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Abstract
Background: Multiple myeloma (MM) is a hematological malignancy. Coronavirus dis-
ease 2019 (COVID- 19) infection correlates with MM features. This study aimed to 
identify MM prognostic biomarkers with potential association with COVID- 19.
Methods: Differentially expressed genes (DEGs) in five MM data sets (GSE47552, 
GSE16558, GSE13591, GSE6477, and GSE39754) with the same expression trends 
were screened out. Functional enrichment analysis and the protein- protein in-
teraction network were performed for all DEGs. Prognosis- associated DEGs were 
screened using the stepwise Cox regression analysis in the cancer genome atlas 
(TCGA) MMRF- CoMMpass cohort and the GSE24080 data set. Prognosis- associated 
DEGs associated with COVID- 19 infection in the GSE16 4805 data set were also 
identified.
Results: A total of 98 DEGs with the same expression trends in five data sets were 
identified, and 83 DEGs were included in the protein- protein interaction network. 
Cox regression analysis identified 16 DEGs were associated with MM prognosis 
in the TCGA cohort, and only the cytochrome c oxidase subunit 6C (COX6C) gene 
(HR = 1.717, 95% CI 1.231– 2.428, p = .002) and the nucleotide- binding oligomeriza-
tion domain containing 2 (NOD2) gene (HR = 0.882, 95% CI 0.798– 0.975, p = .014) 
were independent factors related to MM prognosis in the GSE24080 data set. Both 
of them were downregulated in patients with mild COVID- 19 infection compared 
with controls but were upregulated in patients with severe COVID- 19 compared with 
patients with mild illness.
Conclusions: The NOD2 and COX6C genes might be used as prognostic biomark-
ers in MM. The two genes might be associated with the development of COVID- 19 
infection.
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1  | INTRODUC TION

Multiple myeloma (MM) ranks 24th in the world in 2018, with ap-
proximately 160,000 newly diagnosed cases.1 In hematological 
malignancies, the incidence of MM ranks second to non- Hodgkin 
lymphoma. The incidence rate of MM is 2.1 per 100 000 persons 
globally and is higher (10 per 100,000 persons) in Latin American 
countries.2– 5 The survival rate of MM patients has been greatly 
improved over the past two decades with the introduction of new 
drugs, but MM remains an incurable malignancy. Also, the 5- year 
and 10- year overall survival rate of MM is still less than 60% and 
40%.2 Older MM patients have a lower survival rate and an insignif-
icant improvement in survival from new drugs.2

Prognostic factors can be applied for predicting individualized 
prognosis, making risk stratification, and treatment recommenda-
tions.6 Factors associated with the prognosis in MM include patients' 
age, cytogenetics, serum creatinine, platelet count, and gene expres-
sion profile.6 Protein coding (mRNAs) and noncoding RNAs (includ-
ing miRNAs, lncRNAs, and circRNAs) with prognostic significance in 
MM have been proven in the past years.7,8 Of note, recent evidence 
shows a correlation between coronavirus disease 2019 (COVID- 19) 
infection and MM clinical features.9– 11 A recent study showed that 
most MM patients (77%) had moderate- severe coronavirus disease 
2019 (COVID- 19) clinical features, but is lower than 89% in non-
cancer patients. Most patients who did not survive COVID- 19 were 
male with advanced tumor stages.11 Most MM patients with a loss 
of functional immunoglobulins and decreased CD4+ T- cell count, 
which are associated with increased infections.12 Accordingly, MM 
patients are more susceptible to COVID- 19 infection.9,10 However, 
some research studies showed that the most common MM subtypes 
with COVID- 19 infection were IgG and MM patients with COVID- 19 
showed a longer duration to clinical improvement.13 These studies 
show that there might be a potent correlation between COVID- 19 
infection and MM, which might indicate the hidden and unknown 
mechanisms of MM.

Since pandemic COVID- 19 in 2020, more and more evidence 
shows that there is a correlation between gene differential expres-
sion and COVID- 19 infection.14 However, there is limited informa-
tion on the characteristics of MM patients with COVID- 19. Hence, 
the identification of potent prognostic biomarkers in MM that might 
have association with pandemic COVID- 19 might provide novel in-
sights into the treatment strategy for MM patients hospitalized with 
COVID- 19.

2  | MATERIAL S AND METHODS

2.1 | Multiple myeloma microarray data sets

Five MM gene expression microarray data sets (including GSE16558, 
GSE47552, GSE39754, GSE13591, and GSE6477) were selected from 
The National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). The 

inclusion criteria of MM microarray data sets were as follows9: inclu-
sive of normal bone marrow plasma cell samples from MM patients 
(≥40)12; without restrictions on patients' gender, race, treatment 
response, karyotype, mutation, and pathologic stages. Forty- one, 
60, 133, 103, and 170 plasma cell samples (CD138- positive) from 
MM patients were included in the data sets GSE47552, GSE16558, 
GSE13591, GSE6477, and GSE39754, respectively. Five (GSE13591, 
GSE47552, and GSE16558), six (GSE39754), or 15 (GSE6477) plasma 
cell samples from healthy donors were included in each data set 
and were used as healthy control samples. These data sets were 
performed based on three platforms GPL6244 ([HuGene- 1_0- st] 
Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]; 
GSE47552 and GSE16558), GPL96 ([HG- U133A] Affymetrix Human 
Genome U133A Array; GSE13591 and GSE6477), and GPL5175 
([HuEx- 1_0- st] Affymetrix Human Exon 1.0 ST Array [transcript 
(gene) version]; GSE39754). Samples from patients with MM and 
healthy donors were retained in this study.

2.2 | COVID- 19 microarray data set

One COVID- 19 gene expression data set (GSE16 4805) was down-
loaded from the GEO. It was based on the GPL26963 platform 
(Agilent- 085982 Arraystar human lncRNA V5 microarray). GSE16 
4805 was composed of 15 peripheral blood mononuclear cells 
(PBMCs) from severe (respiratory rate ≥ 30 times/min, resting fin-
ger oxygen saturation ≤93%, and artery PaO2/FiO2 ≤ 300 mmHg) 
and mild COVID- 19 patients (n = 10, PCR positive) as well as healthy 
controls (n = 5).

2.3 | Data processing and identification of 
differentially expressed genes

Differentially expressed genes in each data set were identified 
using the online program GEO2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r/) provided by the NCBI. DEGs in each data set were se-
lected using the criteria of p < .05 and |log(fold change, FC)| ≥ 0.5. 
DEGs common to the five MM data sets were screened out using 
the Venn tool (http://bioin forma tics.psb.ugent.be/webto ols/Venn/). 
DEGs with the same expression trends (upregulation, logFC > 0.5; 
or downregulation, logFC < - 0.5) in five data sets were retained and 
used for further analysis.

2.4 | Gene set functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 
Gene Ontology (GO) biological processes associated with DEGs 
were obtained in the Database for Annotation, Visualization and 
Integrated Discovery (DAVID; version 6.8; https://david.ncifc 
rf.gov/). Significant themes were identified using the criteria of 
p < .05 and input number ≥ 1.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47552
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13591
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6477
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47552
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13591
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6477
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13591
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47552
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6477
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47552
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13591
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6477
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164805
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164805
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164805
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/


     |  1327WANG et Al

2.5 | Construction of the protein- protein 
interaction network

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; 
version 11.0; https://strin g- db.org/cgi/input.pl) is a database of 
known and predicted Protein- protein interactions. Protein interac-
tion pairs with medium confidence (0.4) among DEGs were predicted 
in the STRING database. The PPI network was constructed using the 
Cytoscape (version 3.8.0; http://apps.cytos cape.org/), and modules 
with a high K- score (>5.0) were identified using the plugin MCODE 
(http://apps.cytos cape.org/apps/mcode).

2.6 | Selection of multiple myeloma prognosis- 
associated differentially expressed genes

The association of DEGs in the PPI network with the prognosis 
in MM patients was used to screen the MM prognosis- associated 
DEGs. The Cancer Genome Atlas (TCGA) MM RNA sequencing data 
set (MMRF- CoMMpass) was obtained from the UCSC Xena (https://
xenab rowser.net/datap ages/). Samples (n = 784) with matched gene 
expression profile, overall survival time, and vital status (1 = death) 
were extracted and used for further analyses in this study. The as-
sociation of DEG expression levels with the overall survival time in 
individuals with MM was analyzed using the Cox regression analy-
sis. Also, the microarray data set GSE24080 (GPL570, [HG- U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, n = 559) 
was obtained to validate the association of DEGs with MM progno-
sis. Kaplan- Meier plots were used to show the differences in sur-
vival percent between patients with high and low expression levels 
(divided by median value) of DEGs.

2.7 | Identification of multiple myeloma prognosis- 
associated differentially expressed genes in 
COVID- 19

At last, the MM prognosis- associated DEGs which might be differ-
entially expressed in patients with COVID- 19 infection were iden-
tified using the Venn diagram. The expression profiles of the key 
MM prognosis- associated DEGs in patients with mild and severe 
COVID- 19 clinical features were compared.

2.8 | Statistical analysis

Cox regression analysis and Kaplan- Meier survival analysis were 
performed using the SPSS software (version 22.0; IBM Corporation, 
Somers). 95% confident interval (CI) and hazard ratio (HR) were cal-
culated. The one- way ANOVA test was used for the comparison in 
the expression level of genes among sample comparison groups in 
the GSE16 4805 data set. A statistical significance was considered 
when p < .05.

3  | RESULTS

3.1 | Differentially expressed genes identification 
and screening

Total of 1144, 3213, 9475, 2504, and 4428 DEGs were identified from 
the GSE13591, GSE16558, GSE39754, GSE47552, and GSE6477 data 
set, respectively. As indicated by the Venn diagram analysis, there were 
109 common DEGs among the five data sets (Figure 1), including 98 DEGs 
with the same expression trends were identified and shown in Table S1.

3.2 | Functional enrichment analysis

Functional enrichment analysis showed that a cluster of upregu-
lated genes encoding ribosomal proteins were associated with bio-
logical processes including “GO:0019083: viral transcription,” “GO: 
0006364:rRNA processing,” and “GO:0002181: cytoplasmic transla-
tion,” and KEGG pathways including “hsa03010: Ribosome” (Table S2). 
Also, another cluster of genes were associated with biological processes 
such as “GO:0006123: mitochondrial electron transport, cytochrome c 
to oxygen” and “GO:1902600: hydrogen ion transmembrane transport.”

3.3 | Construction of the protein- protein interaction 
network and modules

A total of 601 interaction pairs were predicted for 83 of the above 
98 DEGs, including eight downregulated DEGs and 75 upregulated 
DEGs. Accordingly, the PPI network was composed of 83 nodes (DEG 

F I G U R E  1   Venn diagram indicating the number of differentially 
expressed genes in five data sets [Colour figure can be viewed at 
wileyonlinelibrary.com]
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products) and 601 edges (interactions; Figure 2). Two modules, mod-
ules 1 and 2, consisted of 27 nodes (340 edges) and 13 nodes (63 
edges), respectively. All the genes in modules 1 and 2 were upregulated 
(Table S1 and Figure 2). Functional enrichment analysis showed that 
DEGs in module 1 were mainly associated with 14 biological processes 
including “GO:0019083: viral transcription,” “GO: 0006364:rRNA 
processing,” and “GO:0002181: cytoplasmic translation,” and one 
KEGG pathway of “hsa03010: Ribosome” (Figure S1A,B). DEGs in 
module 2 were associated with eight biological processes related to 
mitochondrial energy metabolism and seven KEGG pathways related 
to neurodegenerative diseases (Figure S1A,B). Those results showed 
that genes in modules 1 and 2 had distinct biological functions.

3.4 | Identification of differentially expressed genes 
associated with the prognosis of multiple myeloma

Using the TCGA MMRF- CoMMpass cohort (n = 784) and univari-
ate Cox regression analysis, we identified that 30 DEGs of the 83 
DEGs in the PPI network were associated with the overall survival 
time (Table S3). Multivariate Cox regression analysis showed that 
12 DEGs were confounding factors because the inclusive of them 
changed the other factors from protective factors (HR < 1.0) to risk 
factors (HR > 1.0) or vice versa. The exclusive of the 12 DEGs re-
tained the consistent features of the other genes by univariate and 
multivariate Cox regression analyses (Table S4). Also, the Spearman 
correlation analysis showed that there were significant correlations 
between the expression levels of the 12 genes (Spearman correla-
tion coefficient, r > .500, p < .05; Table S5). Four out of the other 18 

DEGs were identified as prognosis- associated DEGs by multivariate 
Cox regression analysis (Table S4). Also, 16 genes were considered 
as potent prognosis- associated DEGs in MM patients in this study.

3.5 | Validation for the association of differentially 
expressed genes with multiple myeloma prognosis 
in GSE24080

The GSE24080 data set that contained the overall survival data 
of 559 patients were downloaded from the GEO. The expression 
profiles of the 16 potent MM prognosis- associated DEGs were ex-
tracted. The stepwise Cox regression analysis showed that the cy-
tochrome c oxidase subunit 6C (COX6C) gene was a risk factor for 
a short even- free survival time (HR = 1.704, 95% CI 1.198– 2.426, 
p = .003) and a short overall survival period (HR = 1.717, 95% CI 
1.231– 2.428, p = .002; Table 1). Besides, we confirmed that the 
nucleotide- binding oligomerization domain containing 2 (NOD2) 
gene might be a protective factor against a poor prognosis in MM 
patients (even- free survival time: HR = 0.899, 95% CI 0.811– 0.996, 
p = .041; overall survival time: HR = 0.882, 95% CI 0.798– 0.975, 
p = .014; Table 1).

3.6 | Kaplan- Meier survival analysis for 
COX6C and NOD2

The expression profiles of the NOD2 (downregulated) and 
COX6C (upregulated) genes are shown in Figure S2. The results of 

F I G U R E  2   Protein- protein interaction 
network. This network was constructed 
based on the interactions among the 
98 common differentially expressed 
genes in five data sets. Upregulation and 
downregulation are indicated by red and 
green color, respectively. Two modules 
in the circle lines were identified using 
MCODE in the Cytoscape

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
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Kaplan- Meier survival plot analysis GSE24080 data set and TCGA 
cohort showed that patients with high expression levels of COX6C 
had a lower overall survival ratio in both GSE24080 data set and 
TCGA cohort compared with patients who had low COX6C ex-
pression levels (in GSE24080: HR = 1.608, 95% CI 1.184– 2.183, 
p = .002; in TCGA: HR = 1.392 95% CI 1.020– 1.898, p = .037). 
However, patients with high NOD2 expression level developed a 
higher overall survival ratio compared with patients with low NOD2 
expression level (in GSE24080: HR = 0.638, 95% CI 0.471– 0.865, 
p = .004; in TCGA: HR = 0.725, 95% CI 0.531– 0.991, p = .044; 

Figure 3A,B). These results indicated that high COX6C expression 
and low NOD2 expression might be independent risk factors for a 
poor MM prognosis.

3.7 | Identification of common Differentially 
expressed genes in COVID- 19 patients

Based on the same criteria of |logFC| > 0.5 and p < .05, we identified 
25,874 DEGs in the GSE16 4805 data set, including 10 of the 16 MM 

TA B L E  1   Correlation of genes with the survival of patients with multiple myeloma in the GSE24080 dataset

Gene symbol

Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Even- free survival

CLIC1 1.196 (0.897– 1.595) 0.224

COX6C 1.822 (1.290– 2.574) 0.001 1.704 (1.198– 2.426) 0.003

EIF3G 0.869 (0.700– 1.079) 0.204

EIF3K 0.850 (0.664– 1.089) 0.199

HIGD2A 0.874 (0.702– 1.089) 0.231

MRPS12 1.069 (0.928– 1.233) 0.355

NOD2 0.879 (0.793– 0.973) 0.013 0.899 (0.811– 0.996) 0.041

RPL12 1.008 (0.803– 1.264) 0.946

RPL14 0.850 (0.631– 1.145) 0.285

RPL15 0.882 (0.664– 1.172) 0.387

RPL24 1.006 (0.827– 1.375) 0.621

RPS15 0.813 (0.573– 1.152) 0.244

RPS17 1.071 (0.774– 1.483) 0.678

RPS6 0.941 (0.665– 1.332) 0.732

RPS9 0.825 (0.647– 1.052) 0.122

SNRPB 1.337 (1.027– 1.741) 0.031 1.177 (0.909– 1.523) 0.216

Overall survival

CLIC1 1.263 (0.957– 1.668) 0.099

COX6C 1.892 (1.349– 2.653) 2.190e– 04 1.717 (1.213– 2.428) 0.002

EIF3G 0.906 (0.730– 1.124) 0.369

EIF3K 0.877 (0.683– 1.127) 0.304

HIGD2A 0.954 (0.765– 1.190) 0.677

MRPS12 1.029 (0.894– 1.184) 0.690

NOD2 0.855 (0.775– 0.944) 0.002 0.882 (0.798– 0.975) 0.014

RPL12 0.980 (0.788– 1.220) 0.859

RPL14 0.882 (0.663– 1.174) 0.389

RPL15 0.963 (0.727– 1.277) 0.794

RPL24 1.030 (0.805– 1.316) 0.816

RPS15 0.841 (0.600– 1.178) 0.313

RPS17 1.041 (0.761– 1.424) 0.802

RPS6 0.908 (0.652– 1.266) 0.571

RPS9 0.864 (0.677– 1.102) 0.238

SNRPB 1.421 (1.090– 1.853) 0.010 1.217 (0.937– 1.580) 0.141

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164805
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080


1330  |     WANG et Al

prognosis- associated DEGs (Figure 4A,B). Also, the NOD2 and COX6C 
genes were both downregulated in patients with mild COVID- 19 in-
fection compared with healthy controls (Figure 4B,C). However, pa-
tients with severe COVID- 19 clinical features had higher expression 
levels of NOD2 and COX6C compared with patients with low NOD2 
(p = .0035) and COX6C (p = .0716, insignificance; Figure 4C) levels, 
respectively. These results suggested that the NOD2 and COX6C 
genes might be associated with COVID- 19 severity.

4  | DISCUSSION

Based on the integrated bioinformatics of microarray data sets from 
patients with MM, we identified 16 DEGs that were associated with 
the prognosis of patients with MM. Also, the COX6C (upregulated) 
and NOD2 (downregulated) genes might be independent factors 
associated with the prognosis in MM patients. Also, the two genes 
were both downregulated in patients with mild COVID- 19 infection 

F I G U R E  3   Kaplan- Meier survival analysis for COX6C and NOD2 in multiple myeloma. A, the overall survival analyses for the COX6C and 
NOD2 genes in the GSE24080 data set (n = 559). B, the overall survival analyses for the COX6C and NOD2 genes in The Cancer Genome 
Atlas (TCGA) cohort (MMRF- CoMMpass, n = 784) [Colour figure can be viewed at wileyonlinelibrary.com]

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
https://onlinelibrary.wiley.com/


     |  1331WANG et Al

compared with healthy controls, but were upregulated in patients 
with severe COVID- 19 infection compared with patients who had 
mile infections. These results might show that there was a potent 
connection between the development of MM and the expression of 
the two genes. Besides, the two genes might have potent association 
with the development of COVID- 19.

NOD2 is a putative intracellular receptor for bacterial pepti-
doglycans and acts as a bacterial sensor, innate immune receptor, 
and antibacterial factor.15,16 NOD2- mediated inflammation and 
immunity contribute to the control of infections.17,18 NOD2 is only 
activated by muramyl dipeptides (MDP) that are presented in bac-
terial peptidoglycan.17,19 MDP and its analogs enhance nonspecific 
resistance to viral infection, including herpes simplex virus type 2 
(HSV2) that is also defended by Bacillus Calmette- Guérin (BCG) vac-
cination.20– 23 MDP presents in human peripheral blood, and its con-
centration is increased after BCG vaccination.24,25 In the last year 

of the COVID- 19 pandemic, research studies showed that BCG- 
vaccinated persons might have enhanced protection from infection 
of COVID- 19.25 Accordingly, we presumed that the decreased NOD2 
expression might enhance the risk of COVID- 19 infection. Also, the 
enhanced expression of NOD2 in patients with severe COVID- 19 
pneumonia might be a self- protection mechanism and adaptive im-
mune response to COVID- 19 infection or drug- induced boost to the 
immune system.

The NOD2 gene also functions as a tumor suppressor gene in mul-
tiple cancers.26– 29 Li et al26 showed that the rs2111235 C allele muta-
tion, which might result in a decreased secretion of pro- inflammatory 
cytokines after H pylori infection, was associated with a decreased 
risk of gastric cancer progression. However, there is limited informa-
tion on the characteristics of NOD2 expression and mutation in MM 
patients.30 A recent study from Zmorzyński et al30 showed that the 
3020insC variant of the NOD2/CARD15 gene did not impact the MM 

F I G U R E  4   Identification and expression of differentially expressed genes in patients with COVID- 19 infection and multiple myeloma. 
A, the Venn diagram indicating the common DEGs between patients with COVID- 19 infection and the 16 prognostic genes in multiple 
myeloma. B, the expression profiles of the 10 common genes in the GSE16 4805 data set. C, the expression profiles of the COX6C and 
NOD2 genes in the peripheral blood mononuclear cells (PBMCs) from patients with (mild = 5 and severe = 5) and without (controls) 
COVID- 19 infection

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164805
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risk, but resulted in the upregulation of pro- inflammatory cytokines 
in MM patients. Our present study showed that patients with MM 
had a lower expression level of NOD2 in the bone marrow plasma 
cells compared with controls. Also, NOD2 expression was a positive 
prognostic biomarker in MM prognosis, as patients with high NOD2 
expression levels had a higher survival ratio compared with patients 
who had low NOD2 expression levels. This correlation might be due 
to the increased innate immunity mediated by NOD2.

The negative prognostic biomarker in MM was the COX6C gene 
that encodes a cytochrome c oxidase subunit VIc, the terminal en-
zyme of the mitochondrial respiratory chain that catalyzes the elec-
tron transfer from reduced cytochrome c to oxygen. Mitochondrial 
respiratory chain complexes ensure the energy supply for cell pro-
liferation, cell growth, DNA replication, and multiple biological pro-
cesses.31 These proteins had deregulated expression levels in cancer 
cells.31– 34 Patients with high expression levels of mitochondrial 
respiratory chain proteins have shorter survival periods compared 
with patients with low expression levels.33,34 The inhibition of mi-
tochondrial translation effectively sensitizes cancer cells to chemo-
therapy.31,34 These results showed that the prognostic COX6C gene 
might be a therapeutic target in MM.

There is evidence showing that the initial exposure to influenza 
virus upregulates the expression level of COX6C expression in the 
host alveolar and bronchial epithelial cells.35 COX6C is required 
for the initiation of apoptosis in the host cells and the activation 
of caspase- 9 and caspase- 3,36 which was associated with inhibited 
virus infection and decreased viral numbers.37– 39 Besides, low ex-
pression of COX6C decreases caspase- 3 apoptotic pathway, which 
is highly favorable for viral replication.35,40 These data at least pro-
vide evidence showing that patients with COVID- 19 infection and 
low COX6C expression had a longer duration of clinical improvement 
compared with noncancer patients.13 The decreased expression 
level of COX6C in patients with COVID- 19 infection and increased 
COX6C expression level in MM patients might show that there was a 
potent negative correlation between the pathogenesis and develop-
ment of MM and COVID- 19 infection.

5  | CONCLUSIONS

In summary, our present study showed that patients with MM had a 
higher expression level of the COX6C gene and genes encoding ribo-
somal proteins, but a lower level of the NOD2 gene compared with 
controls. Both low NOD2 expression level and high COX6C expres-
sion level were related to a low survival ratio in MM patients. Also, 
the expression of NOD2 and COX6C was downregulated in patients 
with mild COVID- 19 pneumonia compared with healthy controls, 
but was upregulated in patients with severe COVID- 19 pneumonia 
compared with patients with mild COVID- 9 infection. The NOD2 and 
COX6C genes might be used as prognostic biomarkers in MM. The 
two genes might be associated with the development of COVID- 19 
infection.
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