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ABSTRACT

Transcriptome-wide association studies (TWASs) in-
tegrate expression quantitative trait loci (eQTLs)
studies with genome-wide association studies
(GWASs) to prioritize candidate target genes for com-
plex traits. Several statistical methods have been
recently proposed to improve the performance of
TWASs in gene prioritization by integrating the ex-
pression regulatory information imputed from multi-
ple tissues, and made significant achievements in im-
proving the ability to detect gene-trait associations.
Unfortunately, most existing multi-tissue methods fo-
cus on prioritization of candidate genes, and can-
not directly infer the specific functional effects of
candidate genes across different tissues. Here, we
propose a tissue-specific collaborative mixed model
(TisCoMM) for TWASs, leveraging the co-regulation
of genetic variations across different tissues explic-
itly via a unified probabilistic model. TisCoMM not
only performs hypothesis testing to prioritize gene-
trait associations, but also detects the tissue-specific
role of candidate target genes in complex traits. To
make full use of widely available GWASs summary
statistics, we extend TisCoMM to use summary-level
data, namely, TisCoMM-S2. Using extensive simula-
tion studies, we show that type I error is controlled at
the nominal level, the statistical power of identifying
associated genes is greatly improved, and the false-
positive rate (FPR) for non-causal tissues is well con-

trolled at decent levels. We further illustrate the bene-
fits of our methods in applications to summary-level
GWASs data of 33 complex traits. Notably, apart from
better identifying potential trait-associated genes, we
can elucidate the tissue-specific role of candidate
target genes. The follow-up pathway analysis from
tissue-specific genes for asthma shows that the im-
mune system plays an essential function for asthma
development in both thyroid and lung tissues.

INTRODUCTION

Over the last decade, GWASs have achieved remarkable suc-
cesses in identifying genetic susceptible variants for a vari-
ety of complex traits (1). However, the biological mecha-
nisms to understand these discoveries remain largely elu-
sive as majority of these discoveries are located in non-
coding regions (2). Recent expression quantitative trait loci
(eQTLs) studies indicate that the expression regulatory in-
formation may play a pivotal role in bridging both genetic
variants and traits (3–5). Cellular traits in comprehensive
eQTL studies can serve as reference data, providing in-
vestigators with an opportunity to examine the regulatory
role of genetic variants on gene expression. For example,
the Genotype-Tissue Expression (GTEx) Project (6) has
provided DNA sequencing data from 948 individuals and
collected gene-expression measurements of 54 tissues from
these individuals in the recent V8 release.

Transcriptome-wide association studies (TWASs) have
been widely used to integrate the expression regulatory in-
formation from these eQTL studies with GWASs to priori-
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tize genome-wide trait-associated genes (7–9). A variety of
TWAS methods have been proposed using different predic-
tion models for expression imputation, including the para-
metric imputation models, e.g. PrediXcan (7), TWAS (8),
CoMM (10) and CoMM-S2 (11), and the nonparametric
imputation model, e.g. Tigar (12). These methods have been
used for analyzing many complex traits with expression pro-
files from different tissues, successfully enhancing the dis-
covery of genetic risk loci for complex traits (9,13).

To further improve the power of identifying potential
target genes, two recent studies were proposed by leverag-
ing the substantial shared eQTLs across different tissues,
i.e., MultiXcan (14) and UTMOST (15). They use a step-
wise procedure: they first conduct imputation for gene ex-
pressions across multiple tissues and then perform subse-
quent association analysis using a multivariate regression
that pools information across different tissues. Compared
to the single-tissue methods, these multi-tissue strategies en-
hance the imputation accuracy for gene expression and thus
improve the power of identifying potential target genes.

Despite their successes, the existing multi-tissue methods
have several limitations. First, MultiXcan and UTMOST
cannot be used to identify the tissue-specific gene-trait as-
sociations. Many studies have shown that genes associated
with complex traits are always regulated in a tissue-specific
manner (9,16–18). For example, a recent study across 44 tis-
sues confirmed this phenomenon in 18 complex traits (19),
implying the persuasive role of tissue-specific regulatory ef-
fects in a wide range of complex traits. Using a single-tissue
test, one can easily reach a false conclusion regarding which
tissue that a gene affects traits through. Second, both Mul-
tiXcan and UTMOST rely on a step-wise inference frame-
work, ignoring the uncertainty in the process of expression
imputation and thus losing power, especially when cellular-
heritability is small (10). Recently, CoMM (10) and its vari-
ant for summary-level data, CoMM-S2 (11), have been pro-
posed to account for uncertainty in the process of expres-
sion imputation. These studies demonstrate that the sta-
tistical power can be largely improved in a unified prob-
abilistic model. Third, MultiXcan and UTMOST do not
make efficient use of the shared patterns of eQTLs across
tissues, where MultiXcan uses principal component analy-
sis (PCA) regularization on the predicted expression data,
and UTMOST uses penalized regularization on coefficients
for eQTL effects. A study of GTEx revealed these shared
patterns (20), and later many efforts have been made to take
advantage of them in the analysis for GTEx data. For exam-
ple, Urbut et al. proposed statistical methods for estimating
and testing eQTL effects explicitly incorporating this exten-
sively tissue-shared patterns (21), shedding light on how to
account for the tissue-shared eQTLs in statistical modeling
successfully.

To overcome these limitations, we propose a tissue-
specific collaborative mixed model (TisCoMM) for TWASs,
providing a principled way to perform gene-trait joint and
tissue-specific association tests across different tissues. Our
method allows us not only to perform hypothesis testing
to prioritize gene–trait association but also to uncover the
tissue-specific role of candidate genes. By conditioning on
the trait-relevant tissues, one could largely remove the spu-
rious associations due to highly correlated gene expressions

among multiple tissues. As a unified model, TisCoMM
jointly conducts the ‘imputation’ and the association analy-
sis, pooling expression regulatory information across multi-
ple tissues explicitly. Furthermore, we extend TisCoMM to
use summary statistics from a GWAS, namely, TisCoMM-
S2. In simulations, we show that both TisCoMM and
TisCoMM-S2 provide correctly controlled type I error and
are more powerful than existing multi-tissue methods. More
importantly, our methods can be used to test for the tissue-
specific role of candidate genes. We illustrate the benefits of
our methods using summary-level GWASs data in 33 com-
plex traits. Results show that our findings have biologically
meaningful implications. The follow-up pathway analysis
from tissue-specific genes for asthma shows that the regu-
lated immune system in both thyroid and lung tissues could
have significant impact on asthma development.

MATERIALS AND METHODS

Methods for comparison

We conducted comprehensive simulations and real data
analysis to gauge the performance of different methods by
performing gene–trait joint and tissue-specific tests across
different tissues.

To detect gene-trait association, we compared the per-
formance of three methods in the main text: (i) our Tis-
CoMM and TisCoMM-S2 implemented in the R package
TisCoMM; (ii) MultiXcan and S-MultiXcan implemented
in the MetaXcan package available at http://gene2pheno.
org/; (iii) UTMOST available at https://github.com/Joker-
Jerome/UTMOST/.

To detect the tissue-specific effect, we compared the
performance of TisCoMM tissue-specific test with three
single-tissue methods that include (i) CoMM available at
https://github.com/gordonliu810822/CoMM; (ii) PrediX-
can available at http://gene2pheno.org/; (iii) TWAS relies on
the BSLMM (22) implemented in the GEMMA (22) soft-
ware. All methods were used with default settings.

Simulations

In detail, we considered the following simulation settings.
We first obtained 410 cis-SNPs (X1g) for the gene PARK2
on chromosome 6 from the GTEx data, and denote it as
X1g, a matrix with 491 rows representing 491 samples and
410 columns representing 410 cis-SNPs. We used PARK2
because the number of its cis-SNPs represents the median
of all genes. Genotype matrix X2g was extracted from the
NFBC1966 data (see the following GWASs data section for
details) with 5123 rows for individuals in this data set and
410 columns for all cis-SNPs in PARK2. To simulate the
reference panel for LD calculation, another genotype ma-
trix Xrg is extracted from the NFBC1966 data with 400 ran-
domly selected individuals and the same set of 410 cis-SNPs.
In Supplementary Text, we also perform additional simula-
tions using randomly generated genotyped data.

To generate multi-tissue gene expressions, we considered
different cellular-level heritability levels (h2

c) and sparsity
levels (s). These are key parameters to describe the genetic
architecture of gene expression (23). The cellular-level her-
itability represents the proportion of variance of the gene
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expression that can be explained by genotype, while spar-
sity represents the proportion of genetic variants that are
associated with the gene expression. First, SNP effect on
gene expression was generated by Bg = diag{b}W, where
we assume the factorizable assumption (24,25) and Bg is
a coefficient matrix with 410 rows for 410 cis-SNPs and
10 columns for 10 tissues. And based on our model con-
struction, Bg can be decomposed into two parts. diag{b}
in the first part can be treated as the SNP effect shared in
all the tissues, and W in the second part can be treated as
the tissue specific effect. Under this design, we simulated
SNP effect size b from a standard normal distribution, ran-
domly selected 1%, 5% or 10% of the SNPs to have non-
zero tissue-specific effect W for gene expressions in all tis-
sues, and simulated their effects from a standard normal dis-
tribution. We then simulated errors Eg from a normal dis-
tribution, where their variances were chosen according to
h2

c = 0.025, 0.05, 0.1, 0.2, 0.4, and the covariance structure
was autoregressive with � e = 0.5, representing the shared
environmental or other non-genetic factors among over-
lap samples in 10 tissues. Then, we simulated a multi-tissue
eQTL data set assuming Yg = X1gBg + Eg.

To simulate a quantitative trait, we used the equation
z = X2gBgαg + ez, where z represents phenotype, �g is the
vector for the effects of gene expression in 10 tissues on the
phenotype, and ez is the error term. The nonzero entries of
αg, indicating the existence of the gene expression effect on
phenotype, were generated from a uniform distribution and
ez was generated from a normal distribution. The variance
of ez denoted by �2 was chosen according to the tissue-
level heritability h2

t = Var(X2gBgαg)
Var(z) . Here, we set h2

t = 0 for
null simulations and type I error control examination and
h2

t = 0.01 for non-null simulations and power comparisons.

GWASs data

The NFBC1966 data set. The NFBC1966 data set con-
sists of ten traits and 364 590 SNPs from 5402 individ-
uals (26), including total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C) and triglycerides (TG), inflammatory
marker C-reactive protein, markers of glucose homeosta-
sis (glucose and insulin), body mass index (BMI) and
blood pressure (BP) measurements (systolic and diastolic
BP). As individual-level genotype data is available, we use
this dataset to demonstrate the reliability of TisCoMM-S2.
Quality control procedures are conducted following similar
steps to Shi et al. (27). Specifically, individuals with missing-
ness in any of the traits and with genotype missing call-rates
> 5% were excluded. We excluded SNPs with minor allele
frequency (MAF) < 1%, missing call-rates > 1%, or failed
Hardy–Weinberg equilibrium. After quality control filter-
ing, 172 412 SNPs from 5123 individuals were available for
downstream analysis.

The tissues used in TisCoMM and TisCoMM-S2 were
the same, and the six tissues with the largest number of over-
lapped individuals were used. The summary statistics for
TisCoMM-S2 were calculated using PLINK (28).

Summary-level GWASs data. We obtained summary
statistics from GWASs for 33 traits, including 15 traits

from (19) and 18 traits from the UK Biobank. Details
of these traits can be found in Supplementary Table S1.
In the main text, we discussed LOAD and asthma in
detail. Analysis results for other traits can be found in
Supplementary Text.

GTEx eQTL data

Th GTEx data including genotype and RNA-seq data
are obtained from dbGaP with accession number
phs000424.v7.p2. Processed gene-expression data are avail-
able on the GTEx portal (https://gtexportal.org/home/). In
the eQTL data, we removed SNPs with ambiguous alleles
or MAF less 0.01. Following both S-PrediXcan (16) and
UTMOST (15), we normalized gene expression data to
remove potential confounding effects from sex, sequncing
platform, top three principal compoments of genotye
data, and top PEER factors (29). All covariates were
downloaded from the GTEx portal website.

We used two different strategies to select tissues used in
our real data analysis. For the NG traits, we obtained the
top enriched tissues for each trait according to Supplemen-
tary Table S2 in (19), and a subset of tissues with sample
sizes larger than 100 was used. For the UKB traits, we used
the six tissues with the largest number of overlapped indi-
viduals.

Reference panel

Due to the absence of genotype data using summary statis-
tics, we use reference samples to estimate the LD structures
R among SNPs in the study samples. Since diseases and
traits considered in our real data application are for Euro-
pean population cohorts, we choose to use European sub-
samples from the 1000 Genome Project (30) as a reference
panel.

Let Xr denote the genotype matrix for cis-SNPs in the ref-
erence panel. To estimate the LD matrix R, we adopt a sim-
ple shrinkage method as follows. We first calculate the em-
pirical correlation matrix R̂emp = [r jk] ∈ R

M×M with r jk =
X�

r j Xrk√
(X�

r j Xr j )(X�
rk Xrk)

, where Xrj the jth column of Xr . To make

the estimated correlation matrix positive definite, we apply
a simple shrinkage estimator (31): R̂ = τ Remp + (1 − τ )IM,
where � ∈ [0, 1] is the shrinkage intensity. In real data ap-
plication, we fixed the shrinkage intensity at 0.95 both for
simplicity and computational stability.

RESULTS

TisCoMM overview

Here, we provide a brief overview of the TisCoMM; more
details are available in Supplementary Text. TisCoMM in-
tegrates expression regulatory information across multiple
tissues by jointly considering two models. The first one is
the expression prediction model, which models the relation-
ship between genetic factors X1g and normalized gene ex-
pressions across multiple tissues Yg in the eQTL data set:
Yg = X1gBg + Eg. The second one is the association model,

https://gtexportal.org/home/
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Figure 1. TisCoMM workflow. (A) Two sets of TisCoMM input matrices are highlighted in green and blue separately (left). The probabilistic graphical
model for TisCoMM is shown in the middle, which integrates gene expressions and models the co-regulation of cis-SNPs across different tissues explicitly.
μg and �z denote expectations of gene expression in eQTLs and phenotype in GWASs, respectively. The decomposition of the B matrix is illustrated
on the right-hand side of the figure. (B) The TisCoMM joint test for all genes to prioritize candidate causal genes. See more details of L(θ) in Methods
section. The example outputs (right) are shown as Manhattan plots for 33 traits. (C) The TisCoMM tissue-specific test for all candidate genes to explore
the tissue-specific roles of candidate genes. The example outputs (right) are shown as heatmaps which summarize the tissue-specific effect of each gene.
Significance level, effect size and heritability are converted into background color, circle color and circle size.

which relates the phenotypic value z and standardized geno-
type X2g in the GWAS data: z = X2gBgαg + ez. Bg is an ma-
trix of the corresponding effect sizes shared by the two mod-
els. And αg represents the effect sizes of ‘imputed’ gene ex-
pression. Our TisCoMM can be depicted as Figure 1, within
which Figure 1A illustrates the TisCoMM method combing
both the expression prediction model and the correspond-
ing association model together with data input and output.

To pool expression regulatory information across rele-
vant tissues, we assume the factorizable assumption (24,25)
for Bg, j = 1, . . . , Mg, t = 1, . . . , T. This assumption has
been empirically validated for GTEx data in an imputation
study (32) and Park et al. further used this assumption in
a multi-tissue TWAS (33). Here, we assume that the effect
size of cis-SNP j in tissue t can be factorized by variant-
dependent and tissue-dependent components: �jt = bjwjt,
where bj (variant) is the eQTL effect of cis-SNP j shared
in all the T tissues, and wjt is the tissue-specific effect size.
Thus, we have Bg = diag{b}W. This factorization allows us
to model the co-regulation of cis-SNPs shared across differ-
ent tissues explicitly (Figure 1A, right). To make TisCoMM
identifiable, we follow the polygenic model and assume that
bj independently follows a normal distribution N (0, σ 2

b ) ,
and we adaptively assign weight wjt using the fitted coeffi-

cient from marginal regression of gene expression in tissue t
on the jth genetic variant, following the adaptive weighting
strategy used in (32).

The parameter of our interest in TisCoMM is the vec-
tor of effect size αg. To prioritize candidate target genes, we
conduct hypothesis testing for a joint null, H0 : αg = 0 (Fig-
ure 1B). To further explore the tissue-specific roles of can-
didate genes, we conduct hypothesis testing for each tissue,
H0: �gt = 0, t = 1, . . . , T (Figure 1C). We refer to the two
inference tasks as the TisCoMM joint test and TisCoMM
tissue-specific test, respectively. We develop an expectation-
maximization (EM) algorithm for parameter estimation. A
parameter expansion technique is further adopted to ac-
celerate computational efficiency (see details in Supplemen-
tary Text). In contrast to the existing two-step TWAS meth-
ods, we perform TisCoMM analysis in a unified model by
treating b as a hidden random variable. Generally, the com-
putational cost for the TisCoMM tissue-specific test isO(T)
of that for the TisCoMM joint test. To enable computa-
tional efficiency, we only conduct the TisCoMM tissue-
specific test for candidate genes detected in the joint test,
rather than for all genes.

In a single-tissue analysis, it is difficult to explore
the tissue-specific role of a candidate gene. The disease-
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associated genes will be identified in all the causal tissues
as well as the tissues (possibly non-causal) highly corre-
lated with the causal one, because there exist sharing pat-
terns for expressions in multiple tissues. By considering all
available tissues, our tissue-specific test could largely remove
the spurious discoveries due to correlated expression across
tissues.

Inferring TisCoMM results from GWASs summary statis-
tics. To make our method widely applicable, we extend
TisCoMM to use summary-level GWASs data, denoted as
TisCoMM-S2. The model details are given in Supplemen-
tary Text.

We observe high concordance between TisCoMM and
TisCoMM-S2 results. Figure 2 shows the comparison of
TisCoMM and TisCoMM-S2 test statistics for ten traits
from the Northern Finland Birth Cohorts program 1966
(NFBC1966) data set (26) (see Methods section). The ref-
erence panel was 400 subsamples from the NFBC1966
data set. The high correlation between TisCoMM and
TisCoMM-S2 suggests the reliability of detections for trait-
associated genes using summary-level GWASs data.

Simulations: testing gene-trait associations

We focused on the detection of trait-associated genes in the
first set of simulations. Here, we compared TisCoMM and
TisCoMM-S2 with three different multi-tissue methods, in-
cluding MultiXcan, S-MultiXcan, and UTMOST. We set
all tissues to be causal. For each scenario, we ran 5000 repli-
cates. We first examined type I error control of different
methods under the null. Results are shown in Supplemen-
tary Figure S1. By comparing the distribution of P-values
with the expected uniform distribution, we observe that all
methods provide well-controlled type I errors.

Next, we examined the power of different methods un-
der the alternative hypothesis, as shown in Figure 3. We
observe that the performance of all five methods improves
with the increment of cellular heritability. In general, the
summary-level methods (TisCoMM-S2 and S-MultiXcan)
perform similarly to their counterparts in individual-level
data. Moreover, the power of TisCoMM and TisCoMM-
S2 is robust to sparsity level s but the power of alternative
methods favors settings with smaller sparsity level s. When
sparsity level s is small and cellular heritability becomes
large, the power of all methods become comparable.

Simulations: testing tissue-specific effects

We focused on the detection of tissue-specific effects in
the second set of simulations. Here, we compared the Tis-
CoMM tissue-specific test with the single-tissue methods
including CoMM (10), PrediXcan (7), and TWAS (8) un-
der the alternative hypothesis with fixed tissue heritability
h2

t = 0.01 and fixed sparsity s = 0.05. We considered ten
tissues and varied the number of causal tissues to simu-
late different levels of tissue specificity of a trait. Specifi-
cally, we considered settings with one and two causal tis-
sues, respectively. To allow correlated gene expression in the
GWASs, the nonzero of tissue-specific effect W was gen-
erated with rows drawn from a multivariate normal distri-
bution, with AR correlation parameter �W = 0.2, 0.5, 0.8.

A large value of �W implied a higher correlation among
columns of X2gBg. Other sittings were similar to Simulation
I.

We repeated the whole process 1000 times and calcu-
lated the statistical power and false-positive rate (FPR) as
the proportion of P-values reaching the significance level in
causal tissues and non-causal tissues, respectively. Specif-
ically, we set the significance level at 0.05/10 for all con-
sidered methods. Figure 4 shows simulation results for the
case that one tissue is causal. We observe that in all settings,
the TisCoMM tissue-specific test has slightly inferior power,
compared to the single-tissue methods, but much smaller
FPR. As expected, the statistical power of all methods in-
creases with cellular heritability (h2

c). However, the FPR of
single-tissue methods substantially inflates while that of Tis-
CoMM tissue-specific test remains at the same level. Fur-
thermore, the FPR of TisCoMM tissue-specific test does
not vary with correlations among expressions across mul-
tiple tissues (�W) while that of single-tissue methods in-
crease with �W. The similar pattern can be observed for the
case that two tissues are causal (Supplementary Figure S2).
These results demonstrate the usefulness of TisCoMM tis-
sue specific test in exploring the tissue-specific role of genes
with controlled FPR.

Additional simulations with randomly generated geno-
type data are presented in Supplementary Figures S3–S10.
All these results are consistent with the above observations.
To better mimic the real data, we further conducted the sim-
ulations by adjusting for covariates or confounding factors;
results are shown in Supplementary Text (Supplementary
Figures S11–S22).

Real data applications

We performed multi-tissue TWAS analysis for summary-
level GWASs data in 33 complex traits (see Supplemen-
tary Table S1 for details), including 15 traits from the Na-
ture Genetics paper (NG traits) (19) and 18 traits from the
UK Biobank (UKB traits). These traits can be roughly di-
vided into four categories, including metabolites (e.g. HDL-
C, LDL-C and fasting glucose), autoimmune diseases
(e.g. asthma, Crohn’s disease and macular degeneration),
psychiatric/neurodegenerative disorders (e.g. Alzheimer’s
disease, major depression disorder, and psychiatric disor-
der), and cardiovascular disorders (e.g. coronary artery dis-
ease and peripheral vascular disease). The Genotype-Tissue
Expression (GTEx) Project (6) reported eQTL in 48 tissues,
where the number of genes in each tissue ranges from 16
333 to 27 378. In the analysis, we extracted cis-SNP that are
within either 500 kb upstream of the transcription start site
or 500 kb downstream of the transcription end site.

Similar to a single-tissue analysis, there are two different
strategies to select tissues for TWASs: the first strategy uses
expressions from the most biologically related tissues while
the second strategy selects top tissues with the largest num-
ber of available individuals (9). In Supplementary Table S2
of (19), it provides the most biologically related tissues and
thus we could use trait-relevant tissues for the NG traits. In
detail, for each trait, a set of tissues with significant enrich-
ment P-values (after Bonferroni correction) was identified,
and a subset with >100 overlapped samples (34) was chosen



e109 Nucleic Acids Research, 2020, Vol. 48, No. 19 PAGE 6 OF 14

Figure 2. Comparison of TisCoMM and TisCoMM-S2 results in NFBC1966 traits. The reference panel is subsamples from the NFBC1966 data set. The
summary-based method shows similar results to the individual-based method. The blue rectangle indicates the null region.

Figure 3. TisCoMM joint test outperforms the other multi-tissue meth-
ods. The number of replicates is 5000. In each subplot, the x-axis stands
for the SNP heritability level, and the y-axis stands for the proportion of
significant genes within 5000 replicates.

Figure 4. The comparison of the TisCoMM tissue-specific test and the
single-tissue association tests under the alternative hypothesis with one
causal tissue. Upper panel: the power of TisCoMM tissue-specific test and
the single tissue methods with Bonferroni correction applied. Lower panel:
the corresponding false-positive rates under each setting.

for further analysis in TisCoMM-S2. On the other hand, al-
though methods like LD score regression (17) can be used
for the UKB traits, it is difficult to balance the tissue rele-
vance and sample size for each tissue. To make efficient use
of the GTEx data set, we used six tissues with the largest
number of overlapped samples for the UKB traits.

The analysis for each trait based on its GWAS sum-
mary statistics together with the eQTL data from 4–6 tis-
sues can be done around 100 min on a Linux platform
with 2.6 GHz Intel Xeon CPU E5-2690 with 30 720KB
cache and 96GB RAM (only 10–12GB RAM used) on
24 cores. To prioritize trait-associated genes, we compared
TisCoMM-S2 with other two multi-tissue TWAS methods,
i.e. S-MultiXcan and UTMOST. Both alternative meth-
ods take advantage of prediction models to impute gene
expressions across multiple tissues. The prediction models
used here were Elastic Net models trained on 48 GTEx
tissues. See Table 1 for the summary of detections across
different approaches for the 15 NG and 18 UKB traits.
Generally, TisCoMM-S2 identifies more genome-wide as-
sociations than S-MultiXcan and UTMOST in most traits.
In detail, TisCoMM-S2/S-MultiXcan/UTMOST identi-
fied 3058/2008/1769 and 443/338/277 genome-wide signif-
icant genes in all the NG traits and UKB traits, respec-
tively. Their qq-plots of P-values are shown in Supplemen-
tary Figures S23–S26 and plots for their genomic inflation
factors are shown in Supplementary Figure S27. As case
study examples, we carefully examined the results for late-
onset Alzheimer’s disease (LOAD) and asthma. Additional
results for other traits are shown in Supplementary Figures
S31–S36.

To examine the effect of tissue selection strategy on the
performance of gene prioritization, we also used the six tis-
sues for the NG traits. Results are shown in Supplementary
Table S2. We can observe that the two different strategies
lead to different sets of significant candidate genes. How-
ever, there is a large number of overlaps between the two
sets. This result demonstrates the usefulness of the second
strategy to identify gene-trait associations in joint tests.
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Table 1. Numbers of significant gene-trait associations across 15 NG
traits and 18 UKB traits. The reference penal is European subsamples from
1000 Genome. The number in the parenthesis denoted genes reported on
the GWASs catalog. The full names of traits can be found in Supplemen-
tary Table S1

TisCoMM-S2 S-MultiXcan UTMOST

NG traits
2hrGlu 1(0) 0(0) 5(0)
LOAD 92(24) 71(20) 70(19)
BMI 82(30) 59(21) 68(25)
CAD 69(9) 28(5) 36(11)
CD 468(52) 339(50) 291(55)
FG 94(11) 66(11) 54(8)
FI 3(0) 1(0) 2(0)
HDL-C 464(14) 268(13) 237(12)
HOMAB 10(0) 7(0) 4(0)
HOMAIR 1(0) 1(0) 1(0)
LDL-C 498(5) 273(5) 228(5)
TC 603(88) 376(77) 330(86)
TG 360(58) 250(48) 192(40)
UC 301(30) 262(31) 243(41)
WHR 12(3) 7(1) 8(1)

UKB traits
ALLERGIC RHINITIS 25(3) 23(2) 12(4)
ASTHMA 200(31) 157(29) 140(36)
CARD 2(0) 2(0) 4(0)
DEPRESS 2(0) 1(0) 0(0)
DYSLIPID 166(0) 120(0) 91(0)
HEMORRHOIDS 0 1(0) 0
HERNIA ABDOMINOPELVIC 2(1) 2(1) 1(1)
INSOMNIA 0 0 0
IRON DEFICIENCY 0 0 0
IRRITABLE BOWEL 0 1(0) 0
MACDEGEN 0 0 0
OSTIOA 1(0) 2(0) 2(1)
OSTIOP 0 1(0) 0
PEPTIC ULCERS 1(0) 1(0) 0
PSYCHIATRIC 1 1 3
PVD 2(0) 3(0) 3(0)
STRESS 1(0) 1(0) 1(0)
VARICOSE VEINS 40(2) 22(2) 20(2)

Real Data analysis for LOAD

TisCoMM-S2 Joint test for LOAD and validation. Based
on TisCoMM-S2 joint test and two other methods (S-
MultiXcan and UTMOST), 92/71/70 genome-wide signifi-
cant genes were identified respectively after Bonferroni cor-
rection. The list of significant gene-LOAD associations re-
turned from TisCoMM-S2, S-MultiXcan and UTMOST
can be found in Supplementary Table S3. The qq-plots
for associations tested in these three approaches are shown
in Figure 5A. To validate our findings in another inde-
pendent data set, we used the summary statistics from a
GWAS by proxy (GWAX (35), the sample size is 114 564).
Our replication rate was the highest (Supplementary Table
S4, Figure 6) among all the three methods, where 31 out
of 92 (33.7%) genes were successfully replicated under the
Bonferroni-corrected significance threshold and the num-
bers of replicated genes raised to 189 under a relaxed P-
value cutoff of 0.05. On the other hand, the replication rates
of S-MultiXcan (32.4%) and UTMOST (32.9%) were lower.
Moreover, TisCoMM-S2 had the highest replication rate in
either the uniquely detected gene sets (genes uniquely de-
tected by single method) or commonly detected gene sets
(genes detected by multiple methods).

TisCoMM-S2 tissue-specific test infers tissue-specific roles of
candidate genes for LOAD. To demonstrate the utility of
the TisCoMM-S2 tissue-specific test, we applied the tissue-
specific test to all 92 candidate genes of LOAD identified by
the TisCoMM-S2 joint test, and compared analysis results
with those from CoMM (10,11). Table 2 shows the distri-
butions of identified tissues in which candidate genes are
associated with LOAD (see details in Supplementary Ta-
ble S7). Among all identified candidate genes for LOAD,
76.1% were significant in no more than two tissues using
TisCoMM-S2 while 70.7% were significant in all four tissues
using CoMM-S2. The most plausible explanation is that
compared to the multivariate perspective of our TisCoMM-
S2 tissue-specific test, single-tissue approaches, e.g. CoMM-
S2, tend to have larger tissue bias and more inflation in sig-
nificant findings (9). Suppose a gene is causal in tissue A
but not in tissue B, and its expressions in tissues A and B are
correlated. In a single-tissue test, the association can be spu-
riously significant for tissue B because of the similar gene
expression pattern observed in both tissues. By performing
a tissue-specific test for this gene in tissue B conditioned on
tissue A, the significant spurious association will be largely
excluded. We also illustrate the relationship between effect
size and P-value as well as the cellular-heritability in each
tissue using volcano plots (Supplementary Figure S29A).

We further performed TisCoMM-S2 tissue-specific test
on genes identified by all three methods (TisCoMM-S2, S-
MultiXcan and UTMOST, see details in Supplementary Ta-
ble S7). The detailed overlap of genes returned from these
three methods is illustrated in Figure 7. We notice that the
tissue-specific rate is different in each method and genes
uniquely identified by TisCoMM-S2 has the largest tissue-
specific rate (100%, Figure 7). Genes uniquely identified by
UTMOST has the smallest tissue-specific rate. Only 3 out
of 14 genes uniquely identified by UTMOST have tissue-
specific effect.

Lastly, we investigate the molecular functions of LOAD
associated genes in each tissue. In each of tested tissues in
LOAD, there are ∼40 tissue-specific genes. It is difficult to
carry out a proper pathway analysis with such limited gene
sets. So we classified the genes into seven functional groups
based on which molecular functions they belong to. As
shown in Figure 8, majority (>62%) of LOAD-associated
genes belonged to binding and catalytic activity, and a small
portion of significant LOAD genes were transcription fac-
tors suggesting that many regulation processes are going on
at both protein and mRNA levels in different tissues.

Known LOAD GWAS genes captured by TisCoMM-S2.
Among the 92/71/70 LOAD associated genes identified by
the three methods (TisCoMM-S2 joint test, S-MultiXcan
and UTMOST), 17 out of the 45 overlapping genes
are known LOAD GWAS genes. Here, we define known
LOAD GWAS gene as the ones reported in GWAS Cat-
alog. Among the 92 candidate target genes identified by
TisCoMM-S2 joint test, 24 of them are previously known
LOAD GWAS genes, which are annotated in the Manhat-
tan plot in Figure 5A. These include genes on the chromo-
some (CHR) 2 (BIN1), CHR 6 (CD2AP), CHR 7 (EPHA1),
CHR 8 (CLU), CHR 11 (PICALM, CCDC89, MS4A2,
MS4A6A), CHR 16 (IL34) , and CHR 19 (STK11 and
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Figure 5. TisCoMM-S2 results for LOAD and asthma. The reference panel is European subsamples from 1000 Genome. In each row, the two panels show
the qq-plot (left) and Manhatton plot (right).

Figure 6. Overlap of detected genes from three methods and replication rates. Circles represent the detected gene sets from each method (TisCoMM-S2,
S-MultiXcan and UTMOST), and the size of the overlapped regions are proportional to the number of genes inside. The replication rates are shown in
two ways as ratio and heatmap. In the ratio form, denominator indicates the number of detected genes in our first test data set, and numerator indicates
the number of validated genes in the second validation data set. To visualize the replication rates, the ratios are then converted to heatmaps. RRT, RRM
and RRU correspond to the replication rate of TisCoMM-S2, S-MultiXcan and UTMOST.

APOE region). Moreover, TisCoMM-S2 also identified 35
genes that were not significant in neither S-MultiXcan nor
UTMOST, and four of them are known LOAD GWAS
genes, including IL34 (P-value = 1 × 10−6), PTK2b (P-
value = 1.4 × 10−9), EPHX (P-value = 4.7 × 10−8) and
STK11 (P-value = 7.2 × 10−7).

The well-replicated risk gene APOE (36) and its
50Kb downstream CLPTM1 have been identified by
the TisCoMM-S2 joint test. Moreover, the TisCoMM-S2

tissue-specific test identified CLPTM1 to be significantly
associated with LOAD in all four tissues (artery aorta,
esophagus mucosa, nerve tibial and skin sun-exposed lower

Table 2. Distributions of tissues in which the candidate genes’ associations
arise in LOAD and asthma

Trait #tissues 0 1 2 3 4 5 6

LOAD TisCoMM-S2 5 28 37 17 5 - -
CoMM-S 6 5 7 9 65 - -

Asthma TisCoMM-S2 37 68 58 28 6 3 0
CoMM-S 20 11 5 5 9 30 120

leg with tissue-specific P-values < 4.9 × 10−7), but APOE
to be only significantly associated with LOAD in artery
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Figure 7. Overlap of detected genes from three methods and tissue-specific rates. Circles represent the detected gene sets from each method (TisCoMM-S2,
S- MultiXcan and UTMOST), and the size of the overlapped regions are proportional to the number of genes inside. The tissue-specific rates are shown in
two ways as ratio and heatmap. In the ratio form, denominator indicates the number of detected genes in each method, and numerator indicates the number
of tissue-specific genes. To visualize the tissue-specific rates, the ratios are then converted to heatmaps, so that the intensity of the color is proportional to
the tissue-specific rate.

aorta (tissue-specific P-value = 8.3 × 10−9) and nerve tib-
ial (tissue-specific P-value = 1.2 × 10−8). On the other
hand, CoMM-S2 significantly identified both APOE and
CLPTM1 in all four tissues (P-values ≤ 1 × 10−10) but
failed to identify the difference of tissue-specific role for
these two genes.

Novel LOAD genes captured by TisCoMM-S2. Among all
novel genes for LOAD identified by TisCoMM-S2 joint test,
some of them were identified to be LOAD-related genes
based on other computational models (e.g. MAP3K2) while
some of them have not been directly linked to LOAD yet,
but have been proven to be important regulators in dif-
ferent regions of the neuron system (e.g. STMN4, EED
and APC2). MAP3K2 is 200 kb downstream of B1N1,
a reported LOAD risk gene (37) that was also genome-
wide significant in our joint test (P-values for both B1N1
and MAP3K2 ≤1 × 10−10). MAP3K2 belongs to the
serine/threonine protein kinase family and has been previ-
ously identified as a member of the Alzheimer’s disease sus-
ceptibility network (38). In Supplementary Figure S28, re-
gional plots based on GWAS, TWAS and eQTL results are
shown for the LOAD associated locus near the MAP3K2
gene. It can be seen that although the GWAS signals are
weak and moderate, the enrichment of eQTL signals near
the MAP3K2 gene have led to improved TWAS results.
STMN4 (P-value ≤ 1 × 10−10 ) encodes the known pro-
tein that exhibits microtubule-destabilizing activity. The ex-
pression levels of this gene in mouse neurons have been
shown to change significantly after different exposure of
cortical nerve cells to the A� peptide (39). The expression
of STMN4 in zebrafish has also been shown to have an im-
portant role in regulating neurogenesis in the neural keel
stage (40). EED (P-value = 5.7 × 10−7 ) encodes a Polycomb
protein, which plays a starring role as an important modu-
lator of hippocampal development (41). APC2 (P-value =
1.3 × 10−6) is preferentially expressed in postmitotic neu-
rons and involved in brain development through its regu-
lation of neuronal migration and axon guidance (42). We
annotate these four genes in red in Figure 5A.

LOAD associated genes in brain tissues. According to our
tissue selection strategy, above LOAD genes were tested in
four non-brain tissues (enriched tissues). To further inves-
tigate the gene expression changes in the well-studied dis-
ease tissues, three more brain regions (hippocampus, frontal
cortex, and cerebellar hemisphere) were selected for another
tissue-specific analysis for LOAD. Because it is known that
hippocampus is one of the first brain regions to be affected
by Alzheimer’s disease and related to the memory lost (43),
markers such as A� in frontal cortex can be used to pre-
dict future Alzheimer’s disease (44), and cerebellum is af-
fected in the final stage of the disease and related to cogni-
tive decline (45). The joint test conducted on brain regions
revealed 105 LOAD associated genes, of which 73 were iden-
tified in the enriched tissues (Supplementary Figure S30A),
and the other 32 genes were uniquely identified in brain re-
gions (Supplementary Figure S30B). According to the joint
test, the most significant gene uniquely identified in brain
regions is KLC3 (P-value ≤1 × 10−10 ), which is within 50 kb
downstream of APOE. Moreover, it is significantly associ-
ated with LOAD in hippocampus region only, but not the
other two brain regions according to the tissue-specific test
(Supplementary Figure S30B and Table S8). Thus, we pro-
pose KLC3 as one of the potential novel targets for LOAD
in hippocampus.

Real data analysis for asthma

TisCoMM-S2 Joint test for asthma and valida-
tion. After Bonferroni correction, TisCoMM-S2/S-
MultiXcan/UTMOST identified 200/157/140 genome-
wide significant genes, respectively. The list of significant
gene-asthma associations returned from TisCoMM-S2

, S-MultiXcan, and UTMOST can be found in Supple-
mentary Table S5. The qq-plots for associations in these
three approaches are shown in Figure 5B. To replicate
our findings in another independent data set, we used
the summary statistics from TAGC European-ancestry
GWAS (46) (the sample size is 127 669). Our replication
rate was the second highest (Supplementary Table S6,
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Figure 8. (A) Each pie chart corresponding to a different tissue shows the percentage of LOAD-associated genes in each molecular function group (from
gene ontology). (B) The x-axis of the heatmap represents the union of LOAD-associated genes in 3 function groups (binding, catalytic activity, and
transcription factor). The y-axis represents different tissue types. In each cell, the background color (shades of gray) indicates the significance level, the
circle size indicates the heritability, and the color inside each circle indicates the effect size. (C) Pathway analysis of asthma-associated genes in thyroid and
lung. Pathway analysis was done using a web-based software DAVID, testing the enrichments of asthma-associated genes in biological processes (from
gene ontology). Significant pathways were selected if gene count ≥ 5 and Benjamini-Hochberg (BH) corrected P-value ≤0.05. The asthma-associated genes
are highlighted in blue. (D) The x-axis of the heatmap represents the asthma-associated genes in the immune response pathway. And all the other settings
are the same as the one used in part B.
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Figure 6) among all the three methods, where 179 out
of 200 (89.5%) genes were successfully replicated under
the Bonferroni-corrected significance threshold and the
numbers of replicated genes raised to 44 under a relaxed
P-value cutoff of 0.05. The replication rate of S-MultiXcan
was the highest (89.8%), and the replication rate of UT-
MOST (80%) was much lower than the other two methods.
Moreover, TisCoMM-S2 had the highest replication rate
in either the uniquely detected gene sets (genes uniquely
detected by single method) or commonly detected gene sets
(genes detected by multiple methods).

TisCoMM-S2 tissue-specific test infers tissue-specific roles of
candidate genes for asthma. Similar to the tissue-specific
test conducted on LOAD, 200 candidate genes of asthma
identified by TisCoMM-S2 joint test were then subjected
to TisCoMM-S2 tissue-specific test. As we can see in Ta-
ble 2, 81.5% asthma candidate genes were significant in
less than three tissues using TisCoMM-S2 while 60.0%
were significant in all six tissues using CoMM-S2. The re-
lationship between effect size and P-value as well as the
cellular-heritability in each tissue are shown in Supplemen-
tary Figure S29B. We further conducted tissue-specific test
on genes identified by all three methods (TisCoMM-S2, S-
MultiXcan and UTMOST, see details in Supplementary Ta-
ble S9). As shown in Figure 7, we can observe a similar
pattern as those for LOAD. Compared to TisCoMM-S2,
genes uniquely identified by S-MultiXcan and UTMOST
have much lower chance to be tissue-specific genes.

We further conducted pathway analysis using
DAVID (47) on six sets of asthma-associated genes in
all six tissues (thyroid, lung, artery tibial, muscle skeletal,
adipose subcutaneous, and skin sun-exposed lower leg),
respectively. As listed in Figure 8B, all three significant
pathways in thyroid tissue belonged to the immune system,
and the only significant pathway in lung tissue was immune
response. However, no significant pathways were detected
in the other four tissues. Among asthma-associated genes
in immune response (first row in Figure 8C and D), the
majority of them were shared between thyroid and lung,
and located in the MHC region on CHR 6 including several
HLA genes and LST1. Our pathway analysis suggests that
nearly the same set of immune genes in thyroid and lung
are responsible for asthma development.

Known asthma GWAS genes captured by TisCoMM-S2.
Among the 200/157/140 asthma associated genes iden-
tified by the three methods (TisCoMM-S2 joint test, S-
MultiXcan and UTMOST), 21 out of the 98 overlapping
genes are known asthma GWAS genes. Among all 200 can-
didate target genes identified by TisCoMM-S2, 31 of them
are known asthma GWAS genes, which is annotated in the
Manhattan plot in Figure 5B, including genes on CHR
2 (IL1RL1/IL18R1), CHR 5 (TSLP/WDR36, RAD50),
CHR 6 (HLA-DR/DQ regions, MAP3K7), CHR 9 (IL33),
CHR 11 (C11orf30, LRRC32), CHR 15 (SMAD3) and
CHR 17 (genes from the 17q21 asthma locus). Also,
TisCoMM-S2 identified 56 genes that were not significant
in neither S-MultiXcan nor UTMOST, and two of them
are known asthma GWAS genes, which are PSORS1C1 (P-
value = 2.2 × 10−7), and MAP3K7 (P-value =3 × 10−7).

A lot of known HLA genes in the MHC region were
successfully identified as asthma related genes using our
method, including HLA-DOA, HLA-DOB, HLA-DPB1,
HLA-DQB1, and HLA-DRA. Another example of known
asthma locus is 17q21 locus at CHR 17. ORMDL3 and GS-
DMB were identified to be asthma associated genes in this
locus, have been mentioned as asthma susceptibility genes
by many studies, a comprehensive review was written by
Stein et al. (48) The original finding of ORMDL3 was ob-
served in one GWAS study, and have been further validated
in a mouse model (49). The TisCoMM-S2 tissue-specific test
identified both ORMDL3 and GSDMB to be significantly
associated with asthma only in lung tissue (see the volcano
plot in Supplementary Figure S29B, tissue-specific P-values
for these two genes are 1.7 × 10−3 and 7.1 × 10−7 , respec-
tively). However, CoMM-S2 identified both ORMDL3 and
GSDMB in all six tissues (P-values ≤ 1 × 10−10) but failed
to identify the relevant tissues with which these two genes
are causally related to asthma. Besides, LTA is a reported
GWAS hit for asthma in GWAS Catalog, and was also iden-
tified to be specifically regulated in thyroid tissue based on
our tissue-specific test. It is a cytokine produced by lympho-
cytes, and known as a regulator of lipid metabolism (50).

Novel asthma genes captured by TisCoMM-S2. Among all
novel loci for asthma identified by TisCoMM-S2 joint test,
PDCD1LG2 was shown to have essential roles in modu-
lating and polarizing T-cell functions in airway hyperre-
activity (51). Based on our tissue-specific test, TNF which
is a well-studied asthma gene (52,53) was explicitly identi-
fied to be associated with asthma in lung tissue. The pos-
itive correlation between TNF expression and asthma in
lung confirmed our previous understanding of TNF activa-
tion in asthma, promoting airway inflammation and airway
hyperresponsiveness. However, this gene was not reported
as an asthma associated gene in GWAS Catalog. Another
novel asthma gene regulated individually in thyroid tissue is
NCR3, which mediates the crosstalk between natural killer
cells and dendritic cells (54). However, it remains unclear
how the alteration of NCR3 in thyroid could lead to asthma
development. Validating causal role of these gene in asthma
requires further investigation. We annotate them in red in
Figure 5B.

DISCUSSION

Despite the substantial successes of TWASs and its vari-
ants, the existing multi-tissue methods have several limita-
tions, e.g., incapability to identify the tissue-specific effect of
a gene, ignorance of imputation uncertainty, and failure to
efficiently use tissue-shared patterns in eQTLs. To overcome
these limitations and provide additional perspectives over
tissue-specific roles of identified genes, we have proposed a
powerful multi-tissue TWAS model, together with a com-
putationally efficient inference method and software imple-
mentation in TisCoMM. Specifically, we have developed a
joint test for prioritizing gene-trait associations and a tissue-
specific test for identifying the tissue-specific role of candi-
date genes. Conditioned on the inclusion of trait-relevant
tissues, the tissue-specific test in TisCoMM can mostly re-
move the spurious associations in a single-tissue test due
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to high correlations among gene expression across tissues.
We have also developed a summary-statistic-based model,
TisCoMM-S2, extending the applicability of TisCoMM to
publicly available GWAS summary data. Using both sim-
ulations and real data, we examined the relationship be-
tween TisCoMM and TisCoMM-S2. Our results, as shown
in Figure 2, show that the test statistics from TisCoMM
and TisCoMM-S2 are highly correlated (R2 > 0.95). We
further analyzed summary-level GWAS data from 33 traits
with replication data for Alzheimer’s disease and asthma.
Overall, the findings from TisCoMM-S2 are around 30%
more than those from S-MultiXcan or UTMOST while qq-
plots from these studies show that there are no apparent
inflations. To replicate our findings for Alzheimer’s disease
and asthma, we applied TisCoMM-S2 to independent data
sets for each disease. Results show that replication rates for
Alzheimer’s disease and asthma are high.

We further inferred the tissue-specific effects of identi-
fied genes using the TisCoMM-S2 tissue-specific test. By
classifying these genes into seven functional groups, we ob-
served that majority (62%) of LOAD-associated genes were
related to binding and catalytic activity while a small por-
tion was from transcription factors suggesting active regula-
tion processes at both protein and mRNA level in different
tissues. We also observed about 40 LOAD-associated genes
in each non-brain tissues. The significance of these genes
could be due to the exclusion of LOAD-relevant tissues,
e.g. brain tissues. To fill this gap, we further conducted one
more analysis on three brain regions, and identified 32 brain
specific genes. For asthma, genes ORMDL3 and GSDMB
were identified to be significantly associated with asthma
only in lung tissue using TisCoMM-S2 tissue-specific test.
However, single-tissue analysis (CoMM-S2) identified both
genes significant in all six tested tissues. Further pathway
analysis shows that all three significant pathways for thyroid
tissue belong to the immune system and the only significant
pathway for lung tissue was immune response. The majority
of shared genes between thyroid and lung tissues are located
in the MHC region on CHR 6, including several HLA genes
and LST1. The proteins encoded by HLA genes are known
as antigens. In combination with antigen-presenting cells
(e.g. macrophages and dendritic cells), they play an essential
role in the activation of immune cells as well as airway in-
flammation in response to asthma-related allergens (55,56).
Despite the utility of TisCoMM to perform gene-trait as-
sociation analysis in a tissue-specific manner, it is primarily
designed to test genes with direct effects from cis-eQTL. Re-
cently, an omnigenic model was proposed to better under-
stand the underlying mechanism of so-called polygenicity
in complex traits (57). Liu et al. (58) further provided a the-
oretical model to understand complex trait architecture by
partitioning genetic contributions into direct effects from
core genes and indirect effects from peripheral genes act-
ing in trans. Most works from TWASs identify core genes
with direct effects. How to effectively interrogate peripheral
genes with indirect effects essentially remains an open ques-
tion. Furthermore, we restricted to common variants (SNPs
with MAF > 1%) in real data applications due to the limited
sample sizes of the multiple eQTL data. As the sample size
from the reference data set becomes large, combining effects
from both common and rare variants may increase the sta-

tistical power for finding gene-trait associations. As high-
throughput data are continuously generating for a much
larger sample size with more precision, TisCoMM sheds
light on how to integrate useful data for the desired anal-
ysis effectively.

URLs

The software implementation of TisCoMM with a User
Manual is freely available at: https://github.com/XingjieShi/
TisCoMM/. The code to reproduce all the analyses pre-
sented in the paper is also included.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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