
Introduction

Renal inflammation and tissue damage during acute 
kidney injury (AKI) and chronic kidney disease (CKD) 
have been linked to mitochondrial structural and func-
tional alterations [1,2]. Mitochondria are a highly com-
plex interconnected network of organelles that fulfill 
cellular energy needs. The kidney, an organ with high 
energy demands, is rich in mitochondria. Mitochondrial 
dysfunction arising from disturbances in the regulation of 
the mitochondrial electron transport chain (ETC), proton 
gradient, and membrane potential results in reduced ad-
enosine triphosphate (ATP) and increased production of 
mitochondrial-derived reactive oxygen species (mROS), 
which promotes kidney injury and inflammation [3,4]. 
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Mitochondrial swelling and fragmentation and impaired 
mitochondrial metabolism are directly linked to the dete-
rioration of kidney function [5]. The equilibrium between 
mitochondrial fusion and fission maintains healthy 
mitochondrial structure and function [6]. Disruption of 
this balance leads to mitochondrial fragmentation, loss 
of mitochondrial DNA (mtDNA) integrity, and cell death 
[3,7].

Mitochondrial fusion maintains functional mitochon-
dria and prevents the generation of defective mtDNA [8]. 
Fusion is mediated through fusion proteins in the outer 
and inner mitochondrial membranes (OMM and IMM) 
called mitofusins (MFN1, MFN2) and optic atrophy 1 
(OPA1), respectively [9]. MFN1 and MFN2 have distinct 
functions. The GTPase activity of MFN1 is higher than 
that of MFN2, and OPA1 fails to execute the process of 
mitochondrial fusion in the absence of MFN1 [9,10]. 
MFN2, on the other hand, regulates mitophagy [11,12]. 
MFN2 also facilitates tethering and interaction between 
mitochondria and the endoplasmic reticulum (ER) at 
mitochondria-associated membranes (MAMs) and main-
tains efficient calcium (Ca2+) uptake by mitochondria [13]. 
Decreased expression of mitophagy regulators [12,14] or 
disruption of Ca2+ signaling [15] in the kidney contributes 
to tubulointerstitial inflammation and kidney fibrosis.

Mitochondrial fission is controlled by dynamin-related 
protein 1 (DRP1), which upon recruitment to the OMM, 
interacts with mitochondrial fission 1 (FIS1) to facilitate 
mitochondrial constriction and eventual division [6-8]. 
During cellular injury, the activation of mitochondrial 
fission and concurrent arrest of mitochondrial fusion are 
associated with recruitment of DRP1 to the OMM and 
B-cell lymphoma 2 (BCL2)-associated X protein (BAX)/
BCL2-antagonist/killer 1 (BAK)-mediated OMM permea-
bilization, which results in mitochondrial fragmentation 
and apoptosis [7]. Fragmented mitochondria can be re-
moved through DRP1-regulated mitophagy to suppress 
cell death [16]. Mitochondrial fission thus promotes re-
cycling of damaged mitochondria and protects healthy 
mitochondria from removal via mitophagy [17].

The removal of damaged mitochondria is critical to 
prevent renal damage caused by oxidative stress. Mitoph-
agy, the selective autophagy of mitochondria, facilitates 
the recycling of damaged mitochondrial components 
and controls oxidative stress [18]. Mitophagy mediators 
include phosphatase and tensin homolog-induced ki-

nase1 (PINK1) and Parkin (E3 ubiquitin ligase), FUN14 
domain-containing protein 1, BCL2/adenovirus E1B 
19kDa protein-interacting protein 3, and NIP3-like pro-
tein. The PINK1/Parkin pathway is well characterized. 
As a mitochondrial-targeted protein, PINK1 is imported 
into healthy mitochondria via translocase of the outer 
membrane and translocase of the inner membrane. Mi-
tochondrial proteases then cleave the mitochondrial-
targeting signal of PINK1 and translocate it back into the 
cytosol for degradation [18]. In damaged mitochondria 
with impaired membrane potential, PINK1 accumulates 
on the OMM and recruits cytosolic Parkin to the dam-
aged mitochondria [19]. PINK1 can also directly phos-
phorylate MFN2, which further promotes the recruitment 
of Parkin [11,12.]. Parkin ubiquitinates OMM proteins, 
including MFN1, MFN2, voltage-dependent anion chan-
nel, and Miro. The ubiquitinated OMM proteins, with the 
help of cargo receptors (p62/sequestosome 1, optineurin, 
nuclear domain 10 protein 52, and tax-binding protein 1) 
interact with microtubule-associated protein light chain 
3 to promote mitophagosome formation and subsequent 
degradation of the cargo [19].

Thus, the balance between mitochondrial fusion/fis-
sion and mitophagy is critical for homeostasis (Fig. 1). 
A disruption of this balance, particularly in the kidney, 
which relies on normal mitochondrial function for its 
essential tasks, is deleterious. Emerging evidence under-
scores the critical role of mitochondrial dysfunction in 
the pathogenesis of kidney disease. This review focuses 
on recent advances in understanding the role of mito-
chondrial dysfunction in inflammation and tissue dam-
age through various experimental models of kidney in-
jury and on potential mitochondria-targeted therapeutic 
approaches to AKI and CKD.

Mitochondrial dysfunction in kidney disease

The kidney has some of the highest requirements for 
mitochondrial content and oxygen consumption in the 
body, second only to the heart. The reabsorption of sol-
utes by tubular cells is a highly ATP-demanding process, 
and therefore those cells have the highest mitochondrial 
content in the kidney [20]. Tissue damage induced by 
defective mitochondria during AKI is influenced by de-
creased ATP production, synthesis of macromolecules, 
an imbalanced redox state, Ca2+ homeostasis, apoptosis, 
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necrosis, and necroptosis. Cellular fragments released by 
the rupture of necrotic cells or circulating mtDNA act as 
damage-associated molecular patterns (DAMPs), which 
activate innate and adaptive immune responses and the 
infiltration of inflammatory cells. Persistent inflamma-
tion, cell death, and defective metabolic reprogramming 
caused by mitochondrial dysfunction during AKI can 
lead to CKD (Fig. 2) and progression to end-stage renal 
disease (ESRD).

Mitochondrial dysfunction in acute kidney injury

Mitochondrial dysfunction plays a critical role in the 
pathogenesis of AKI and is considered an early event in 
various forms of AKI [21]. Here we review the evidence 
for the role of mitochondrial dysfunction in promoting 
inflammation-induced renal damage during AKI caused 
by sepsis, ischemia-reperfusion injury (IRI), and cisplat-
in-induced nephrotoxicity.

Sepsis-induced AKI

Sepsis is associated with a systemic inflammatory re-
sponse to infection that can lead to multi-organ failure, 
including kidney failure. Patients with sepsis-associated 
AKI frequently have poor clinical outcomes, with high 
rates of morbidity and mortality [22]. Studies show that 
mitochondrial dysfunction contributes to the pathogen-
esis of sepsis-induced AKI [23]. Remarkably, evidence 
of mitochondrial damage in the kidney in human sepsis 
was reported in autopsy samples examined by electron 
microscopy, which found mitochondrial swelling within 
the tubular cells, more than four decades ago [24]. Mi-
tochondrial structural and functional derangements in 
proximal tubular epithelial cells have also been reported 
in experimental sepsis models [5]. The inflammatory 
response in sepsis-induced kidney injury might be as-
sociated with the release of pro-apoptotic factors and mi-
tochondria-derived DAMPs [25]. Moreover, the induction 
of apoptosis and functional alterations in podocytes and 
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Figure 1. Mitochondrial fusion, fission, and mitophagy in maintaining mitochondrial homeostasis. Balance between the opposing 
processes of mitochondrial fusion and fission is essential for mitochondrial homeostasis. Mitochondrial fusion is mediated by the outer 
mitochondrial membrane fusion proteins mitofusin 1 and 2 (MFN1 and MFN2) and the inner mitochondrial membrane fusion protein optic 
atrophy 1 (OPA1). The fusion of two mitochondria generates a hyperfused mitochondrion that can produce more ATP during stress. Mitochon-
drial fission protein dynamin-related protein 1 (DRP1) translocates to the mitochondria and binds to mitochondrial fission 1 (FIS1) to induce 
mitochondrial fragmentation. The damaged mitochondria with reduced membrane potential generated by mitochondrial fragmentation are 
then recycled via mitophagosome formation and degradation by mitophagy.
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tubular cells after treatment with plasma from patients 
with sepsis-induced AKI suggests that circulating plasma 
factors augment kidney injury [26]. In the cecal ligation 
and puncture (CLP) model of sepsis, circulating plasma 
and peritoneal mtDNA and renal mROS and mitochon-
drial vacuolization in the proximal tubules increased 
after CLP [27]. The absence of toll-like receptor 9 (TLR9) 
reduced mtDNA-mediated kidney damage, suggesting 
that mtDNA induces an inflammatory response by acti-
vating TLR9. We observed increased circulating plasma 
and urinary mtDNA in sepsis-induced AKI [28].

Kidney biopsies from patients with sepsis displayed 
acute tubular necrosis, increased infiltration of immune 
cells, and tubular cell apoptosis [29]. Necroptosis (pro-
grammed necrosis) also exerts critical functions in the 
pathogenesis of sepsis-induced AKI. We reported that 
sepsis-induced renal tubular injury and mitochondrial 
dysfunction improved in the absence of the necroptosis 
regulator receptor-interacting protein kinase-3 (RIPK3). 

The mechanism through which RIPK3 induces defects 
in the mitochondria of renal tubular cells involves syn-
chronized recruitment of NADPH oxidase-4 (NOX4) to 
the mitochondria and the suppression of mitochondrial 
complexes I and III [28]. NOX4 also functions as an oxy-
gen sensor and contributes to fostering the renal inflam-
matory response. We observed higher urinary RIPK3 in 
patients with sepsis. It was further confirmed that RIPK3 
inhibition reduced endotoxin-(in vivo) or lipopolysac-
charide (in vitro)-induced tubular cell apoptosis [30]. 
The apoptotic and necroptotic pathways of cell death 
converge at the mitochondria. Tumor necrosis factor-
alpha (TNFα), a key mediator of the sepsis-induced 
inflammatory response, promotes necroptosis by trans-
locating the RIPK1/RIPK3/MLKL complex to the mito-
chondrial membrane [31]. However, TNF-dependent 
necroptosis also occurs after mitochondrial depletion 
through the overexpression of Parkin [32]. Therefore, the 
sepsis-associated renal inflammatory response and renal 
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damage could be modulated by correcting mitochondrial 
structural and functional aberrations.

Ischemia-reperfusion injury

Ischemic kidney injury is a major cause of AKI. De-
creased total mitochondrial content in the proximal 
tubular epithelial cells after IRI suggests mitochondrial 
damage [33]. Mitochondrial swelling, loss of cristae, and 
impaired IMM potential in renal tubular cells and podo-
cytes after IRI worsen oxidative stress and renal inflam-
mation [34]. Hypoxia-induced mitochondrial fragmenta-
tion, permeabilization of the OMM, ATP depletion, and 
apoptosis of proximal tubular cells after IRI have also 
been reported [35]. DRP1 mediates mitochondrial fis-
sion in response to ischemia/ATP depletion, resulting in 
renal tubular mitochondrial fragmentation, IRI-induced 
cell death, inflammation, and reduced kidney function 
[36]. The proximal tubule-specific deletion of Drp1 pro-
tects against tubular apoptosis and inflammation after 
IRI, suggesting that the absence of mitochondrial fission 
might shift the mitochondrial dynamics toward fusion for 
cytoprotection [36]. Under IRI or ATP depletion, DRP1 is 
dephosphorylated at serine (Ser)-637, which promotes 
DRP1 translocation to the OMM, mitochondrial fragmen-
tation, and subsequent renal tubular cell apoptosis [37]. 
These results suggest that DRP1-regulated mitochondrial 
dynamics are an important mediator of AKI.

Mammalian STE20-like kinase 1 (MST1) is a regulator 
of mitochondrial fission via DRP1 phosphorylation at 
Ser-616 and enhancement of the F-actin assembly that 
induces mitochondrial injury, cytochrome c release, and 
mROS production, thereby promoting tubular cell apop-
tosis in IRI, which was attenuated by genetic deletion 
of Mst1 [38]. In human ischemic kidneys with IRI from 
cadaveric kidney transplants, the duration-dependent 
increase in tubular apoptosis is directly related to the 
release of cytochrome c from the mitochondria [39]. Fur-
ther evidence suggests that mitochondria play key roles 
in apoptosis in IRI. BH3 interacting-domain death ago-
nist (BID) is a proapoptotic member of the BCL2 family 
that targets mitochondria, and Bid knockout mice display 
reduced mitochondrial damage, tubular cell apoptosis, 
and improved renal function and survival after IRI, com-
pared with controls [40]. BID activates BAX and BAK to 
regulate mitochondrial dynamics [41]. In healthy cells, 

BAX and BAK support MFN2, promote mitochondrial 
fusion, and regulate mitochondrial morphogenesis [42]. 
Under pathological conditions, BAX and BAK promote 
mitochondrial fragmentation by the sumoylation of DRP1 
and its association with the OMM [43]. Therefore, BID 
might cause mitochondrial damage in IRI through the 
induction of mitochondrial fragmentation and apoptosis.

The inflammatory microenvironment in the kidney af-
ter IRI favors T-helper 1 and natural-killer T cell-derived 
interferon gamma (IFNγ) to promote the differentiation of 
monocytes into M1/proinflammatory macrophages [44]. 
Mitophagy exerts protective functions against ischemia-
induced renal inflammation, and the absence of Pink1 
and Park2 (encoding Parkin) induces ischemia-mediated 
mitochondrial damage, mROS, and kidney injury [14]. 
Furthermore, the renal cytoprotection conferred in proxi-
mal tubular cells by ischemic preconditioning occurs by 
clearing damaged mitochondria through the activation 
of PINK1-dependent mitophagy [45]. These findings sug-
gest that the disruption of renal mitochondrial dynam-
ics after IRI exaggerates apoptosis, oxidative stress, and 
inflammation to induce renal damage. Imbalance in mi-
tochondrial fusion and fission and the suppression of mi-
tophagy thus promote ischemia-mediated kidney injury.

Cisplatin-induced AKI

A major side effect of cisplatin chemotherapy is neph-
rotoxicity, which causes renal tubular cell injury with 
mitochondrial structural and functional impairments, 
particularly in the proximal tubular epithelial cells, 
which are rich in mitochondria. Following renal uptake, 
cisplatin in the cytoplasm is hydrolyzed into a positively 
charged electrophile that can accumulate within the neg-
atively charged mitochondrial membrane and disrupt its 
membrane potential [46]. This, in turn, induces superox-
ide generation by negatively affecting mitochondrial me-
tabolism, the efficiency of the ETC, and ATP production 
[47]. Cisplatin-induced nephrotoxicity is also associated 
with increased DRP1-mediated mitochondrial fragmen-
tation, cytochrome c release, apoptosis of proximal tubu-
lar cells, and renal injury [38]. Furthermore, blockade of 
mitochondrial fission abrogated cisplatin-induced proxi-
mal tubular cell apoptosis and renal injury and improved 
kidney function, further attesting to the critical role of 
mitochondrial dynamics in AKI [35].
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Renal inflammation and tissue damage during cispla-
tin-induced AKI are mediated by the innate immune re-
sponse. The cyclic GMP-AMP synthase (cGAS) stimulator 
of interferon genes (STING) pathway induces innate im-
munity through the recognition of pathogen-associated 
molecular patterns or DAMPs, which triggers a type I 
IFN-mediated inflammatory response [1]. Cisplatin-in-
duced mtDNA release into the cytosol activates the cGAS-
STING pathway, with subsequent inflammation and 
kidney injury, and STING knockdown ameliorates the 
inflammatory response [1]. Evidence also reveals a direct 
involvement of the Fas receptor (FasR)- and TNF recep-
tor 1 (TNFR1)-mediated apoptotic pathways in cisplatin-
induced renal tubular cell death and kidney dysfunction 
[48]. Inhibition of death receptor-mediated pathways by 
genetic deletion of Tnfr1 and FasR in renal epithelial cells 
resulted in dramatically reduced cell death after cisplatin 
treatment [48]. Similar to IRI-induced AKI, cisplatin acti-
vates the pro-apoptotic protein BAX, which accumulates 
in the mitochondria and induces the permeabilization 
of the OMM, cytochrome c release, and renal tubular 
apoptosis [49]. Bax knockout mice had a lower number 
of apoptotic cells, attenuated cytochrome c release, and 
improved kidney function compared with controls [49]. 
Moreover, cisplatin induces depletion of myeloid cell 
leukemia-1, a pro-survival member of the BCL2 family, 
and the associated activation of BAX, both of which play 
a critical role in the release of apoptosis-inducing factor 
from the mitochondria [50].

An ultrastructural analysis of the kidney after cisplatin 
treatment revealed reduced mitochondrial mass, dis-
rupted cristae, mitochondrial swelling in the proximal 
tubules, and decreased cytochrome c oxidase enzyme 
activity [51] and mitochondrial respiratory complexes I to 
IV [52], suggesting that cisplatin negatively regulates mi-
tochondrial functions. Cisplatin-induced mitochondrial 
dysfunction is associated with decreased proximal tubu-
lar cell respiration and oxidative phosphorylation and in-
duces apoptosis via protein kinase Cα and extracellular-
signal-regulated kinase 1/2 [53], which cause a decline in 
the mitochondrial membrane potential and Ca2+ uptake 
and increase oxidative damage to mitochondrial lipids 
and proteins [54]. The administration of mitochondrial-
targeted antioxidants mitigated cisplatin-induced mito-
chondrial structural alterations, renal inflammation, and 
tubular injury and apoptosis and improved renal func-

tion [55]. These findings indicate the impairment of mi-
tochondrial bioenergetics and highlight the role of mito-
chondrial functional aberrations in activating the innate 
immune response and cisplatin-induced kidney damage.

Mitochondrial dysfunction in chronic kidney 
disease

Emerging evidence suggests that mitochondrial dys-
function is also a key contributor to the pathogenesis of 
CKD. Mitochondrial structural and functional impair-
ments are increasingly recognized as critical mediators 
of many kidney diseases [12,20,56]. Here, we summarize 
recent advances in unraveling the functional significance 
of mitochondrial dysfunction in promoting inflammation 
and fibrotic responses in the pathogenesis of tubuloint-
erstitial fibrosis (TIF) and various forms of CKD, includ-
ing diabetic nephropathy (DN), IgA nephropathy (IgAN), 
membranous nephropathy (MN), and polycystic kidney 
disease (PKD).

Tubulointerstitial fibrosis

The development of TIF is the final histopathologi-
cal consequence of most CKD. Aberrant kidney repair 
following AKI results in renal fibrosis and progression 
to CKD. Mitochondrial protective strategies have been 
shown to suppress the proinflammatory cytokines in-
terleukin (IL)-18 and IL-1β and nod‐like receptor family 
pyrin domain containing 3 (NLRP3) inflammasome acti-
vation to ameliorate TIF and progression to CKD follow-
ing prolonged ischemia [57]. Previous studies indicate 
that mitochondrial dysfunction plays a role in inflamma-
tion, TIF, and CKD. Genome-wide transcriptome-based 
analyses revealed that human fibrotic kidneys have lower 
expression of various mitochondrial enzymes and regula-
tors of fatty acid oxidation (FAO) and higher intracellular 
lipid deposition than controls [58]. We recently reported 
the protective role of mitophagy during kidney fibrosis 
using experimental murine models of unilateral ureteral 
obstruction (UUO) and an adenine diet [12]. Decreased 
renal expression of mitophagy regulators (PINK1, MFN2, 
and Parkin) in experimental and human kidney fibrosis 
was associated with higher circulating monocyte che-
moattractant protein 1 (MCP-1), a chemokine that pro-
motes the infiltration of monocytes, inflammation, and 
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TIF [12]. Mitophagy impairment led to an accumulation 
of abnormal mitochondria, augmented macrophage-
induced fibrotic response, superoxide production, and 
reduced ATP synthesis [12]. Compromised mitochondrial 
bioenergetics contribute to the development of TIF and 
CKD [3]. In line with our findings, others have shown that 
deficiency of mitophagy by Pink1 or Park2 gene deletion 
markedly increased mROS production and mitochondri-
al damage, which worsened renal fibrosis after UUO [16]. 
These effects were rescued by a mitochondria-targeted 
antioxidant. Defective mitochondrial metabolism and 
reduced expression of mitophagy regulators have been 
shown to enhance the renal inflammatory and fibrotic 
responses and mediate the progression of CKD.

Cigarette smoke/chronic obstructive pulmonary disease-
associated CKD

Recent evidence from both human and animal studies 
has demonstrated a previously under-recognized asso-
ciation between chronic obstructive pulmonary disease 
(COPD) and kidney injury and fibrosis, along with im-
plications of mitochondrial dysfunction [59]. Microalbu-
minuria and kidney sections showing glomerulosclerosis 
and TIF were observed in a higher percentage of patients 
with COPD compared with control subjects [60]. Using a 
mouse model of experimental COPD induced by chronic 
cigarette smoke exposure, we reported evidence of mi-
tochondrial damage, with mitochondrial swelling and 
loss of cristae in renal tubular cells, increased numbers 
of proinflammatory and profibrotic renal macrophages, 
and TIF [61]. Moreover, the association of urinary mtDNA 
with an increased respiratory burden in patients with 
COPD also suggests the presence of renal mitochondrial 
damage [62]. The amount of cellular mtDNA correlates 
with the expression of mitochondrial transcription fac-
tor A (TFAM), which is an important regulator of the mi-
tochondrial genome. The loss of TFAM in renal tubular 
cells has also been reported in an animal model and pa-
tients with kidney fibrosis [2].

Diabetic nephropathy

Mitochondrial dysfunction is increasingly recognized as 
a chief cause of the development and progression of dia-
betic kidney disease (DKD) [63,64]. Evidence of damaged 

and swollen renal mitochondria has been documented 
in experimental and human DN [63,65]. The progression 
of diabetic kidney injury is associated with decreased 
mitochondrial membrane potential and increased mROS 
in renal cells, including the proximal tubule, endothelial 
cells, and podocytes [63]. An optimal level of mROS gen-
eration is essential for mitochondrial biogenesis, but lev-
els that exceed local antioxidant capacity are associated 
with mitochondrial dysfunction and damage to mtDNA 
and disrupt mitochondrial metabolism in diabetic kid-
neys [63]. Previous studies implied that patients with DN 
have impaired mitochondrial metabolism and that dia-
betic kidneys have global suppression of mitochondrial 
activity [66]. A recent study found that increased urinary 
cell-free mtDNA correlated with decreased intra-renal 
mtDNA, which was associated with severe interstitial 
fibrosis and a low baseline estimated glomerular filtra-
tion rate (eGFR) in patients with DN [67]. However, it is 
uncertain whether increased urinary mtDNA occurs due 
to ongoing destruction of intra-renal mitochondria and 
intra-renal mitochondrial depletion or to renal clearance 
of circulating mtDNA because blood levels of mtDNA are 
elevated in patients with DN [66]. Nevertheless, findings 
showing a correlation between urinary mtDNA and kid-
ney pathology suggest that urinary mtDNA could serve as 
a marker of renal mitochondrial damage and fibrosis in 
DN.

Advanced glycation end products (AGEs), which are 
nonenzymatically modified proteins, and receptors for 
AGEs (RAGEs) generate ROS and are known contribu-
tors to the pathogenesis of DKD. Damaged mitochondria 
generate excess mitochondrial superoxide, and glyca-
tion of mitochondrial proteins also contributes to mROS 
generation in DKD [68]. Pharmacologic inhibition of 
AGE-RAGE-induced mitochondrial permeability transi-
tion abrogated mitochondrial superoxide production. 
Moreover, RAGE deficiency prevented diabetes-induced 
increases in renal mitochondrial superoxide, renal corti-
cal apoptosis, and progression of DN in mice [68].

The suppression of mitochondrial-derived superoxide 
in diabetic mice protected against renal tubular injury, 
which is mediated by mitophagy via PINK1/Parkin, and 
decreased the levels of mitochondrial fission proteins 
(DRP1 and FIS1), resulting in reduced oxidative stress 
and the amelioration of mitochondrial fragmentation 
and apoptosis [56]. Podocyte-specific deletion of Drp1 
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decreased albuminuria, improved podocyte morphology 
and mitochondrial structural defects, and prevented me-
sangial matrix expansion in diabetic mice [69]. In addi-
tion, Drp1-null podocytes from diabetic mice displayed 
improved mitochondrial fitness, oxygen consumption 
rates, and ATP production [69]. Increases in the number 
of dysfunctional mitochondria caused by an imbalance 
in fusion/fission and defective mitophagy in diabetic 
kidneys augment oxidative stress and the progression of 
DKD. Thus, maintenance of mitochondrial quality con-
trol appears to be critical in protecting against DKD.

IgA nephropathy

IgAN is the most common glomerulonephritis and a 
leading cause of CKD that can progress to ESRD [70]. 
Kidney biopsy from a patient with IgAN showed mild 
focal segmental mesangial proliferation with dominant 
mesangial IgA deposition and an increased number of 
abnormal mitochondria in the proximal tubular cells [71]. 
Elevated urinary mtDNA levels were observed in patients 
with IgAN, and changes in urinary mtDNA were inversely 
correlated with eGFR [72]. Whole mitochondrial genome 
sequencing data from patients with IgAN who were renal 
transplant recipients revealed an association between 
five common single-nucleotide polymorphisms and 
ESRD, suggesting that mitochondrial defects play a po-
tential role in the progression of CKD [73]. Interestingly, 
higher expression and interaction between the mito-
chondrial protein induced in high glucose-1 (IHG-1) and 
cold shock protein Y-box binding protein 1 are associated 
with renal inflammation, TIF, and glomerulosclerosis 
in IgAN [74]. These findings suggest that defects in the 
mitochondrial genome and functions play a critical role 
in worsening glomerular inflammation and disease pro-
gression.

Membranous nephropathy

MN, a leading cause of nephrotic syndrome in adults, 
is characterized by the deposition of immune complexes 
between podocytes and the glomerular basement mem-
brane. The phospholipase A2 receptor (PLA2R) has been 
identified as the major autoantigen on podocytes in pri-
mary MN, and thrombospondin type I domain-contain-
ing 7A (THSD7A) is a minor antigen [75]. Autoantibodies 

to PLA2R and THSD7A are considered to be predomi-
nantly of the IgG4 subclass [75]. Increased glomerular 
mitochondrial fission proteins, DRP1, phosphorylated-
DRP1 (Ser-616), and FIS1, were observed in patients with 
MN [76]. Furthermore, cultured podocytes exhibited mi-
tochondrial fragmentation, loss of membrane potential, 
and mROS production after exposure to sera from pa-
tients with IgG4-related MN compared with controls [77]. 
These observations provide evidence that mitochondrial 
dysfunction might contribute to podocyte injury and 
support a role for mitochondrial-dependent autoimmu-
nity in MN [77]. Intriguingly, a study using gene expres-
sion analyses found that loss of Drp1 was associated with 
alterations in the expression of a large number of genes 
involved in immune response, including those regulated 
by mitochondrial fission [78]. Those findings imply that 
mitochondrial dynamics might play an essential role in 
modulating the renal immune milieu in MN.

Polycystic kidney disease

Autosomal dominant PKD (ADPKD), which is more 
common than autosomal recessive PKD (ARPKD), is 
caused by mutations in PKD1 and PKD2, which encode 
polycystin 1 (PC1) and PC2, respectively [79]. The PC1-
PC2 complex modulates mitochondrial Ca2+ uptake at 
MAMs to directly regulate oxidative phosphorylation and 
indirectly affect mitochondrial function by maintaining 
the mtDNA copy number and mitochondrial morphol-
ogy [79]. Therefore, mutations in PKD1 and PKD2 lead 
to mitochondrial dysfunction and metabolic imbalance. 
Additionally, non-genetic factors have been linked with 
pathogenesis, including proinflammatory cytokine TNFα 
promoting renal cystogenesis [80], increased MCP-1 in 
cyst-lining cells and urinary MCP-1 excretion in human 
ADPKD [81], and renal profibrotic macrophages in ex-
perimental ARPKD [82], which might be associated with 
defects in mitophagy [12]. A recent investigation showed 
that loss of PC2 enhanced mitochondrial Ca2+ uptake, 
mitochondrial bioenergetics, and mitochondrial-ER 
tethering associated with increased MFN2, and knock-
down of Mfn2 rescued ER-dependent mitochondrial Ca2+ 
signaling and reduced cyst proliferation [83]. Thus, PC2 
regulates mitochondrial function through MFN2.

The mitochondria of cyst-lining cells in the kidney of 
a mouse model of ADPKD displayed morphological ab-
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normalities and decreased mtDNA copy numbers and 
peroxisome proliferator-activated receptor γ coactivator 
1α (PGC-1α), which is a key regulator of mitochondrial 
biogenesis [84]. Human ADPKD cyst-derived cells also 
exhibited morphological and functional abnormalities 
and increased mROS production [84]. Those studies pro-
vide further evidence that mitochondrial dysfunction 
plays a functional role in cystogenesis. Moreover, kidney 
cysts in mouse and human ADPKD have increased renal 
expression of miR-17, which represses oxidative phos-
phorylation and FAO by inhibiting peroxisome prolifera-
tor activated receptor alpha (PPARα), a regulator of lipid 
metabolism [85]. Several lines of evidence support the 
idea that aerobic glycolysis plays a key role in PKD, along 
with other metabolic dysfunctions such as an increase in 
the pentose phosphate pathway and fatty acid synthesis 
and a decrease in FAO and oxidative phosphorylation 
[86], suggesting that a profound metabolic reprogram-
ming occurs in PKD. Although the precise mechanisms 
underlying these alterations require further investigation, 
they offer a great opportunity to design novel therapeutic 
interventions for PKD, such as mitochondria-targeting 
strategies.

Mitochondria-specific therapeutic approaches in 
kidney disease

Most mitochondrial-specific therapeutic approaches 
that attenuate kidney damage aim to improve mitochon-
drial metabolism or target mROS to relieve oxidative 
stress-related renal inflammation. Here we discuss sev-
eral mitochondrial-targeted therapeutic approaches and 
their targets and effects in various experimental models 
of AKI and CKD (Table 1) [16,34,35,56,57,63,84,87-98].

Mitochondria-targeted therapeutic approaches to AKI

Several mitochondria-targeted antioxidants have been 
explored as potential therapies in experimental models of 
AKI. Mito-TEMPO is a mitochondria-targeted superoxide 
dismutase mimetic shown to reverse renal mitochondrial 
dysfunction and attenuate CLP-mediated, sepsis-induced 
AKI, resulting in improved renal microcirculation and 
GFR and increased survival [87]. Mitoquinone (MitoQ) 
is a mitochondrial-targeted coenzyme Q that acts as an 
mROS scavenger and contains a positively charged lipo-

philic cation to increase its mitochondrial uptake. MitoQ 
has been used extensively in animal models and two 
Phase II clinical trials in Parkinson's disease and hepati-
tis C and shown to be safe and well-tolerated [88]. Treat-
ment with MitoQ or SkQR1, a plastoquinone-containing 
mitochondria-targeted antioxidant, in a renal IRI model 
helped reduce mROS production and lipid oxidation and 
improved renal function [88,89].

Mitochonic acid 5 (MA-5) is a synthetic indole acetic 
acid derivative that binds the IMM protein mitofilin and 
facilitates mitochondrial ATP production independently 
of oxidative phosphorylation and the ETC [90]. MA-5 
treatment before IRI enhanced ATP production, amelio-
rated tubular necrosis, and improved renal function [90]. 
Another investigational drug that targets the IMM is Ben-
davia, a tetrapeptide that suppressed the mitochondrial 
permeability transition pore (MPTP) and attenuated oxi-
dative stress, tubular injury, and apoptosis in experimen-
tal models of IRI [91]. Mitochondrial division inhibitor 1 
(Mdivi-1), an inhibitor of DRP1-mediated mitochondrial 
fission, partially ameliorated ischemia-induced kidney 
injury [35], but it worsened renal fibrosis induced by 
UUO, raising concerns about its use [16]. Szeto-Schiller 
(SS)-31 peptide (H-D-Arg-Dmt-Lys-Phe-NH2) is an-
other mROS scavenger that selectively targets the IMM 
and binds cardiolipin [34]. SS-31 ameliorates ischemia-
induced mitochondrial swelling and loss of cristae, re-
duces mROS production and tubular and endothelial cell 
death [34], normalizes ATP content, and improves renal 
function in polymicrobial-induced sepsis [92]. Activators 
of PGC-1α, a key regulator of mitochondrial biogenesis, 
prevented the progression of IRI-induced kidney injury 
and improved renal function [93].

It is critical to understand the molecule(s), function(s), 
and pathway(s) involved in mitochondrial structural and 
functional impairments during AKI. A better understand-
ing of mitochondrial dynamics and bioenergetics could 
help to advance our understanding of AKI pathogenesis 
and potential therapeutic options that target mitochon-
dria to prevent progression to CKD.

Mitochondria-targeted therapeutic approaches to CKD

Mitochondria-targeted antioxidants have also been 
explored for the treatment of CKD. In a mouse model of 
type 1 diabetes, MitoQ treatment reduced albuminuria 
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and attenuated both interstitial fibrosis and glomerular 
damage [94]. MitoQ, by partially restoring mitophagy and 
reducing mitochondrial fission protein (DRP1) while en-
hancing mitochondrial fusion protein (MFN2), reduced 
glomerular hypertrophy, mesangial matrix expansion, 
and mitochondrial and tubular damage in DKD [56]. 
MitoQ also inhibited cyst formation in an ADPKD mouse 
model [84]. MitoQ is being investigated in a Phase IV con-
trolled, double-blind clinical trial in patients with stage 
3-5 CKD (ClinicalTrials.gov Identifier:NCT02364648). 
Another mitochondria-targeted antioxidant, Mito-TEM-
PO, has been shown to rescue a UUO-induced increase 
in mROS, collagen deposition, and TIF in Pink1 or Park2 

knockout mice [16].
SS-31 has been examined as a therapy for CKD and 

found to suppress transforming growth factor-beta 
(TGF-β), tubular apoptosis, and TIF in a UUO-induced 
renal fibrosis model [95]. It also attenuated interstitial 
inflammation and renal fibrosis 4 weeks after ischemia 
[34] and arrested the development of glomerulosclerosis 
and TIF, reduced the expression of inflammatory mark-
ers, and restored glomerular capillaries, podocyte struc-
ture, and mitochondrial integrity [57]. Furthermore, SS-
31 prevented tubulointerstitial inflammation, mesangial 
matrix expansion, glomerulosclerosis, loss of podocytes 
and endothelial cells, lipotoxicity, macrophage infiltra-

Table 1. Mitochondrial-targeted therapeutics in experimental models of AKI and CKD
Experimental  

model
Mitochondrial- 
targeted agent

Disease phenotype Reference

Sepsis Mito-TEMPO Reduced mitochondrial superoxide and loss of mitochondrial membrane potential, 
improved activity of mitochondrial complexes

[87]

SS-31 Attenuated apoptosis, normalized ATP content [92]
IRI MitoQ Inhibited mitochondrial superoxide production, improved activity of mitochondrial 

respiratory complex I and II/III, lipid oxidation, survival rate, and eGFR
[88]

SkQR1 Prevented mROS production, improved mitochondrial FAO [89]
MA-5 Promoted BNIP3-dependent mitophagy and ATP production, suppressed TNFα-

mediated apoptosis, ameliorated tubular necrosis, augmented renal function
[90]

Bendavia Mitigated MPTP formation and apoptosis [91]
Mdivi-1 Inhibited DRP1-mediated mitochondrial fragmentation [35]
SS-31 Suppressed mROS production, mitochondrial swelling and loss of cristae, reduced ATP, 

cardiolipin peroxidation, tubulointerstitial inflammation, mitochondrial disruption in 
podocytes, and glomerulosclerosis

[34,57]

Formoterol Induced mitochondrial transcription factor A, mitochondrial biogenesis, and FAO [93]
UUO Mito-TEMPO Attenuated mROS levels, collagen deposition, and TIF [16]

SS-31 Suppressed TGF-β, tubular apoptosis, and renal damage [95]
DN MitoQ Prevented albuminuria, thickening of GBM, and TIF, inhibited DRP1, promoted MFN2, 

restored mitophagy
[56,94]

SS-31 Suppressed tubulointerstitial inflammation, mesangial matrix expansion, and 
glomerulosclerosis

[96]

Fenofibrate Restored mitochondrial fatty acid β-oxidation [97]
AICAR Activated AMP kinase and mitochondrial FAO, mitigated lipid accumulation [98]
Curcumin Inhibited NLRP3 inflammasome and angiotensin-converting enzyme 1, minimized 

renal inflammation and injury
[63]

ADPKD MitoQ Suppressed mROS, inhibited cyst formation [84]
ADPKD, autosomal dominant polycystic kidney disease; AICAR, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; AKI, acute kidney injury; AMP, adenosine 
monophosphate; ATP, adenosine triphosphate; BNIP3, BCL2/adenovirus E1B 19kDa protein-interacting protein 3; CKD, chronic kidney disease; DN, diabetic 
nephropathy; DRP1, dynamin-related protein 1; eGFR, glomerular filtration rate; FAO, fatty acid oxidation; GBM, glomerular basement membrane; IRI, ischemia-
reperfusion injury; MA-5, mitochonic acid 5; Mdivi-1, Mitochondrial division inhibitor 1; MFN2, mitofusin 2; MitoQ, mitoquinone; MPTP, mitochondrial permeability 
transition pore; mROS, mitochondrial reactive oxygen species; NLRP3, NOD-LRR- and pyrin domain-containing protein 3; SkQR1, 10(6′-plastoquinonyl) 
decylrhodamine 19; SS-31, Szeto-Schiller-31 peptide (H-D-Arg-Dmt-Lys-Phe-NH2); TGF-β, transforming growth factor-beta; TIF, tubulointerstitial fibrosis; TNFα, tumor 
necrosis factor-alpha; UUO, unilateral ureteral obstruction.
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tion, and renal fibrosis in a mouse model of a high-fat 
diet and low-dose streptozotocin [96]. Fenofibrate is a 
PPARα activator shown to improve mitochondrial fatty 
acid β-oxidation and renal function in patients with DN 
[97]. Activators of PGC-1α that target mitochondrial bio-
genesis include the AMP-activated protein kinase activa-
tor AICAR (5-aminoimidazole-4-carboxamide-1-β-D-
ribofuranoside), which has been shown to mitigate the 
accumulation of lipid droplets and mitochondrial fatty 
acid biosynthesis in a high-fat diet mouse model [98]. 
Stimulators of PGC-1α enhanced mitochondrial respi-
ration in proximal tubular cells, increased the mtDNA 
content in the renal cortex [99], and prevented age-
related kidney damage [100] and TIF in a UUO model [58]. 
Curcumin, thought to act as an antioxidant, attenuated 
renal inflammation and injury by negatively regulating 
pathways involved in DKD, such as the NLRP3 inflamma-
some, angiotensin-converting enzyme, and nuclear fac-
tor erythroid 2-related factor 2 [63].

Future research

Recent advances strongly suggest that mitochondrial 
dysfunction plays a role in the pathogenesis of kidney 
diseases. The molecular mechanisms of the dynamics 
associated with structural and functional mitochondrial 
defects in kidney injury require further elucidation. Fu-
ture research to clarify the mechanisms of mitochondrial 
fusion/fission and mitochondrial quality control through 
mitophagy in kidney diseases is highly warranted, with 
the hope that preclinical studies can be translated to 
meet the urgent clinical need for new therapeutics with a 
more focused approach to rectify mitochondrial defects 
and mitochondrial quality control with minimal unwant-
ed side effects.

Summary

The maintenance of healthy mitochondria is especially 
important in the kidney, where these organelles regulate 
the metabolic status of a cell and persistently sense and 
efficiently respond to multiple stimuli and stresses. Oxi-
dative stress derived from damaged mitochondria has 
deleterious effects on tissue health and contributes to the 
progression of kidney disease. Mitochondrial turnover, 
via synthesis and the recycling of damaged mitochondria 

through mitophagy, is essential. Additionally, the bal-
ance between fission and fusion is essential in maintain-
ing appropriate mitochondrial size, shape, and number. 
Overall, mitochondria are an attractive therapeutic target 
for controlling renal inflammation, cell death, tissue 
damage, and the progression of kidney disease.
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