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Abstract: Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized
by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn′s disease are the major
manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is
far from being fully understood, resulting in suboptimal treatment options. Complementing other
biological endpoints, bioanalytical “omics” methods that quantify many biomolecules simultaneously
have great potential in the dissection of the complex pathogenesis of IBD. In this review, we focus
on the rapidly evolving proteomics and lipidomics technologies and their broad applicability to
IBD studies; these range from investigations of immune-regulatory mechanisms and biomarker
discovery to studies dissecting host–microbiome interactions and the role of intestinal epithelial
cells. Future studies can leverage recent advances, including improved analytical methodologies,
additional relevant sample types, and integrative multi-omics analyses. Proteomics and lipidomics
could effectively accelerate the development of novel targeted treatments and the discovery of
complementary biomarkers, enabling continuous monitoring of the treatment response of individual
patients; this may allow further refinement of treatment and, ultimately, facilitate a personalized
medicine approach to IBD.
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1. Introduction

Inflammatory bowel disease (IBD) represents a group of chronic intestinal disorders that is
characterized by recurrent inflammation affecting the gastrointestinal tract. Ulcerative colitis (UC) and
Crohn′s disease (CD) are the two main clinically defined manifestations of IBD, each with distinctive
clinical and pathological features (Figure 1) [1].

UC is a chronic, non-transmural, inflammatory disease that is characterized by diffuse mucosal
inflammation involving the colon. UC lesions generally begin in the rectum and extend proximally
in an uninterrupted pattern, involving part or all of the colon [2]. The main clinical symptom
of UC is bloody diarrhea; extra-intestinal manifestations are common, including musculoskeletal,
dermatological, ocular, and hepatobiliary co-morbidities. The clinical progression of UC is
characterized by exacerbations and remissions [3–5]. From an immunological standpoint, UC present
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with an atypical T helper cell (Th) 2 response involvement, mediated by secretion of interleukin (IL)-13
by natural killer T cells [6–8].
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Figure 1. Pathomechanisms and selected biomarkers of IBD. The main pathogenesis-associated 
changes are shown for UC and CD. For both diseases, changes in gut microbiota, disruption of the 
epithelial barrier function, and chronic immune-activation are observed. Differences have also been 
reported, such as for immune-regulatory processes and epithelial effects. Biomarkers can be measured 
directly in tissue biopsies or upon release into the gut (e.g., fecal calprotectin) or the blood (e.g., 
autoreactive antibodies). 

CD is a relapsing, transmural, inflammatory disease that may affect the entire gastrointestinal 
tract, from the oral cavity to the rectum. It is characterized by a non-contiguous inflammatory pattern 
with areas of uninflamed mucosa. Its primary clinical symptom is abdominal pain with weight loss; 
it can also present with extra-intestinal co-morbidities similar to those described in UC patients. T 
cell profiles in CD and UC differ, and Th1 cytokine profiles are dominant in CD [3,4,9–12].  

With its intrinsic multifactorial etiology, IBD springs from an altered interaction between the 
resident intestinal flora and the immune mucosal cells, due to the influence of environmental factors 
affecting genetically susceptible hosts. This generates a vicious cycle in which the intestinal 
epithelium loses its inherent integrity and becomes more pervious, priming a positive feedback loop 
that involves increased exposure to the intestinal microbiota, thereby leading to an uncontrolled 
inflammatory response [13–16]. 

The entangled nature of all factors contributing to its pathogenesis and their reciprocal influence 
led to the conceptual framing of these factors as the IBD interactome, which encompasses aspects of 
the immunome, microbiome, exposome, and genome [17–21]. In the gut microenvironment, where 
the multitude of IBD components functionally interact, no information about a single molecule, single 
gene, or single microbe can sufficiently explain the collective events that result from constant 
feedback and feed-forward signaling. For this reason, along with the broad variability of biological 
signatures in humans, an inclusive comprehension of how every component of the IBD interactome 
acts on and influences other components is imperative. 

Unravelling the connection between known and unknown paths is needed to untangle all levels 
of the IBD interactome, and omics approaches—interpreted within systems biology analysis 
frameworks—could greatly accelerate this mission. Omics techniques allow the study of related sets 
of biological molecules in a comprehensive fashion; the development and use of these techniques 
have been rising sharply in recent decades [22]. Omics techniques include genomics, transcriptomics, 

Figure 1. Pathomechanisms and selected biomarkers of IBD. The main pathogenesis-associated changes
are shown for UC and CD. For both diseases, changes in gut microbiota, disruption of the epithelial
barrier function, and chronic immune-activation are observed. Differences have also been reported,
such as for immune-regulatory processes and epithelial effects. Biomarkers can be measured directly
in tissue biopsies or upon release into the gut (e.g., fecal calprotectin) or the blood (e.g., autoreactive
antibodies).

CD is a relapsing, transmural, inflammatory disease that may affect the entire gastrointestinal
tract, from the oral cavity to the rectum. It is characterized by a non-contiguous inflammatory pattern
with areas of uninflamed mucosa. Its primary clinical symptom is abdominal pain with weight loss; it
can also present with extra-intestinal co-morbidities similar to those described in UC patients. T cell
profiles in CD and UC differ, and Th1 cytokine profiles are dominant in CD [3,4,9–12].

With its intrinsic multifactorial etiology, IBD springs from an altered interaction between the
resident intestinal flora and the immune mucosal cells, due to the influence of environmental factors
affecting genetically susceptible hosts. This generates a vicious cycle in which the intestinal epithelium
loses its inherent integrity and becomes more pervious, priming a positive feedback loop that involves
increased exposure to the intestinal microbiota, thereby leading to an uncontrolled inflammatory
response [13–16].

The entangled nature of all factors contributing to its pathogenesis and their reciprocal influence
led to the conceptual framing of these factors as the IBD interactome, which encompasses aspects of
the immunome, microbiome, exposome, and genome [17–21]. In the gut microenvironment, where the
multitude of IBD components functionally interact, no information about a single molecule, single
gene, or single microbe can sufficiently explain the collective events that result from constant feedback
and feed-forward signaling. For this reason, along with the broad variability of biological signatures in
humans, an inclusive comprehension of how every component of the IBD interactome acts on and
influences other components is imperative.

Unravelling the connection between known and unknown paths is needed to untangle all
levels of the IBD interactome, and omics approaches—interpreted within systems biology analysis
frameworks—could greatly accelerate this mission. Omics techniques allow the study of related sets
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of biological molecules in a comprehensive fashion; the development and use of these techniques
have been rising sharply in recent decades [22]. Omics techniques include genomics, transcriptomics,
metabolomics, proteomics, and lipidomics. While genetic and transcriptomic studies have been
explored thoroughly in the context of IBD, proteomics and lipidomics research is now emerging as a
new frontier to investigate these diseases.

In addition to yielding insights into complex etiologies, omics techniques are commonly applied
for the discovery of biomarkers to support diagnosis, stratification, and treatment monitoring. For
instance, although endoscopy remains the gold standard for the diagnosis and monitoring of IBD, the
use of molecular biomarkers in clinical practice, including fecal calprotectin [23], serum C-reactive
protein (CRP) [24], and serum autoantibodies, has been extremely important and supportive. However,
their low sensitivity and high variability characteristics limit clinical efficacy [25,26]. Thus, IBD clinical
management would clearly benefit from the identification of novel molecular biomarkers [27,28], which
could provide less invasive assessment methods, facilitate novel targeted treatments, and decrease the
medical financial burden [24,29,30].

In this review, we focus on the application of omics technologies, particularly proteomics and
lipidomics, for IBD research. Driven by recent advances in mass spectrometry (MS) instrumentation,
both omics approaches are rapidly evolving and could provide deeper insights into the complex
pathogenesis of IBD [31,32].

2. IBD Diagnosis and Treatment: Need for Novel Approaches

CD or UC diagnosis integrates disease symptoms with data from endoscopic and histological
evaluations. Treatment choices are often driven by symptom severity and patient responsiveness
in order to induce remission and prevent occurrence of flares. Available IBD treatments include
mesalazine, corticosteroids, immunosuppressive drugs, and monoclonal antibodies against tumor
necrosis factor alpha (TNF-α) [33,34]. However, approximately one-third of patients do not exhibit
improvement after induction therapy (primary non-response); loss of response may occur gradually in
up to 20% of patients per year [35,36], and selection of alternative treatment strategies in non-responsive
patients is extremely challenging. Importantly, treatment success depends on several patient-specific
factors, including the optimization of therapeutic dosage, co-morbidities, and use of the correct disease
activity index [37]. In the future, it is expected that—based on a deeper mechanistic understanding
of the disease—novel molecularly targeted therapies, embedded in adaptive personalized medicine
treatment frameworks, are likely to bring further therapeutic benefits to the field [38,39]. Clearly,
such personalized medicine approaches will rely strongly on the availability of effective molecular
companion diagnostics.

Classical diagnostic tools provide a snapshot of a few aspects of a very complex picture; the low
sensitivity and variability of currently employed biomarkers, such as fecal calprotectin and CRP, limit
their adoption in the clinic [25,26]. The current patent landscape for IBD biomarkers illustrates the
current state of the field (Figure 2). The published patent families covering IBD biomarkers emphasize
their diagnostic relevance for disease type identification (e.g., CD versus UC), determination of
genetic predisposition, determination of inflammation/disease activity, and as companion diagnostics
(Figure 2A). Notably, the top 20 biomarkers (on the basis of the number of patents) demonstrate
the emphasis on a few common target categories; in addition to fecal calprotectin, these include
anti–Saccharomyces cerevisiae antibodies (ASCA) and perinuclear anti-neutrophil cytoplasmic antibodies
(p-ANCA) (Figure 2B). Especially relevant in terms of novel targeted treatment approaches, several
companion diagnostics have been patented, including those for anti-TNF therapy and the specific
anti-TNF drugs infliximab, adalimumab, and certolizumab (Figure 2C) [40].
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Figure 2. Patent survey for IBD biomarkers. (A) Development of IBD biomarker patents over the last 
two decades. A worldwide IBD patent search for the last 20 years was conducted by using the Questel 
Orbit database. Cumulative numbers of patent families for CD, UC, and general IBD over time are 
shown in the line chart. The donut chart shows the current breakdown of number of patents by 
biomarker type. Note that a patent family can be associated with more than one disease and 
biomarker type. (B) Top 20 IBD biomarker patent families. The color code shows the commonly 
associated disease pattern for each biomarker. Note that some biomarkers appear in different 
variations (e.g., ANCA (PANCA, PERINUCLEAR ANTI-NEUTROPHIL CYTOPLASMIC 
ANTIBODY; ANCA, ANTI-NEUTROPHIL CYTOPLASMIC ANTIBODY) and ASCA (ASCA, ANTI-
SACCHAROMYCES CEREVISIAE ANTIBODY; ASCA-A, ANTI-SACCHAROMYCES CEREVISIAE 
ANTIBODY-IMMUNOGLOBULIN; ASCA-G, ANTI-SACCHAROMYCES CEREVISIAE 
ANTIBODY-IMMUNOGLOBULIN G)). (C) Number of patent families disclosing companion 
diagnostics biomarkers for IBD treatments. (D) Registered IBD clinical trials mentioning the 
respective endpoints (data regarding clinical trials on IBD downloaded from ClinicalTrials.gov on 15 
December 2017; text search for different endpoints in trial title, description, and endpoint fields; trials 
classified as UC (512), CD (695), or both (191) were considered). 

Notably, the limited use of molecular biomarkers for diagnosis, stratification, and monitoring of 
IBD is also apparent in the available clinical trials data (Figure 2D). Complementing endoscopy and 
common symptom-quantifying research tools (e.g., the Crohn’s Disease Activity Index (CDAI) and 
Mayo score), calprotectin, and CRP are commonly used as molecular biomarkers in both CD and UC 
clinical trials. However, other evaluated biomarkers (ASCA/ANCA, lactoferrin, and Neutrophil 

Figure 2. Patent survey for IBD biomarkers. (A) Development of IBD biomarker patents over
the last two decades. A worldwide IBD patent search for the last 20 years was conducted by
using the Questel Orbit database. Cumulative numbers of patent families for CD, UC, and
general IBD over time are shown in the line chart. The donut chart shows the current breakdown
of number of patents by biomarker type. Note that a patent family can be associated with
more than one disease and biomarker type. (B) Top 20 IBD biomarker patent families. The
color code shows the commonly associated disease pattern for each biomarker. Note that some
biomarkers appear in different variations (e.g., ANCA (PANCA, PERINUCLEAR ANTI-NEUTROPHIL
CYTOPLASMIC ANTIBODY; ANCA, ANTI-NEUTROPHIL CYTOPLASMIC ANTIBODY) and ASCA
(ASCA, ANTI-SACCHAROMYCES CEREVISIAE ANTIBODY; ASCA-A, ANTI-SACCHAROMYCES
CEREVISIAE ANTIBODY-IMMUNOGLOBULIN; ASCA-G, ANTI-SACCHAROMYCES CEREVISIAE
ANTIBODY-IMMUNOGLOBULIN G)). (C) Number of patent families disclosing companion
diagnostics biomarkers for IBD treatments. (D) Registered IBD clinical trials mentioning the respective
endpoints (data regarding clinical trials on IBD downloaded from ClinicalTrials.gov on 15 December
2017; text search for different endpoints in trial title, description, and endpoint fields; trials classified as
UC (512), CD (695), or both (191) were considered).
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Notably, the limited use of molecular biomarkers for diagnosis, stratification, and monitoring
of IBD is also apparent in the available clinical trials data (Figure 2D). Complementing endoscopy
and common symptom-quantifying research tools (e.g., the Crohn’s Disease Activity Index (CDAI)
and Mayo score), calprotectin, and CRP are commonly used as molecular biomarkers in both CD and
UC clinical trials. However, other evaluated biomarkers (ASCA/ANCA, lactoferrin, and Neutrophil
gelatinase-associated lipocalin (NGAL)/Lipocalin 2 (LCN2)) have been limited to sporadic inclusion
in these trials.

Overall, despite the use of some molecular biomarkers in clinical practice, there is a clear gap in
terms of translating biomarker discoveries into clinical application [41]. This can be partially explained
by the time required to translate omics discoveries from bench to bedside; it is also related to the
complexity of designing reliable cross-border methods to ensure consistent results. Resolving this
challenge and implementing individual omics profiling could enable a deeper understanding of the
different molecular and clinical subtypes, thus facilitating easier and more precise diagnosis and
personalized IBD treatment [42–44].

3. Applying Omics Analyses for IBD Research

Systems-level insights into disease mechanisms, the discovery of complex biomarkers, and,
eventually, personal omics profiling are enabled by rapid advancements in molecular measurement
technologies. Notably, novel sequencing technologies now facilitate the analysis of genome variations
and transcriptome responses at a depth that was inconceivable just a few years ago [45]. In the
IBD context, these novel sequencing methods have already provided us with novel insights, such as
candidate biomarkers for CD [46]. However, as discussed, any complex biological disease, such as
IBD, affects the system simultaneously on multiple levels; thus, multiple complementary analysis
approaches are required to unravel relevant pathomechanisms and to identify robust biomarkers.

Here, we focus specifically on the question of how comprehensive analyses of proteome and
lipidome alterations can effectively contribute to IBD research. Proteomics and lipidomics occupy
different positions in the spectrum of omics methods: proteomics is the more mature and readily
available method, whereas lipidomics allows completely new insights into the structure–function
links of this important class of molecules. Notably, both omics methodologies, driven especially by
improved MS instrumentation, are evolving rapidly, preparing the ground for future discoveries. In
the following sections, we briefly summarize the contributions of these omics technologies to the
investigation of IBD pathomechanisms and the identification of IBD biomarkers, before highlighting
key considerations and possible improvements for future studies. As technical background, we
provide a concise technical summary of current proteomics and lipidomics methods in Figure 3 and
the Appendix A, with additional details available in recent review articles [31,47–50].
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Figure 3. Schematic overview of the main proteomics and lipidomics technologies. (A) Gel-based and 
gel-free proteomics analysis workflows. In two-dimensional polyacrylamide gel electrophoresis (2D-
PAGE), proteins are separated in two dimensions by molecular weight and isoelectric point. Proteins 
are then identified by MS after in-gel digestion. In LC-MS/MS approaches, proteins are digested into 
peptides prior to chromatographic separation and identification/quantification by MS. (B) Different 
MS-based proteomics approaches rely on distinct combinations of mass analyzers, such as 
quadrupoles (Q1/Q3) and high-resolution Orbitrap analyzers. To support identification, peptides can 
be fragmented in dedicated quadrupoles (q2) or higher-energy C-trap dissociation (HCD) cells. 
Untargeted proteomics involves two levels of mass spectra: the first (MS1) spectrum represents the 
masses of the unfragmented peptide ions. From this spectrum, peptide ions are selected for 
fragmentation in the HCD cell before analysis in the Orbitrap; the fragment ions are then represented 
in the second (MS2) spectrum. For targeted analyses, multiple reaction monitoring (MRM) commonly 
relies on a triple-quadrupole MS instrument. Specific peptide/fragment mass pairs (transitions) are 
selected and generated with quadrupole mass filters (Q1–Q3). During a targeted experiment, the mass 
spectrometer can cycle though several transitions to allow for multiplexing. Parallel reaction 
monitoring is a related technology that relies on a high-resolution fragment mass analyzer, such as 
an Orbitrap, rather than a quadrupole, allowing for simultaneous quantification of all fragment ions. 
In data-independent acquisition, ions are selected in bins over the entire analyzed mass range (Q1), 
all ions that fall into a mass bin are fragmented together (HCD), and the combined fragmentation 
spectra are deconvoluted during data processing. (C) Lipidomics can be divided into three main 
technologies, known as targeted, shotgun, and imaging lipidomics. Targeted and shotgun lipidomics 
are based, respectively, on the analysis of extracted samples, either by applying chromatographic 
separation or directly without separation before MS. Targeted lipidomics is performed primarily on 
instruments providing high sensitivity, such as triple-quadrupole MS, whereas shotgun lipidomics is 
preferably, but not exclusively, performed on high-resolution instruments, such as Orbitrap MS. 
Imaging lipidomics is based on the analysis of tissue slices through ionization of their surface 
molecules. The measured lipid ions are recorded by the mass spectrometer, then identified and 
quantified via dedicated software. For imaging lipidomics, molecules are localized onto the analyzed 
tissue. Figure elements based on Titz et al. [48]. See Appendix for more details. 

  

Figure 3. Schematic overview of the main proteomics and lipidomics technologies. (A) Gel-based
and gel-free proteomics analysis workflows. In two-dimensional polyacrylamide gel electrophoresis
(2D-PAGE), proteins are separated in two dimensions by molecular weight and isoelectric point.
Proteins are then identified by MS after in-gel digestion. In LC-MS/MS approaches, proteins are
digested into peptides prior to chromatographic separation and identification/quantification by MS.
(B) Different MS-based proteomics approaches rely on distinct combinations of mass analyzers, such
as quadrupoles (Q1/Q3) and high-resolution Orbitrap analyzers. To support identification, peptides
can be fragmented in dedicated quadrupoles (q2) or higher-energy C-trap dissociation (HCD) cells.
Untargeted proteomics involves two levels of mass spectra: the first (MS1) spectrum represents
the masses of the unfragmented peptide ions. From this spectrum, peptide ions are selected for
fragmentation in the HCD cell before analysis in the Orbitrap; the fragment ions are then represented
in the second (MS2) spectrum. For targeted analyses, multiple reaction monitoring (MRM) commonly
relies on a triple-quadrupole MS instrument. Specific peptide/fragment mass pairs (transitions) are
selected and generated with quadrupole mass filters (Q1–Q3). During a targeted experiment, the
mass spectrometer can cycle though several transitions to allow for multiplexing. Parallel reaction
monitoring is a related technology that relies on a high-resolution fragment mass analyzer, such as an
Orbitrap, rather than a quadrupole, allowing for simultaneous quantification of all fragment ions. In
data-independent acquisition, ions are selected in bins over the entire analyzed mass range (Q1), all
ions that fall into a mass bin are fragmented together (HCD), and the combined fragmentation spectra
are deconvoluted during data processing. (C) Lipidomics can be divided into three main technologies,
known as targeted, shotgun, and imaging lipidomics. Targeted and shotgun lipidomics are based,
respectively, on the analysis of extracted samples, either by applying chromatographic separation or
directly without separation before MS. Targeted lipidomics is performed primarily on instruments
providing high sensitivity, such as triple-quadrupole MS, whereas shotgun lipidomics is preferably, but
not exclusively, performed on high-resolution instruments, such as Orbitrap MS. Imaging lipidomics is
based on the analysis of tissue slices through ionization of their surface molecules. The measured lipid
ions are recorded by the mass spectrometer, then identified and quantified via dedicated software. For
imaging lipidomics, molecules are localized onto the analyzed tissue. Figure elements based on Titz et
al. [48]. See Appendix A for more details.
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3.1. Mechanistic Insights Gained Using Proteomics and Lipidomics

Proteomics and, to a lesser extent, lipidomics have already been used successfully to investigate
IBD pathomechanisms, including the inflammatory response, epithelial barrier function, and gut
microbiome (Table S1).

The molecular coverage and quantification accuracy of current proteomics and lipidomics
approaches now enable investigation of the complex immune response directly in IBD patient samples.
For example, a recent proteomics investigation further elucidated the innate immune response in
IBD [51]: 5711 proteins were identified in mucosal colon biopsies without visible surface inflammation.
In total, 46 proteins differed in abundance between UC and control colon tissue; UC tissue exhibited
clear enrichment of upregulated neutrophil and neutrophil extracellular trap proteins [52]. This
identification of clear signs of chronic inflammation, even in the absence of visible surface inflammation,
highlighted the need for further studies into the chronic inflammation state in IBD patients [53].

For lipidomics, a recent case–control study demonstrated how this omics method can be applied
to investigate disease states in mucosa samples [54]: inflamed mucosa showed increased levels of
seven eicosanoids (prostaglandin (PG) E2, PGD2, thromboxane B2, 5-hydroxyeicosatetraenoic acid
(HETE), 11-HETE, 12-HETE, and 15-HETE) that correlated with the degree of inflammation [54].

Both proteomics and lipidomics have also been employed to investigate IBD-relevant immune-cell
responses. Studies have implicated Th17 T-cells in IBD pathogenesis, particularly in CD-associated
dysregulation of immune responses [55,56]. Riaz et al. compared the proteomes of human Th1 and
Th1/Th17 clones derived from intestinal biopsies of CD patients [57]. In total, 7401 proteins have
been quantified; 334 were differentially expressed between Th1 and Th1/Th17 clones. Consistent
with their functions in immune responses, cytotoxic proteins, such as granzyme B and perforin, were
more abundant in Th1 than in Th17 cells. However, only a subgroup of Th1 cell clones from CD
patients, characterized as CD28-positive and natural killer group 2 member D-negative, expressed
these cytotoxic features; this suggested a larger-than-expected diversity in the T cell-mediated immune
response in CD. In another recent example, proteomics of regulatory T-cells (CD4+Foxp3+) (Treg)
led to the identification of a protein, THEMIS, as a checkpoint control in the suppressive function
of Treg cells [58]. In a related context, lipidomics pinpointed specific differences in the response of
macrophages from CD patients upon activation with heat-inactivated Escherichia coli, with significantly
lower levels of newly synthesized phosphatidylinositol 16:0–18:1 [59].

As discussed earlier in this review, the disruption of intestinal epithelium integrity is an early
event in IBD pathogenesis. Proteomics has been used to study differences between intestinal epithelial
cells isolated from IBD patients and controls, leading to the identification of activated cellular stress
responses in IBD [60,61].

Given the relevance of intestinal mucus as an intestinal barrier, lipidomics was used to investigate
the phosphatidylcholine (PC) lipidome profile of rectal mucus obtained from IBD patients and control
subjects [62,63]. UC patients displayed significantly lower levels of PC and lyso-PC compared with
CD patients and controls. Interestingly, treatment of UC patients with a special formulation of PC,
which exhibited delayed release in the gut, showed clinical efficacy [64], resulting in an improvement
of the clinical activity index [65].

Genomics methods are at the forefront of the dissection of gut microbial populations. Nevertheless,
metaproteomics is emerging as an effective approach to gain further insights into the complex
interactions between the gut microbiome and host environment in health and disease [66]. In a
recent study, a systems biology approach, including proteomics, was used to further understand
the host–microbe cross-talk in new-onset CD [67]. The authors analyzed microbiota of the
mucosa-luminal interface by 16S rDNA gene sequencing and combined this with a quantitative
proteomics investigation of the host proteomes in mucosal biopsies; 320 of 3323 quantified proteins
were significantly differentially expressed, including several mitochondrial proteins that were
significantly downregulated in CD patients compared with controls. Interestingly, this included several
proteins involved in H2S detoxification. Concomitantly, metagenomics data showed an increase in the
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relative abundance of microbial H2S producers, indicating Atopobium parvulum as a central hub. Finally,
supporting a possible causal link, in a follow-up experiment with IL-10-deficient mice, A. parvulum
was shown to induce colitis, which was mitigated by an H2S scavenger [67].

3.2. Biomarker Identification Using Proteomics and Lipidomics

In addition to these mechanistic studies, proteomics and lipidomics have been applied in several
IBD biomarker identification studies (Table S1). In total, we identified 18 published studies that
were performed specifically to identify biomarkers. Only a single study employed lipidomics, and
most recent proteomics studies tended to employ liquid chromatography coupled to tandem MS
(LC-MS/MS) rather than 2D-PAGE technologies, reflecting a shift to more recent and more potent
proteomics technologies. Most of the studies (11 in total) focused on blood/serum as the sample source;
five studies focused on colon samples, two studies on feces, and a single study on saliva, aligned
with the convenience of sampling (serum, feces, and saliva) and proximity of the sampling site to the
disease process (colon biopsies and feces). These studies were undertaken to identify biomarkers in at
least three different application areas: diagnosis, patient stratification, and treatment selection and
response monitoring.

For example, a recent study, which was focused on IBD diagnosis, combined discovery
proteomics with targeted verification experiments to identify markers for intestinal complications
of CD (untreated/balloon-dilated strictures and non-healed abscesses/fistulas) [68]. The derived
serology panel was able to indicate complications in CD with 70% sensitivity and 72.5% specificity.
In a lipidomics study, plasma lipid profiles were compared across healthy controls and UC and CD
cases [69]; this resulted in the identification of 33 lipid species, primarily belonging to ether-lipids, that
were significantly correlated with CD.

Another recent proteomics study focused on proteins at the mucosal-luminal interface to identify
biomarker candidates for pediatric IBD-associated colitis [70]. Two distinct four-protein panels were
identified that were able to discriminate active IBD from non-IBD and pancolitis from non-pancolitis,
with reported high sensitivity and specificity (>0.95). However, these estimates were obtained from
the discovery cohort, not from an independent validation cohort; thus, it is unclear how these panels
might perform with real clinical samples. Nevertheless, one protein from each panel, LTA4H, and
catalase, was also measured in stool samples from an independent cohort, demonstrating elevation
in IBD versus non-IBD stool samples. These data support the selection of IBD-relevant proteins and
demonstrate the possibility that these markers can be measured in more easily accessible stool samples.

The identification of specific IBD phenotypes in patients diagnosed with indeterminate colitis (IC)
has been implemented recently by using disease stratification biomarkers. Among young (<18-year-old)
IBD patients, 15−30% cannot be fully classified and are therefore diagnosed with IC. While individual
serum cytokine profiles are unable to distinguish among IBD subtypes [71,72], both transcriptomics [71]
and MALDI imaging proteomics profiles of colon biopsies [73,74] showed clear differences between UC
and CD, supporting the feasibility of the development of biopsy biomarkers for disease stratification.

Another study, intended to improve disease stratification, identified protein markers that were
able to discriminate between CD and UC in children with new-onset IBD [75]. Two candidate biomarker
panels were established: a five-protein panel able to discriminate IBD from control cases with 95.9%
accuracy, and a 12-protein panel able to discriminate between CD and UC patients with 80% accuracy
in the validation cohort.

Proteomics has also been employed to identify treatment response biomarkers for IBD. Anti-TNF
therapy with infliximab is now commonly used to control inflammation in IBD patients [76]. However,
the factors predicting response, as well as the cellular mechanisms leading to the therapeutic response,
are not fully understood. In a population of 43 UC patients, Magnusson et al. investigated infliximab
treatment response in blood and inflamed colon biopsies [77]. Treatment response was associated with
lower levels of macrophage markers CD14 and CD86 and the chemokine CCL2. In addition, proteomics
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identified reduced levels of tenascin-C (a glycoprotein of the extracellular matrix) in biopsies upon
treatment, which was consistent with reduced tenascin-C levels in serum.

Finally, another study investigated differences in the serum protein profiles of children with
IBD before and after treatment with infliximab or corticosteroids [78]. In total, 18 proteins differed
significantly in both treatment groups with the same directionality; consistently downregulated
proteins were associated with inflammatory processes.

4. Proteomics and Lipidomics in IBD Research—Going Forward

As illustrated in the above sections, both proteomics and lipidomics can provide further insights
into IBD pathomechanisms and support the development of novel biomarker assays. However, thus
far, both these omics technologies have not exploited their full potential. The published studies provide
a fairly heterogeneous picture of the field, with interesting case studies; however, there is a lack of clear
direction regarding how these findings can be further developed and, eventually, translated into clinical
practice. This is especially evident in the biomarker discovery field, where only a few studies have
included a validation cohort, and there is an obvious disparity between reported biomarker candidates
and those used in the clinic. Clearly, translating novel findings is a long process. Nevertheless, design
of new studies can clearly benefit from the newly generated data taking into consideration some key
aspects (Figure 4).
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Omics technologies. MS-based technologies for the quantification of proteome and lipidome
changes are evolving rapidly (see Appendix A). The molecular coverage and sample throughput
available today were unimaginable just a few years ago. Noteworthy, for example, is the emergence
of so-called data-independent acquisition approaches, which now enable very comprehensive and
reproducible snapshots of the proteome in large sample cohorts [79]. This growth will likely continue,
and future studies will benefit from advances in omics technologies.

Sample quality. However, it is important not only to focus on the specific omics technology
employed in a given situation but also to design the entire sample collection, processing, and analysis
workflow from a robustness and quality perspective. Sample quality is among the most important
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aspects required for a successful biomarker study [80]. Well-defined standard operating procedures
for sample collection and handling can ensure high-quality, reproducible sampling [81], as reported
for serum/plasma [82] and cerebrospinal fluid [83].

Analytical platform. To ensure the overall quality of the analytical platform, its performance must
be characterized in depth (e.g., in terms of measurement accuracy and reproducibility). For proteomic
studies, the scientific community has developed and published useful guidelines [84–86]. Rigorous
analytical quality control is crucial and can be supported by automated LC-MS/MS performance
monitoring systems [87,88], together with specific sample quality metrics (e.g., [89,90]). To prevent
late failures of biomarker candidates, it has been suggested that a core method validation (e.g.,
including estimates of accuracy, precision, and limits of quantification) should be performed when
designing biomarker discovery workflows [91]. Clearly, full method validation becomes essential
when a newly discovered biomarker is moved toward clinical application. For this, recognized
validation guidelines are to be followed, such as those provided by the Clinical and Laboratory
Standards Institute (e.g., [92]) and those recognized by the U.S. Food and Drug Administration [93].
The Eurachem guide by Magnusson and Örnemark is a useful reference for general analytical method
validation guidelines [94]. Moreover, especially for large-scale studies, automation can be considered
to make biomarker discovery platforms more robust, as recently demonstrated by several groups
(Table 1).

Table 1. Recently published LC-MS/MS-based protein biomarker identification workflows.

Quantification
Approach

Abundant
Protein

Depletion
Separation

Scale (#Proteins/
#Samples) Precision Comment References

iTRAQ
(discovery) Yes SCX

C18
Pool of 20
samples Biomarker panel for

diabetic kidney
disease developed

[95]

MRM
(validation) Yes C18 8/572 CV ~8%

Label-free No C18 ~437/319
CV <20% for

71% of
proteins

Applied within
weight-loss study [96]

TMT Yes C18 ~190/~1000

Average CV
of 12% for

internal
standard

Applied within
multicentered

dietary
interventionstudy

[97]

Coefficient of variation (CV); strong cation exchange chromatography (SCX); octadecyl carbon chain chromatography
(C18).

Study design. Ultimately, especially for biomarker studies, the study design will determine the
success of a project. Relevant considerations for the design of biomarker identification and validation
studies have been outlined [81,98,99]; these include clearly defined inclusion and exclusion criteria,
control of confounding factors, and well-defined statistical analysis plans with statistical power
calculations [100,101]. If possible, longitudinal designs (i.e., following biomarkers in a subject over
time) should be considered, as these are especially powerful for assigning the observed variability
in a candidate biomarker to a biological response of interest, rather than to complex differences in
the human population. Most importantly, however, no biomarker identification study should be
planned without an independent study cohort to validate the findings. This is especially relevant
considering that only 23% of the published plasma proteomics studies for biomarker discovery have
been independently verified [91].

Emerging sample types. Another generally important aspect is the selection of the biological
source material. A broad spectrum of biological sample types, ranging from serum to colon biopsies
and feces, has been leveraged for IBD investigations. Alternative sources could be considered to
facilitate new discoveries. For example, preserved tissue samples stored in large biobanks could
provide an alternative and, possibly, complement studies that use fresh tissue biopsies. Several
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groups have shown that archived tissue samples are suitable for proteomics studies [102–105], with a
recent study applying proteomics to fixed colon mucosa samples [106]. Another promising sample
type for IBD research is whole gut lavage fluid (WGLF) [107], which can be collected when the
gastrointestinal tract is cleansed before colonoscopy or colon surgery. For example, in one study,
lactoferrin was increased in the WGLF of IBD patients—it was thus proposed as a marker for intestinal
inflammation [108]—while elevated levels of IL-1β were identified in the WGLF of CD patients with a
high risk of relapse [109]. Finally, colorectal mucus could be further explored as a potential sample
source. Previous studies have established that colorectal mucus is a rich source of potential IBD
biomarkers, as demonstrated by the quantification of calprotectin and eosinophil-derived neurotoxin
in mucus samples from IBD patients [110,111].

Multi-omics. Returning to the main theme, another key general consideration is which
molecule class to profile. While we focus here on proteome and lipidome profiling methods, clearly,
transcriptome, (epi-) genome, and metabolome profiling methods can be expected to yield very
relevant insights. Importantly, IBD pathogenesis results from disturbances in the complex interplay of
multiple biological processes; a comprehensive understanding of these processes will ultimately require
integrative approaches combining several omics and non-omics endpoints within a systems biology
framework [20,44,112,113]. Notably, Danese et al. recently emphasized the need for multi-omics
integration to achieve comprehensive and effective IBD disease risk assessment, early and accurate
diagnosis, effective targeted treatments, identification of the biological basis of disease states, and,
finally, disease prevention [114]. Similarly, as mentioned, it has been argued that the overwhelming
complexity of IBD can only be addressed with an integrative view of all pathological components,
known as the “IBD interactome” [44]. Generating relevant and interpretable views of multi-omics data
sets remains a challenge; however, several omics data integration methods are readily available [115],
and novel methods are emerging (e.g., Multi-Omics Factor Analysis [116]).

The multi-level insights thus gained into IBD pathogenesis could then lead to the development of
effective biomarkers that are specific for central regulatory nodes in the disease process. Importantly,
how feasible are such multi-level or multi-omics biomarkers? The benefits of such integrative
biomarker panels have already been recognized for IBD, with commercially available products that
combine serologic, genetic, and inflammation markers to support IBD diagnosis (Table S2).

5. Conclusions

IBD is a complex disease with a multifactorial etiology that is affected by genetics, gut microbiota,
immune response, and the environment [17–19]. Global molecular profiling and quantitative
technologies, including proteomics and lipidomics—in combination with sophisticated computational
analysis and integration approaches—are emerging as new tools able to generate high-throughput
data, instrumental for further understanding of IBD pathogenesis and biomarker identification.

In this review, we have summarized the state-of-the-art proteomic and lipidomic approaches
to IBD studies. The intrinsic conundrum of intestinal physiology and its derangement in gut
pathologies put in place different players in IBD onset and development, thus creating different layers
of complexity. The application of targeted omics studies will enable unraveling of the contributions
of each tissue subcomponent. The rapid evolution of these technology platforms will transform
the current step-up approach [117], in which treatment is chosen on the basis of disease severity
and treatment responsiveness. Importantly, it will accelerate biomarker discovery, indicate novel
therapeutic avenues for the clinical management of IBD, and facilitate the possibility of continuous
monitoring of the treatment response of individual patients, allowing further refinement of treatment.
Implementing the output of omics techniques, in combination with (epi-)genomics, microbiome studies,
and nutrigenomics, will eventually lead to personalized medicine for IBD patients (Figure 5).
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Appendix A.

This appendix provides additional details on common proteomics and lipidomics methods.

Appendix A.1. Profiling the Proteome

Appendix A.1.1. Gel-Based Approaches (2D-PAGE)

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the classical approach for differential
proteome analysis (Figure 3A). Proteins are separated in two dimensions on a gel, based on their isoelectric point
and molecular mass, allowing for quantification of up to 2000 proteins on a single gel. A variant of 2D-PAGE
is difference gel electrophoresis, in which proteins of different samples are labeled with different fluorescent
dyes, allowing for multiplexed analyses [118,119]. Disadvantages of 2D-PAGE include the high protein amount
needed per sample (at least 150 µg) and the lower sensitivity of detection of biological effects compared to gel-free
approaches [120,121].
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Appendix A.1.2. Gel-Free Approaches (LC-MS/MS)

Besides gel-based approaches, liquid chromatography (LC) is the most commonly used method in the
proteomics field for sample fractionation before mass spectrometry (MS) (Figure 2A,B). Bottom-up workflows
are currently most common. In these workflows, proteins are first cleaved/digested into peptides by specific
proteases, such as trypsin. Subsequently, sample fractionation, identification, and quantification are performed on
the level of the derived peptides. In contrast, in top-down workflows, intact (non-digested) proteins are analyzed
directly. For fractionation, the LC approach takes advantage of differences in the physiochemical properties of
proteins and peptides (i.e., their size, charge, and hydrophobicity). LC coupled to tandem MS (LC-MS/MS) has
brought about many advances, including increased sensitivity and improved speed, with the ability to produce
high-throughput datasets. Peptides in the femtomolar (10−15) to attomolar (10−18) range can be detected in tissues
and biological matrices with a mass accuracy of <10 ppm [31,122].

Different quantification methods can be used with bottom-up LC-MS/MS approaches. Label-free
quantitative (LFQ) techniques directly estimate the (relative) concentrations of unmodified proteins.
Spectral-counting is a classical LFQ technique that estimates protein abundances based on the number of observed
MS spectra for a given protein. However, LFQ techniques that estimate protein abundances based on the
integrated MS signal intensities of their peptides produce much more accurate estimates [123]. LFQ allows
comparison of multiple samples, covers a broad concentration range, and does not require further sample
pretreatment. However, compared with the label-based methods discussed below, LFQ generates more variable
protein abundance estimates and does not allow for multiplexed analysis of several samples in a single MS
experiment [124,125].

In label-based quantification methods, samples are specifically modified before or during analysis. The stable
isotope labeling with amino acids in cell culture (SILAC) approach relies on the metabolic (in vivo) incorporation
of specific “light” or “heavy” isotope forms of selected amino acids (most commonly arginine and lysine) into
proteins [126–128]. Differentially labeled samples are mixed and analyzed together, and for relative quantification,
the areas under the elution peaks from the “light” and “heavy” labeled versions of each detected peptide are
compared directly [126].

Alternatively, in chemical labeling approaches, peptide mixtures derived from the protein digestion step
are tagged with specific chemical labels for each sample that is to be compared. Examples are the closely related
isobaric tag for relative and absolute quantitation (iTRAQ®) and the tandem mass tags (TMT™) approaches,
in which specific chemical tags are attached to all peptides in a protein digest via free amines at the peptide
N-terminus and lysine side chains. Labeled samples are then pooled and analyzed simultaneously. The main
advantages of isobaric tag-based quantification are the simultaneous comparison of large numbers of samples (up
to 10 for TMT), reduction of required MS runs (and thus total analysis time), as samples are pooled before MS
analysis, and the low probability of introducing experimental errors during analysis due to the pooling of all the
samples to be analyzed [48]. The limitations of the technique are the low dynamic range and the requirement for
the protein profiles to be similar.

Appendix A.1.3. Targeted MS

As the need for accurate quantification of a specified set of peptides/proteins across multiple samples has
grown, targeted approaches have been developed for biomarker quantification. Multiple reaction monitoring
(MRM) and parallel reaction monitoring (PRM) are the main MS-based targeted quantification methods (Figure 3B).
In both approaches, quantification is performed on the peptide level, quantifying selected, surrogate peptides
derived from the enzymatic digestion of the proteins of interest. Commonly, corresponding heavy isotope-labeled
peptides are included as internal standards to allow for robust and absolute quantification. These methods are
mostly suitable for quantification of tens to hundreds of targeted proteins in complex matrices with attomole-level
limits of detection [129]. This makes these targeted methods especially useful for profiling well-defined target
panels [130] and validation of results from untargeted proteomics experiments, including biomarker validation
(e.g., [68]).

Appendix A.1.4. Data-Independent Acquisition

In addition to multiplexed PRM/MRM approaches, data-independent acquisition (DIA) is among the most
rapidly evolving methods in the proteomics field. DIA methods can be regarded as the middle ground between
untargeted and targeted proteomics approaches, as they combine untargeted MS acquisition with targeted
computational analyses (Figure 3B) [131]. In DIA approaches, the mass spectrometer is programmed to acquire
peptide masses and their fragmentation patterns systematically and comprehensively across the whole proteome.
Specific spectral libraries—as well as specific database search algorithms—are then used to unravel these complex
fragmentation datasets and to derive peptide and protein expression profiles. DIA methods are characterized by
high quantification accuracy with broad proteome coverage, a low number of missing values, and the possibility
of conducting targeted re-analyses of a data set [131,132].

Appendix A.1.5. Beyond Expression Changes: Post-Translational Modifications

MS-based proteomics methods are also especially well-suited to investigate the role of post-translational
modifications (PTM) of proteins. PTMs are important for regulation of cellular processes, including cellular
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localization of protein, regulation of protein function, and protein complex formation. These covalent protein
modifications occur during or after protein biosynthesis. MS/MS provides a series of analytical features that
enable the facile characterization of modified proteins via amino acid sequencing and specific detection of
post-translationally modified amino acid residues [133]. Two commonly studied PTMs are phosphorylation [134]
and glycosylation [135]. Protein phosphorylation is critically important for signaling cascades (e.g., those involved
in immune-regulatory interactions). With the importance of glycosylated proteins, such as mucins, in IBD, studies
of the glycoproteome can be also expected to yield relevant insights [136] and possibly data related to how
glycosylation affects the microbial–host interactions in IBD [135].

Appendix A.1.6. Non-MS-Based Proteomics Methods

Other proteomics methods are based on antibodies or alternative protein binders. For example, Luminex
multi-analyte profiling (xMAP®) technology is a bead-based, multiplexed immunoassay (i.e., antibody-based)
system in a microplate format. The system is able to detect up to 500 targets in a single sample simultaneously,
depending on system design [137]. Advantages of the xMAP® technology are its high-throughput format,
accessibility via a broad and expanding number of immunoassay kits, and economy via a significant reduction
in time and costs compared with running multiple Western blots or enzyme-linked immunosorbent assays
(ELISA) [137].

Reverse-phase protein microarrays (RPPA) are an emerging alternative technology for the quantification of
(phospho-) protein panels. RPPAs use spotted lysate microarrays, which are subsequently probed by different
validated antibodies to detect protein expression changes. Advantages of RPPAs are cost-effectiveness, because
the system involves multiplexed analysis of more than 1000 samples on a single slide, and high sensitivity (ng of
protein lysates spotted, detection of attomoles of a specific protein).

Finally, alternative protein binders can be used effectively for quantification. Slow Off-Rate Modified
Aptamer technology (SOMAmer®) is a new, aptamer-based, proteomic technology for biomarker discovery. It
uses a new generation of aptamers that contain chemically modified nucleotides. Proteins present in complex
matrices, such as plasma, are measured in a process that transforms a signature of protein concentrations into
a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. This
technology allows for the measurement of thousands of proteins from small sample volumes [138].

Appendix A.2. Profiling the Lipidome

Appendix A.2.1. Shotgun Lipidomics

As for proteomics, current lipidomics methods are mostly MS-based. In shotgun lipidomics approaches,
a crude lipid extract is injected directly into the MS instrument (Figure 3C). This method simplifies the setup,
reduces the requirement for additional quality controls, and is highly quantitative. With this approach, hundreds
of lipid species can be identified and quantified precisely from a small sample size (e.g., 1 µL of plasma) [139,140].

Appendix A.2.2. Targeted Lipidomics

In targeted lipidomics, LC is combined with direct MS detection (Figure 3C). Like in targeted proteomics,
MRM and PRM approaches are commonly applied [141]. This allows analysis of low-abundance lipid species,
complex lipid mixtures that cannot be detected using shotgun approaches, and ensures accurate quantification of
specific lipid species. Sensitivity and selectivity are gained by separating both analytes and impurities, permitting
precise detection of low abundance lipids.

Appendix A.2.3. FLUX Lipidomics

Similar to SILAC for proteomics, stable isotope labeling of endogenous lipids can be performed to measure
the turnover and dynamics of lipid species. This technology is referred to as FLUX lipidomics, or stable
isotope-labeled tracers, and is based on stable isotopes (e.g., deuterium, 13C, 15N) in various lipid metabolic
substrates (e.g., 13C-labeled fatty acids). The labeled tracer will introduce a mass shift in the incorporated lipid
product that can be distinguished readily by MS. Thus, when delivered to cells, the incorporation rate of the stable
isotope into lipid species can be quantified using shotgun and/or targeted lipidomics. This permits the precise
determination of lipid species turnover in cells [142]. FLUX lipidomics comprehensively resolves lipid turnover
and dynamic metabolic flow of the global lipid metabolism in biological systems.

Appendix A.2.4. Imaging Lipidomics

Using the imaging mass spectrometry (IMS) approach, MS can also spatially resolve the distribution of
lipids on a tissue slide (Figure 3C). Knowing how lipid species are distributed in tissues can help understand lipid
metabolism, disease states (e.g., by comparing lipids between healthy and diseased tissue regions), and biological
processes. IMS is typically performed on fresh or frozen tissues using slices (<20 µm thickness) placed onto special
supports or coated glass microscope slides [140]. Matrix-assisted laser desorption/ionization (MALDI) is used to
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generate lipid ions for spatially resolved MS analysis from these tissue slices. Current technologies permit spatial
resolution down to 5 µm, providing high precision in the localization of the recorded ions [143].
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