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Cardiometabolic diseases, including cardiovascular disease, obesity, and diabetes, are

the leading cause of mortality and morbidity worldwide. Cardiometabolic diseases

are associated with many overlapping metabolic syndromes such as hypertension,

hyperlipidemia, insulin resistance, and central adiposity. However, the underlying causes

of cardiometabolic diseases and associated syndromes remain poorly understood.

Within the past couple of decades, considerable progresses have been made to

understand the role of inflammatory signaling in the pathogenesis of cardiometabolic

diseases. The transcription factor, NF-κB, a master regulator of the innate and adaptive

immune responses, is highly active in cardiometabolic diseases. IκB kinase β (IKKβ), the

predominant catalytic subunit of the IKK complex, is required for canonical activation

of NF-κB, and has been implicated as the critical molecular link between inflammation

and cardiometabolic diseases. Recent studies have revealed that IKKβ has diverse

and unexpected roles in mediating adiposity, insulin sensitivity, glucose homeostasis,

vascular function, and atherogenesis through complex mechanisms. IKKβ has been

demonstrated as a critical player in the development of cardiometabolic diseases

and is implicated as a promising therapeutic target. This review summarizes current

knowledge of the functions of IKKβ in mediating the development and progression of

cardiometabolic diseases.
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INTRODUCTION

Cardiometabolic diseases such as atherosclerosis, obesity, and diabetes are related to several
risk factors termed cardiometabolic syndromes (1, 2). Cardiometabolic syndromes encompass a
group of metabolic dysfunctions like hypertension, hyperlipidemia, insulin resistance, and central
adiposity (1). Chronic low-grade inflammation has been established as a major contributor to the
development of cardiometabolic diseases such as type 2 diabetes and atherosclerosis (3, 4). Many
inflammatory pathways that contribute to the cardiometabolic disease risk are regulated by the
transcriptional factor NF-κB, a master regulator of the innate and adaptive immune responses
(1, 5). In non-stimulated cells, NF-κB remains in the cytoplasm bound to specific inhibitory
proteins—the inhibitors of NF-κB (IκBs). In response to various stimuli including proinflammatory
cytokines, infectious agents, reactive oxygen species, and free fatty acids (FFAs), NF-κB can be
rapidly activated through the IκB kinase (IKK) complex (1, 5, 6). The IKK complex is composed
of two catalytic subunits (IKKα and IKKβ) and a regulatory subunit (IKKγ/NEMO). Activation of
IKK can lead to the phosphorylation and ubiquitination of IκB. Consequently, free NF-κB can then
translocate to the nucleus and regulate the expression of many target genes (1, 7).
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While IKKβ and IKKα, have a similar structure, they
have different functions as IKKα contains a putative nuclear
localization signal and IKKβ contains a ubiquitin binding
domain. In addition, IKKβ activation is necessary for canonical
NF-κB pathway activation, while IKKα is not (8, 9). The stimuli
that can activate IKKβ include proinflammatory cytokines,
growth factors, microbial products, stress stimuli, and the
engagement of T cell receptors. These stimuli can activate
membrane-bound receptors such as the Tumor necrosis factor
receptor superfamily (TNFRSF), Interleukin-1 receptor (IL-
1R), and Toll-like receptors (TLR), subsequently leading to
the activation of the IKK complex (10, 11). IKKβ and its
serine-threonine kinase activity are essential for regulating
inflammatory and immune responses, and many studies have
uncovered its function in chronic inflammation-associated
cardiometabolic diseases such as atherosclerosis, obesity, and
insulin resistance (Figure 1). In addition to regulating the NF-
κB pathway, more and more new targets of IKKβ have also
been identified. The known IKKβ substrates and their functions
in tumorigenesis, inflammation, diabetes, hormone response,
and cell survival have been discussed in detail in several
comprehensive reviews (12, 13). For the purpose of this review,
we focus on IKKβ, its known substrates, and their functions in
the development of cardiometabolic diseases (Figure 1).

FIGURE 1 | IKKβ regulates many cellular processes associated with the development of cardiometabolic diseases through NF-κB-dependent and -independent

mechanisms. IκB kinase (IKK); Nuclear factor kappa B (NF-κB); X-box binding protein (XBP-1); Insulin receptor substate 1 (IRS-1); Insulin receptor (IR); Ubiquitination

(Ub); Unfolded protein response (UPR); Phosphorylation (P). This figure was created using BioRender.com.

THE ROLE OF IKKβ IN
ATHEROSCLEROSIS DEVELOPMENT

Atherosclerosis is the major contributing risk factor for the
development of cardiovascular disease (CVD). It is a very
complex disease involving the development of plaques in large
arteries causing narrowing of the vessel lumen leading to various
clinical manifestations, including stroke, ischemic heart disease,
chronic kidney disease, and peripheral artery disease. The plaques
are characterized by accumulating lipids and immune cells into
the sub-endothelial space (14–18). Atherosclerosis has been
characterized as a chronic inflammatory disease, which may
be initiated when the endothelium undergoes a phenotypic
change, termed endothelial dysfunction, stimulated by modified
LDL such as oxidized-LDL (oxLDL) and inflammatory stimuli.
The endothelium fails to maintain vascular homeostasis during
endothelial dysfunction like vasodilation, eliminating reactive
oxygen species, and maintaining an appropriate inflammatory
balance. Various chemotactic factors and adhesion molecules
are differentially expressed by endothelial cells undergoing
endothelial dysfunction, which aids in monocyte migration
and infiltration. Ox-LDL is rapidly taken up by monocyte
scavenger receptors upon monocyte infiltration, leading to the
conversion of monocytes into lipid-filled macrophage foam cells.
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The lesional foam cells can release inflammatory factors to
further contribute to the monocyte and lipid build-up (16–19).
While acute vessel wall inflammation leads to asymptomatic
fatty streaks, chronic inflammation can cause the gradual and
uncontrolled accumulation of macrophage foam cells that later
develop into symptomatic atheromas or plaques. For many years,
the NF-κB pathway has been implicated in the pathogenesis
of atherosclerosis (20). For example, NF-κB activation has
been detected in atherosclerotic plaques, including macrophages,
endothelial cells, and smooth muscle cells in both human
and animal models (21–24). Previous studies have implicated
that NF-κB activation in human atherosclerosis was IKKβ-
dependent and resulted in up-regulation of proinflammatory
and prothrombotic mediators (25). However, recently studies
have demonstrated that the functions of IKKβ in atherosclerosis
are complex and that IKKβ in different tissues or cell types
may have different impact on atherosclerosis development in
animal models.

Endothelial Cell IKKβ in Atherosclerosis
As a significant player in atherosclerosis initiation and
progression, studies have suggested that the inflammatory
response in endothelial dysfunction can be driven by
IKKβ/NF-κB signaling (14, 21, 26). Gareus et al. previously
demonstrated that inhibition of NF-κB activity through the
deletion of IKKγ, also known as NF-κB essential modulator
(NEMO), or expression of a dominant-negative IκBα decreases
atherosclerosis in atherogenic prone mice (14). They also
found that inhibition of NF-κB in endothelial cells reduced
the expression of proinflammatory cytokines, chemokines, and
adhesion molecules, leading to decreased monocyte recruitment
into the plaque (14). Consistently, inhibition of IKKβ in human
umbilical vein endothelial cells has been shown to block NF-
κB activation, leading to decreased adhesion molecule gene
expression including E-selectin, ICAM-1, and VCAM-1 (27).
These adhesion molecules are essential for the attachment and
infiltration of the recruited monocytes into the intimal layer
(16–18). By contrast, constitutive activation of endothelial IKKβ

in mice increased monocyte infiltration into the subintimal
space, which contributed to exacerbating early and late-stage
atherosclerosis (28). Indeed, the rise of age-associated endothelial
dysfunction is correlated with increased IKK activation in arteries
while pharmacological inhibition of IKK by salicylate has been
shown to improve age-related endothelial dysfunction (29).
Thus, targeting endothelial cell IKKβ may have beneficial effects
against atherosclerosis development.

Macrophage IKKβ in Atherosclerosis
The M1, or proinflammatory, macrophage plays a key role in
atherosclerosis development, while M2, or anti-inflammatory,
macrophages enhance plaque regression and stability (30).
The link between macrophage polarization and IKKβ remains
elusive, though evidence suggests that IKKβ/NF-κB pathway
activation polarizes macrophages to the M2, anti-inflammatory
phenotype through negative crosstalk with STAT1 (31, 32).
To study the role of macrophage IKKβ in atherosclerosis,
Kanters et al. transplanted IKKβ-deficient bone marrow-derived

macrophages into atherogenic prone low-density lipoprotein
receptor-deficient (LDLR−/−) mice. They found that the
mice receiving IKKβ-deficient macrophages exhibited enhanced
atherosclerotic lesion development and increased necrosis, which
suggest a protective role of bone marrow-derived macrophage
IKKβ against atherosclerosis development (33). However, the
same group used a similar method to delete IκBα in myeloid
cells, aimed to activate NF-κB signaling. Interestingly, those
mice displayed increased atherosclerosis lesion size and leukocyte
adhesion without significantly increasing NF-κB targeted genes
(34), indicating pro-atherogenic effects of canonical NF-κB
activation. Several other studies have also found that macrophage
IKKβ/NF-κB pathway has pro-atherogenic effects (35, 36).
For example, inhibition of NF-κB in macrophages through
the overexpression of a trans-dominant and non-degradable
form of IκBα can reduce macrophage foam cell formation
in vitro (35). Further, myeloid-specific IKKβ deficiency decreased
diet-induced atherosclerosis in LDLR−/− mice by diminishing
macrophage inflammatory responses such as adhesion, migration
and lipid uptake in macrophages (36). Collectively, these results
indicate the role of macrophage IKKβ/NF-κB in atherogenesis
is complex and more studies are needed to completely
understand how IKKβ functions in myeloid cells to regulate
atherosclerosis development.

Vascular Smooth Muscle Cell IKKβ in
Atherosclerosis
In addition to endothelial and immune cells, vascular
smooth muscle cells (VSMCs) also play an important role
in atherogenesis. In the early stages of atherosclerosis, VSMCs
undergo a phenotypic switch from contractile to synthetic
where they gain the ability to proliferate and migrate into the
intimal layer. This provides a beneficial effect as these VSMCs
proliferate and migrate to the cap of the plaque and reinforces
its stability, lowering the risk for plaque rupture (37). An earlier
study demonstrated that IKKα and IKKβ was activated in
IL-1β-induced proliferative response of human saphenous vein
smooth muscle cells (38). Notably, the proliferative ability of
human VSMCs were diminished in IKKα and IKKβ mutant
transfected cells (38). The role of VSMC IKKβ in atherosclerosis
was also investigated in LDLR−/− mice (39). Deficiency of IKKβ

in VSMCs driven by a SM22Cre-IKKβ-flox system protected
LDLR−/− mice from diet-induced vascular inflammation and
atherosclerosis development (39). Since inhibition of NF-κB
activity in endothelia cells also decreased vascular inflammation
and atherosclerosis in ApoE−/− mice (14), these studies suggest
that inhibiting IKKβ/NF-κB signaling in the vasculature has
anti-atherogenic effects.

Adipocyte IKKβ in Atherosclerosis
Under pathological conditions, adipose tissue is at a chronic
low level of inflammation (3). The circulating inflammatory
mediators secreted by adipocytes participate in vascular
dysfunction, which can lead to atherosclerosis (40). However,
the role of adipocyte IKKβ signaling in atherogenesis is poorly
understood. A recent study found that adipocyte-specific
deletion of IKKβ did not affect obesity and atherosclerosis in
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lean LDLR−/− mice when fed a low-fat diet (41). When fed
a high-fat diet, however, IKKβ-deficient LDLR−/− mice had
defective adipose remodeling, leading to increased adipose tissue
and systemic inflammation (41). Deficiency of adipocyte IKKβ

did not affect atherosclerotic lesion size but resulted in enhanced
lesional inflammation and increased plaque vulnerability in obese
IKKβ-deficient LDLR−/− mice (41). In addition to regular fat
depots, adipocytes can also be found adjacent to the vascular wall
called perivascular adipose tissue (PVAT). Under homeostatic
conditions, PVAT holds a protective role on vascular homeostasis
by secreting bioactive molecules like adiponectin, nitric oxide
(NO), and IL-10 (42, 43). However, under pathological
conditions, PVAT switches to a proinflammatory phenotype by
secreting adipokines, cytokines, and chemokines (43). The role
of PVAT in atherosclerosis and vascular injury has not been
extensively investigated. However, studies have found that PVAT
may contribute to endothelial dysfunction (42), macrophage
migration, and VSMC proliferation and migration (44). The role
of PVAT IKKβ in vascular function and atherosclerosis remains
elusive. Future studies should be considered to investigate the
role of PVAT IKKβ/NF-κB signaling on vascular function and
atherosclerotic development under normal or pathological
conditions (e.g., obesity).

THE ROLE OF IKKβ IN REGULATING
ADIPOSITY

Obesity is a worldwide epidemic and a risk factor for developing
severe metabolic and cardiovascular diseases. According to
the updated 2020 Heart Disease and Stroke Statistics, 39.6%
of adults and 18.5% of youth are living with obesity in the
US (45). Thus, research surrounding this field has become
increasingly popular due to the financial, economic, and mental
burden it carries (46). Obesity is associated with a low-grade
chronic inflammation that contributes to the development of
many chronic diseases including insulin resistance, diabetes,
and CVD (3, 4, 47–49). Adipocytes are responsible for energy
storage and respond to overnutrition by increasing adiposity and
inflammation. There are three general steps to adipose chronic
inflammation. First, adipocytes are introduced to a stressor,
like overnutrition. The adaptive physiological response, which
includes acute inflammation, aims to balance, and reduce this
stressor. However, chronic exposure to this stressor creates new
set basal points, which includes higher blood glucose levels and
increased body weight (50). Thus, understanding themechanistic
link between inflammatory pathways in obesity, and obesity
induced metabolic disorders is critical for developing essential
therapeutic targets.

The IKKβ/NF-κB pathway is highly active in the
adipose tissues of obese patients and in mouse models
of obesity and insulin resistance (1, 51, 52). In addition
to regulating inflammatory responses, IKKβ also plays
important roles in regulating cell proliferation, differentiation,
survival, and apoptosis (47, 53). However, the function
of IKKβ during obesity in the context of adipose
tissue development remain elusive. Recent studies have

revealed the previously unrecognized function of IKKβ in
regulating adiposity.

Adipocyte Progenitor IKKβ in Regulating
Adiposity
While deletion of IKKβ in VSMCs decreased atherosclerosis
development in LDLR−/− mice (39), those mice were also
protected from diet-induced obesity and insulin resistance.
Interestingly, many adipocyte precursor cells express SMC
markers and ablation of IKKβ blocked adipocyte differentiation
in vitro and in vivo, suggesting that IKKβ functions in
adipocyte precursor cells to regulate adiposity (39). Indeed,
selective deletion of IKKβ in the white adipose lineage further
elucidated the role of adipose progenitor cell IKKβ signaling in
regulating adiposity and metabolic function (39, 54). Deficiency
of adipose progenitor IKKβ decreased high-fat feeding-induced
adipogenesis and systemic inflammation, resulting in decreased
adiposity and insulin resistance in those mice (39, 54). The
function of IKKβ in the regulation of adipogenesis was further
confirmed in mesenchymal stem cells (MSCs) (55). Mechanistic
studies then revealed an important crosstalk between IKKβ and
Wnt/β-catenin signaling (Figure 1) (55). Interestingly, IKKβ is a
β-catenin kinase that can directly phosphorylate the conserved
degron motif of β-catenin to prime it for β-TrCP-mediated
ubiquitination and degradation (10, 55).Wnt/β-catenin signaling
has been well studied to inhibit adipocyte differentiation
(56, 57) and the impact of IKKβ signaling on adipogenesis
was abolished in β-catenin-deficient MSCs (10, 55). Thus,
IKKβ-mediated β-catenin phosphorylation may play a critical
role in regulating adipocyte differentiation and adiposity in
obesity (Figure 1).

Adipocyte IKKβ in Regulating Adiposity
While studies have suggested a pro-obesogenic role of progenitor
IKKβ, the function of IKKβ in mature adipocytes is apparently
more complicated. Constitutive activation of IKKβ in adipocytes
has been demonstrated to increased energy expenditure in
mice, leading to protective effects against diet-induced obesity
and insulin resistance (58). However, targeted deletion of
IKKβ in adipocytes did not affect obesity but resulted in
increased tissue inflammation, impaired adipose remodeling,
and exacerbated metabolic disorders (59, 60). In addition to
mediating inflammation, IKKβ can also promote cell survival
by upregulating NF-κB-mediated anti-apoptotic gene expression
(61–63) and by direct phosphorylation of pro-apoptotic protein,
BAD (64). Previous reports have linked adipocyte death with
obesity, adipocyte macrophage infiltration, and systemic insulin
resistance (65). IKKβ has been shown to be a key adipocyte
survival factor in obesity, and deficiency of IKKβ in adipocytes
can lead to high fat feeding-elicited cell death, impaired adipose
tissue remodeling and partial lipodystrophy in visceral adipose
tissue (59, 60). Further studies are required to completely
understand the role of adipocyte IKKβ in regulating energy
expenditure, homeostasis, and adiposity.
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THE ROLE OF IKKβ IN INSULIN
RESISTANCE

Insulin resistance is a very complex syndrome and IKKβ has
been shown to regulate insulin resistance by directly interfering
with the insulin signaling pathway (66). Once stimulated by
its ligand, insulin, the insulin receptor (IR) becomes activated
and phosphorylates insulin receptor substrate-1 (IRS-1) on its
tyrosine residues, leading to increased glucose uptake (67).
As a serine kinase, IKKβ can ectopically phosphorylate IRS-
1 on multiple serine residues, which impairs insulin signaling
(Figure 1) (68). Several studies have demonstrated that treatment
with glucose lowering drugs and molecules such as kaempferol
(69), timosaponin B-II (TB-II) (70), rosiglitazone (71), and
bovine α-lactalbumin hydrolysates (α-LAH) (72) can alleviate
insulin resistance by decreasing or inhibiting IKKβ levels/activity
resulting in a reduction of ectopic IRS-1 serine phosphorylation.

Hepatic IKKβ in Insulin Resistance
The IKKβ/NF-κB pathway has been demonstrated to be active
in both obesity-dependent and independent insulin resistance
(47, 53). Inhibition of IKKβ with salicylate or other methods
is associated with reduced insulin resistance and glucose
intolerance (54, 73–75). Previous studies demonstrated that
constitutively active hepatic IKKβ induced obesity-independent
systemic insulin resistance, while inhibiting hepatic NF-κB
reversed both local and systemic insulin resistance (51,
76). These findings indicate an important role of IKKβ in
regulating hepatic and systemic insulin resistance. Another
study utilizing hepatocyte-specific IKKβ deficient mice found
improved hepatic insulin response while maintaining systemic
insulin resistance during obesity (77). These results can be
attributed to obesity-associated systemic inflammation that
cannot be alleviated by IKKβ knockdown in the liver alone.
More recently, it has been reported that hepatic IKKβ in
the liver can improve glucose homeostasis by interacting with
x-box binding protein 1 (XBP1) and enhancing its activity,
stabilization, and nuclear translocation (Figure 1) (78). While
it is generally recognized that hepatic inflammation drives the
detrimental perspectives of obesity-induced insulin resistance
(1, 73, 79), upregulation of certain inflammatory signaling
could have positive or negative contributions to whole-body
metabolism, depending on conditions of signaling activation
and related physiological statuses. Therefore, the hepatic IKKβ

function in insulin resistance is complex and future studies
are required to define the detailed mechanisms through which
hepatic IKKβ regulates insulin responsiveness under normal and
pathophysiological conditions.

Adipose IKKβ in Insulin Resistance
Inflammation is an important contributor of insulin resistance,
and adipose tissue is one of the important tissues for this
high-fat feeding-elicited inflammatory response (80). Adipose
IKKβ signaling has been implicated in obesity-associated insulin
resistance. For example, studies have found that IKKβ deficiency
in adipocyte precursors or adipose lineage cells can protect
mice from diet-induced obesity, systemic inflammation and

insulin resistance (39, 54). Several studies demonstrated that
IKKβ deficiency and XBP1 overexpression attenuates FFA-
induced inflammation and impairment of insulin signaling in
cultured adipocytes (81, 82). While hepatic IKKβ increases
nuclear translocation of XBP1 (78), adipocyte IKKβ is inhibited
by XBP1 (82), indicating a more complex role of IKKβ/XBP1
interaction in cardiometabolic disease. Overexpression of IKKβ

in adipocytes also led to increased adipose tissue inflammation
in mice (58). Paradoxically, those mice were resistant to diet-
induced obesity and insulin resistance, likely due to increased
energy expenditure (58). Deletion of adipocyte IKKβ did not
affect obesity in mice but resulted in elevated adipose tissue
inflammation, increased macrophage infiltration and exacerbate
insulin resistance (59, 60).

Skeletal Muscle IKKβ in Insulin Resistance
Skeletal muscle is another insulin responsive tissue that is
impaired in obesity and diabetes (67). Studies revealed elevated
IKKβ activity in isolated skeletal muscle of obese patients with
type 2 diabetes and obese mice (83, 84). By contrast, inhibition of
IKKβ or NF-κB signaling can restore insulin signaling in vitro
(85, 86) and systemic IKKβ inhibition can alleviate skeletal
muscle and systemic insulin resistance all together (73, 74).
However, under obese conditions, targeting skeletal muscle IKKβ

can only alleviate local insulin resistance, but not systemic insulin
responsiveness (87).

Myeloid IKKβ in Insulin Resistance
While tissue-specific inhibition of IKKβ (i.e., liver, adipose,
skeletal muscle) may be able to abrogate local insulin resistance,
it may not be sufficient for systemic inflammation-induced
insulin resistance under obese conditions. For example, it is
reported that myeloid-specific IKKβ deficiency can improve
obese-dependent systemic insulin resistance (77, 87), indicating
that myeloid cell IKKβ plays a role in systemic insulin resistance
and inflammation in obesity. Furthermore, Cai et al. linked the
IKKβ/NF-κB pathway with paracrine IL-6 signaling (51), which is
associated with type 2 diabetes and insulin resistance (88, 89). IL-
6 can induce the expression of suppressor of cytokine signaling
3 (SOCS-3), which inhibits autophosphorylation of IRS-1 and
insulin receptor (90). The IKKβ/NF-κB/IL-6 axis was confirmed
to be involved in insulin resistance when IL-6 neutralization
improved insulin resistance (51).

THE ROLE OF IKKβ IN METABOLIC
SYNDROME-ASSOCIATED LIVER DISEASE

Non-alcoholic fatty liver disease or non-alcoholic steatohepatitis
is also associated with metabolic syndrome. The activation of
the IKKβ/NF-κB pathway has been shown to promote fatty
liver disease, or hepatic steatosis (91), whereas inhibition of
IKKβ prevents the initiation of steatosis and non-alcoholic
steatohepatitis (75, 92). Inhibition of IKKβ significantly reduced
the expression of essential proinflammatory genes like TNFα
and IL-6 in the liver (92). In line with lipid metabolism,
the peroxisome proliferator-activated receptor family (PPAR)
is an important regulator of lipid homeostasis in multiple
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TABLE 1 | Overview of IKKβ modulation and mechanism in cardiometabolic diseases.

Cell Type IKKβ modulation Effect on cardiometabolic diseases Mechanism Reference

Endothelial Cells Constitutive

activation

Accelerated atherosclerotic development and

progression, increased macrophage infiltration

1. Upregulation of endothelial NF-κB mediated gene expression

of cytokines/chemokines (CCL2, CCL12, IL-1β, IL-6, CXCR4),

increased macrophage infiltration

2. Cellular transition of SMC to macrophage-like cells

(29)

Myeloid Cells Knockout Increased lesion size, more severe lesion,

increased necrosis, increase macrophage

content at the lesion site

1. Reduction of IL-10 anti-inflammatory cytokine (33)

Myeloid Cells Knockout Decreased lesion size, macrophage infiltration,

and foam cell formation

1. Reduction in macrophage/lesional NF-κB-mediated

proinflammatory gene expression/protein level (MCP-1, TNFα,

IL-1β, IL-1α, VCAM-1, ICAM-1), reducing macrophage

recruitment and infiltration

2. Reduced scavenger receptor expression levels, decreased

ox-LDL uptake by macrophages

(36)

VSMC Knockout Decreased lesion size 1. Reduction in lesion proinflammatory protein level

(MCP-1, TNFα, IL-1β)

(39)

Adipocytes Knockout Increased plaque vulnerability 1. Upregulation of aortic/lesional NF-κB mediated gene

expression of cytokines/chemokines/protein levels (MCP-1,

TNFα, IL-1β, IL-6, VCAM-1, ICAM-1)

(41)

MSC Gain of function Promoted adipogenesis and inhibits

osteogenesis

1. Increases adipogenic genes (Zfp423, PPARγ)

2. Tags β-catenin for β-TrCP-mediated ubiquitination

leading to adipogenesis

(55)

MSC, MEFs Knockdown with

various methods

Inhibited adipogenesis and promotes

osteogenesis

1. Suppresses adipogenic genes (Zfp423, PPARγ)

2. Reduced β-catenin ubiquitination leading to osteogenesis

(55)

White adipose

lineage

Knockout Decreased obesity; improved glucose

tolerance; protected from hepatic steatosis

1. Suppresses adipogenic genes (Zfp423, PPARγ, C/EBPα)

2. Decreases Smurf2 levels resulting in increased

β-catenin activity

3. Reduced macrophage infiltration in WAT

4. Decrease in hepatic lipogenic genes

(SREBP1c, ScD-1, PPARγ)

(39, 54)

Human stem cells Pharmacological

inhibition

Inhibited adipogenesis 1. Suppresses adipogenic genes (Zfp423, PPARγ, C/EBPα)

2. Decreases Smurf2 levels resulting in

increased β-catenin activity

(54)

Adipocytes Knockout Increased adipocyte death; macrophage

infiltration; defective adipose remodeling;

impaired insulin signaling

1. Increases pro-apoptotic genes (XIAP, Bcl2)

2. Activation of proapoptotic protein BAD

3. Increases adipose lipolysis

4. Increase in WAT proinflammatory genes (TNFα, MCP-1, IL-2)

(59)

Hypothalamic

AGRP neurons

Knockout Anti-obese phenotype; reduced glucose

intolerance; preserved insulin and leptin

signaling

1. Reduction of SOCS3 (95)

Mediobasal

Hypothalamus

Constitutive

activation

Impaired central insulin and leptin signaling 1. Decreased Akt and PIP3 activation

2. Increased SOCS3

(95)

Systemic Pharmacological

inhibition

Reduced high sucrose diet (HSD)-induced

obesity; prevented hepatic steatosis and

NASH

1. Reduced WAT inflammation (TNFα, F4/80)

2. Reduced NF-κB-mediated liver inflammation

3. Upregulation of PPARα and PPARγ leading to increased

β-oxidation (CPT-1 and ACOX)

(92)

Adipocytes Constitutive

activation

Decreased lipid deposits into other tissue (i.e.,

hepatosteaotosis); improved systemic insulin

resistance

1. Increased energy expenditure through hypothesized

mechanisms: increased thermogenesis and fatty acid oxidation

(upregulation of CPT-1β, ACO1), increase in mitochondria

biogenesis (upregulation of NRF1), elevated IL-6 levels

2. Decreased body weight and systemic inflammation

(58)

Hepatocytes Knockout Improved hepatic insulin resistance, sustained

peripheral insulin resistance

1. Decrease in proinflammatory gene expression (IL-6) in liver (77)

Myocytes Knockout Retained systemic insulin resistance 1. Maintained high TNFα expression in WAT; low IR activation (87)

Myeloid cells Knockout Improved systemic insulin resistance 1. Decrease in proinflammatory gene expression (IL-6) (77)

Hepatocytes Constitutive

activeation

Increased liver and peripheral insulin resistance 1. Increased expression of circulating IL-6 (51)

Hepatocytes Overexpression Improved insulin sensitivity; improved glucose

homeostasis

1. Increased XBP1 stability/decreased XBP1 degradation via

IKKβ mediated phosphorylation

(78)

(Continued)
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TABLE 1 | Continued

Cell Type IKKβ modulation Effect on cardiometabolic diseases Mechanism Reference

Astrocytes Overexpression Induced metabolic syndromes 1. Decreased astrocyte plasticity leading to increased GABA and

increased GABA inhibition of BDNF secreting neurons

(106)

Mediobasal

Hypothalamus

Activation Increased obesity and insulin resistance 1. Loss of neuronal development (108)

Hypothalamic

AGRP neurons

Activation Impaired glucose homeostasis; no change in

body weight or leptin signaling

1. Increased AGRP firing (103)

Systemic Pharmacological

inhibition

Alleviated insulin resistance 1. Reduction of ectopic IRS-1 serine phosphorylation

2. Restoration of IRS-1 phosphorylation and protein levels

3. Enhanced Akt activity

4. Increased glucose uptake

5. Increased glycolysis and glycogen/lipid synthesis

(54, 68–74)

Adipocyte Knockout Worsened insulin resistance; enhanced

inflammation

1. Reduction of IL-13 (60)

Hepatocytes Constitutive

activation

Increased liver fibrosis 1. Increased inflammation (chemokines) and macrophage

infiltration in the liver

(94)

organs and tissues (93). PPARα, highly expressed in the liver,
can upregulate IκB, thus inhibiting the NF-κB pathway (92,
93). Interestingly, IKKβ inhibition can also lead to PPARα

upregulation and reduced lipid accumulation in the liver by
increasing CPT-1 and ACOX—two important molecules that
decreases fatty acid accumulation through β-oxidation (92).
Additionally, IKKβ inhibition attenuated hepatic inflammation,
apoptosis, and collagen deposition, therefore preventing liver
fibrosis (54, 92). By contrast, hepatic IKKβ activation promoted
liver fibrosis by inducing chronic inflammation (94). While the
mechanism behind IKKβ-mediated hepatic steatosis and fibrosis
remain to be explored, these findings suggest that inhibiting IKKβ

may prevent lipid and collagen accumulation in the liver, leading
to decreased hepatic steatosis and fibrosis development.

THE ROLE OF IKKβ OF THE CENTRAL
NERVOUS SYSTEM IN
CARDIOMETABOLIC DISEASES

IKKβ of the Central Nervous System in
Obesity and Insulin Resistance
Although there have been strong links between IKKβ and
metabolic diseases within the periphery, more recently,
inflammatory activation has been seen within the central nervous
system (CNS). Specifically, IKKβ in the hypothalamus can be
activated in obesity and obesity-related metabolic dysregulation
such as energy, body weight, and glucose dysregulation (95–98).
A study found that FFAs induce TLR4-mediated hypothalamic
cytokine production and anorexigenic signal resistance which
may lead to obesity (99). Signaling between the gut and brain
(gut-brain-axis) is a major influencer in developing obesity.
Obese mice and mice stimulated with overnutrition display
overall higher levels of IKKβ within the hypothalamic neurons,
which is consistent with the systemic trend (95, 100). However,
it was observed that overnutrition-mediated activation of
IKKβ/NF-κB was activated intracellularly by ER stress and
prompted both hypothalamic leptin and insulin resistance
through the induction of suppressor of cytokine signaling 3

(SOCS3), an inhibitor of leptin and insulin signaling (95, 101).
ER stress can also lead to impaired hepatic insulin signaling,
which was improved upon ER stress inhibition (102). TLR-
dependent IKKβ activation in the CNS was also involved
in obesity and leptin resistance (96). Deficiency of IKKβ in
hypothalamic AGRP neurons displayed anti-obese phenotype
along with preserved leptin and insulin signaling and reduced
SOCS3 gene expression, and overexpression of SOCS3 reversed
the protective effects of IKKβ knockout in mice (95). By contrast,
activation of IKKβ in AGRP neurons resulted in impaired
glucose homeostasis, without affecting body weight and leptin
signaling (103).

While it is critical to study the effects of hypothalamic
inflammation on obesity and metabolic syndromes, it is
also important to investigate the upstream targets mediating
hypothalamic inflammation. For example, astrocytes play
essential roles in neuronal development; regulation of blood
flow; fluid, ion, pH, and transmitter homeostasis; the regulation
of synaptic transmission; and regulate immune response
(104). Under pathological conditions or external stressors,
astrocytes and other glial cells undergo gliosis, or astrogliosis,
which is characterized by proliferation and accumulation of
astrocytes (104, 105). Zhang et al. demonstrated an important
role of astrocyte IKKβ in stimulating glucose intolerance,
hypertension, and weight gain (106). While overnutrition
and IKKβ overexpression inhibited proper astrocytic plasticity,
inhibition of IKKβ prevented overnutrition-induced metabolic
diseases and impaired astrocytic plasticity (106). Mechanistically,
IKKβ-induced shortening of astrocyte processes led to increased
extracellular GABA, an inhibitory neurotransmitter, and lower
brain derived neurotrophic factor (BDNF) levels through
inhibition of BDNF secreting neurons in the hypothalamus
(106). Low levels of BDNF have been associated with metabolic
disorders such as obesity, energy metabolism, and hyperglycemia
(107). The protective role of IKKβ deficiency in astrocytes
were reversed by BDNF inhibition, suggesting that the GABA-
BDNF axis is important in regulating energy homeostasis and
metabolic syndromes (106). In addition to developed cells within
the CNS, the hypothalamic neural stem cells are important
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mediators for metabolic syndrome. IKKβ/NF-κB activation in
the mediobasal hypothalamus can lead to obesity and insulin
resistance, along with loss of neuronal development including
POMC neurons (108).

IKKβ of the Central Nervous System in
Hypertension
Hypertension, a chronic elevation in arterial blood pressure,
is one of the major risk factors for developing CVD such
as myocardial infarction, stroke, and heart failure. Although
there are therapeutic interventions aimed to target and
treat hypertension, it is still a prevalent contributor to
cardiometabolic disease burden (109). IKKβ in the CNS,
mainly in the hypothalamus, can regulate blood pressure.
Overexpression of a constitutively active form of IKKβ

in the mediobasal hypothalamus induces hypertension in
mice, while NF-κB inhibition attenuated high-fat feeding
induced hypertension in mice (110). Additionally, astrocyte-
specific IKKβ overexpression in mice led to higher daytime
blood pressure, while NF-κB inhibition reversed obesity-
induced hypertension in mice (106). In line with the
previous discussion linking ER stress to insulin resistance,
thapsigargin-induced ER stress increased blood pressure and
phosphorylated IκB, but inhibition of NF-κB alleviated these
effects (102).

CONCLUSION

Recent research advancements have expanded our knowledge on
the function of IKKβ in cardiometabolic diseases. A summary

of the role of IKKβ in cardiometabolic diseases is listed
in Table 1. By exploring various mechanisms of chronic
inflammation-associated diseases, such atherosclerosis, obesity,
and insulin resistance, IKKβ and its regulated main canonical
NF-κB pathway in various cell types have been found to
play diverse roles in cardiometabolic disease development. In
addition, new discoveries revealed that NF-κB-independent
mechanisms may also contribute to the impact of IKKβ on the
development of cardiometabolic diseases. For example, IKKβ can
interact with several important signaling molecules such as β-
catenin, BAD, and IRS-1 that are essential for regulating cell
survival, differentiation and insulin signaling. With more new
molecular targets of IKKβ being discovered, there will be more
opportunities for fully understanding the complex function of
IKKβ in cardiometabolic diseases and for developing new and
effective therapeutic approaches.
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