear func-

tional form on the log-odds scale), we focused on the ability of our model to explain not pre-

dict [35]. Using this approach, it is possible that we missed important contributions from the

interactions between factors, and future work could investigate the use of models such as

Bayesian Additive Regression Trees [36], which allow non-linear interactions between

regressors.

Whilst our model performed well across the two cohorts examined, we caution against its

use as a dynamic prognostic model in clinical settings. In order for it to be used as thus, any

such model requires training and evaluation over a much larger sample size across multiple

settings including the full set of factors implicated with risk. The ease of use in a clinical setting

and effects on clinicians’ behaviour, comparison with existing prognostic models, cost-effec-

tiveness and impact on patient health must also be assessed prior to the implementation of any

prognostic model [37].

Supporting information

S1 File. Supplementary information: Contains biomarker abbreviations, the priors used,

the various posterior predictive checks, graphical comparisons of raw data and assess-
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