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In the present study, the antioxidant capacity of chromium-treated L-41 (human 
epithelial-like cells) was investigated by the ESR spin-trapping technique. The crude cell 
extracts of the cells grown in the presence of 2 µM (nontoxic) and 20 µM (toxic) 
chromium (VI) concentrations were tested in the model Fenton system with and without 
catalase-inhibitor sodium azide. The presented approach using the ESR technique along 
with inhibitors lets us discern cell extract defense capacity connected with the enzymatic 
activity in viable cells and the catabolic activity in dying cells. 

KEYWORDS: chromium (VI), antioxidant systems, cell culture, ESR 

DOMAINS: biochemistry, toxicology 
 

INTRODUCTION 

Chromium is a widespread industrial chemical that is known to cause toxic and carcinogenic effects in 
humans and animals[1,2,3,4]. Chromium (Cr) exists primarily in two valence forms: Cr(VI) and Cr(III). 
The chromate ion [CrO4]2–, the dominant form of Cr(VI) in neutral aqueous solutions (at physiological 
conditions), crosses cellular membranes via the nonspecific anion transport system (SO4

2– and HPO4
2– 

channels) and is biologically active[5,6,7,8]. Cr(VI) alone does not react with isolated DNA in vitro[9]. 
According to the uptake-reduction model of Cr(VI) carcinogenicity[5,10], within a cell, Cr(VI) undergoes 
reduction to lower oxidation states Cr(V/IV/III) by different intracellular reductants, such as glutathione 
(GSH), cystein, ascorbic acid, and glutathione reductase (GR)[11,12,13,14]. In contrast to Cr(VI), Cr(III) 
does not easily penetrate cell membranes, but once inside cells, Cr(III) (as the final product of Cr[VI] 
reduction) can produce Cr(III)-DNA adducts[15].  
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As a transient metal, Cr(VI) and its reduced forms can form the coordinated complexes with the 
mentioned reductants[16] that cause (in vitro and in vivo) oxidative modification of the metal-complexing 
ligands and a wide variety of DNA lesions, such as Cr-DNA adducts, DNA strand breaks, and DNA-
DNA cross-links[17,18,19,20,21,22]. 

During Cr(VI) reduction, a wide variety of reactive intermediates, such as oxygen-, carbon-, and 
sulfur-centered radicals formed from complexing ligands[16], may initiate a series of radical reactions 
that can have serious pathological consequences. Besides these intermediates, elevated levels of many 
forms of reactive oxygen species (ROS) generated under Cr(VI) action, such as superoxide anion (O2

.–), 
hydrogen peroxide (H2O2), singlet oxygen (O2

1), and ·OH radicals (which are the products of normal 
cellular metabolism as well), can be actually involved in the processes leading to the oxidative stress 
under chromium action. 

The general proposed mechanism of oxygen activation by Cr(VI) is provided by Fenton–like and 
Haber-Weiss reactions including Cr(VI/V), Cr(V/IV), Cr(IV/III), and Cr(III/II) redox pairs[23,24]. 
Substrates of mentioned reactions are O2

.– and H2O2, which realize redox cycling of chromium, resulting 
in Haber-Weiss reaction (O2

.– + H2O2 → O2 + ·OH + OH–)[25].  
In cells, the toxic capacity of Cr(VI) can be decreased by the defense system. The cellular antioxidant 

system consists of nonenzymatic (α-tocopherol, ascorbic acid, GSH) and enzymatic (catalase, superoxide 
dismutases [SODs], glutathione peroxidase [GPx], GR) antioxidants. When the defense system of the cell 
is overwhelmed and redox homeostasis is altered, the result is an oxidative stress[26]. 

In the present study, we have examined the antioxidant capacity of chromium-treated cells in the 
presence of H2O2, which especially increases in some pathological conditions. The study was conducted 
by the electron spin resonance (ESR) spin-trapping technique. This technique was already used in our 
previous study to compare the antioxidant capacity against H2O2 in the two distinct cell lines, L-41 
(human epithelial-like cells) and HLF (human diploid lung fibroblasts), with different antioxidant enzyme 
activity[27]. The antioxidant capacity of L-41 cells treated with Cr(VI) has been compared with the 
activities of particular antioxidants in response to Cr(VI) action. The presented approach enables us to 
estimate the total cell antioxidant capacity without the separate measurement of the activities of the cell 
antioxidants. 

METHODS 

Cell Culture 

The L-41 cell line is a human epithelial-like cell line that was derived from the J-96 cell line originally 
obtained from a patient with monocytic cell leukemia (Research Center of Medical Genetics, Russian 
Academy of Medical Science, Moscow)[28,29]. The L-41 cells were maintained as adherent cells in 
Eagle’s culture medium supplemented with 10% donor calf serum, 2 mM L-glutamine, 100 units of 
penicillin/ml, and 100 µg of streptomycin/ml at 37ºC in a 5% CO2 incubator. Cells were harvested with 
trypsin (0.25%)/EDTA solution. L-41 cells represent an immortalized cell line with stable phenotype in 
cell culture and high proliferate activity. 

Glutathione Antioxidant System 

Glutathione concentration was determined by using GSH-400 colorimetric assay (Oxis, USA). 
Glutathione reductase (GR) activity was measured by using the BIOXYTECH GR-340TMAssay (Oxis, 
USA). Glutathione peroxidase (GPx) activity was determined by using BIOXYTECH GPx-340TM 
colorimetric assay for cellular GPx (Oxis, USA).  
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Catalase Activity 

Catalase at different time points and chromium concentrations, and without chromium action as well, was 
detected in the crude cell extracts. Catalase activity was determined by measuring the rate of H2O2

 

(10 mM) decomposition in 50 mM potassium phosphate buffer, (pH 7.0), in the presence of the crude cell 
extract at 240 nm and 25°C, εH2O2 = 43.6 M–1 cm–1[30].  

Preparation of the Crude Cell Extract 

Cr(VI) as potassium chromate (2 and 20 µM) was added to the cell culture at 48 h of growth (80% of 
confluence) and the cells continued to grow under permanent Cr(VI) action for different time periods (24 
and 48 h). Cells (~107) grown without Cr(VI) or under Cr(VI) action were harvested by centrifugation 
(3,000 rpm, 5 min, 4ºC), rinsed twice in 50 mM phosphate buffer, pH 7.8. The rinsed cells were 
resuspended in a definite volume of above-mentioned buffer 1:4 (w/v), sonicated five times for 10-sec 
bursts (44 kHz), centrifuged (14,000 rpm, 20 min, 4ºC), and the soluble extract was used as a sample. The 
crude cell extracts were standardized per microgram of total protein. Protein concentrations in the cell 
extract were determined using BCA (bicinchoninic acid) protein assay reagent (Pierce, USA). 

ESR Measurements 

Fenton reaction, a well-known ·OH generator, has been chosen as the artificial model system of ROS 
generation: Fe2+ + H2O2 → Fe3+ + OH− + ·OH. H2O2 reacts with free ferrous iron to form toxic and highly 
reactive hydroxyl radicals.  

The ESR spin-trapping technique was used to detect short-lived ·OH radicals in model Fenton reaction. 
·OH radicals were trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO, Sigma). ESR spectra were 
obtained by using an ESR spectrometer RE 1306 (Russia) at 100-kHz modulator frequency, 1.2-G 
modulation amplitude, 25-mM microwave power, microwave frequency 9.3 GHz. The samples were placed 
in the ESR cavity using cell-glass capillaries with an internal diameter of 1 mm. Spectra were recorded at 
ambient temperature. The ESR spectrum of DMPO/·OH adducts consists of 1:2:2:1 quartet with splitting of 
aH = aN = 14.8 G, where aN and aH denote hyperfine splitting of the nitroxyl nitrogen and β-hydrogen, 
respectively, which is typical of this system[31]. The ratio of the second signal intensity of DMPO/·OH 
adduct to the intensity of the reference (DPPH-1,1-diphenyl-2-picryl-hydrazyl as a reference) was estimated 
and is presented as arbitrary units (A.U.) in Figs. 1 and 2. The reaction mixture contained 100 mM DMPO, 
1 mM FeSO4, 100 mM H2O2, and 50 mM sodium-potassium buffer pH 7.4 in a final volume 62.5 µl. The 
antioxidant capacity of the cells was registered for the definite periods of time after the addition of the cell 
crude extracts to the model Fenton reaction. Protein concentration in ESR sample was 0.168 mg/ml.  

RESULTS AND DISCUSSION  

Estimation of the Antioxidant Defense System Activity 

ROS taking part in Fenton (or Fenton-like) and Haber-Weiss reactions can be extensively neutralized by 
complex and carefully balanced antioxidant enzymes, of which the SODs are the initial enzymes 
converting superoxide anion to H2O2, one of the stress-inducing agents potentially capable of forming 
oxidative intermediates in cells. H2O2 can be decomposed primarily by catalase (H2O2 → H2O + O2) (in 
peroxisoms) and by GPx (H2O2 → H2O) (in the cytoplasm and mitochondria) via GSH dependent cycle, 
which is a mechanism in scavenging alkylhydroperoxides and is a complementary to catalase in 
scavenging[32]. 
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FIGURE 1. The time course of the ESR signal intensity in the model Fenton reaction in the presence of crude 
cell extracts of Cr(VI)-treated and -untreated control L-41 cells. (A) 2 µM Cr(VI) treatment; (B) 20 µM Cr(VI) 
treatment. , Control; , 24 h of the cell growth under Cr(VI) action; , 48 h of the cell growth under Cr(VI) 
action. Cr(VI) as potassium chromate was added to the cell culture at 48 h of growth (80% of confluence). The 
model Fenton reaction mixture contained 100 mM DMPO, 1 mM FeSO4, 100 mM H2O2, and 50 mM 
sodium/potassium buffer pH 7.4 in a final volume 62.5 µl. Protein concentration in ESR sample was 0.168 
mg/ml. 

 
FIGURE 2. Effects of sodium azide inhibitory action on the antioxidant 
capacity of the crude cell extracts of L-41 cells estimated by ESR method. (1) 
Cells grown without Cr(VI) treatment; (2 and 4) after 24 h of Cr(VI) treatment; 
(3 and 5) after 48 h of Cr(VI) treatment. Cr(VI) as potassium chromate was 
added to the cell culture at 48 h of growth (80% of confluence). The 
experimental conditions are the same as described in Fig. 1. The ESR signal 
intensity of the model Fenton reaction is assigned as 100%. The data presented 
are mean values ± S.D. from three separate sets of experiments. 

In our previous study, we characterized the effect of long-term Cr(VI) action in the ranges of 2–20 
µM on cultured human cells L-41. The time-course action of 2 µM of Cr(VI) demonstrated that this 
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concentration did not affect cell viability up to 96 h. The cell treatment with 20 µM of Cr(VI) increased 
apoptotic cells fraction determined by morphological changes which corresponded with apoptosis up to 
20–30% of cell number at 24 h, and up to 80–90% at 48 h of Cr(VI) action. Two other sensitive markers, 
namely, genomic DNA fragmentation and caspase-3 activation, demonstrated induction of the apoptotic 
cell death. Thus, the time-dependent loss of cell viability at the cell exposure to 20 µM of Cr(VI) was 
accompanied by the increased level of apoptotic cell[33]. 

The changes of the antioxidant defense system in response to Cr(VI) action are presented in Table 1. 
The action of 20 µM of Cr(VI) for 48 h resulted in the complete exhaustion of the GSH cycle system, 
whereas catalase remained at the rather high level. Hence, the major defense against H2O2 still assists in 
cells. 

TABLE 1 
Defense System Activity of L-41 Cells in Response to Cr(VI) Action 

Control (time of 
growth, h)/Cr(VI) 
µM (time after 
Cr(VI) addition, h) 

Catalase 
(U/ml) 

GPx 
(mU/ml) 

GR 
(mU/ml) 

GSH 
(µM) 

Control (72 h) 180 ± 27 133 ± 20 101 ± 17 450 ± 43 
2 µM Cr(VI) (24 h) 310 ± 46 206 ± 31 76 ± 11 170 ± 26 
20 µM Cr(VI) (24 h) 120 ± 18 51 ± 8 20 ± 4 420 ± 56 
Control (96 h) 300 ± 37 66 ± 10 70 ± 12 600 ± 55 
2 µM Cr(VI) (48 h) 280 ± 25 41 ± 5 87 ± 9 750 ± 60 
20 µM Cr(VI) (48 h) 130 ± 20 N.D. N.D. N.D. 

Each value is the mean ± S.D. from three separate sets of experiments. 
Significant difference in the enzyme activities and glutathione quantity (p < 0.05, 
Student’s t-test) was obtained between the control untreated and Cr(VI)-treated 
cells. Cr(VI) was added to the cell culture at the 48 h of growth and the cells 
continued to grow under permanent Cr(VI) action for 24 and 48 h. N.D. – 
nondetected (under the threshold of detection). 

The cell exposure to 2 µM of Cr(VI) for 48 h did not cause depletion of the antioxidant defense 
system (GSH, GPx, GR, catalase), which was in agreement with the lack of the cytotoxicity. 

Estimation of the Cell Antioxidant Capacity by ESR 

The intracellular antioxidant capacity of cells was estimated by the ESR spin-trapping technique in an 
artificial Fenton reaction system, a common source of ·OH radicals, which are formed via Fe+2 ion 
interaction with H2O2. Hydroxyl radicals were trapped by DMPO.  

The antioxidant capacity of cells was registered for the definite periods of time after addition of the 
crude cell extracts to the model Fenton reaction. As catalase and GPx (acting via its cofactor GSH) are 
main scavengers of H2O2, addition of the crude cell extract to the model Fenton reaction resulted in the 
decrease of ·OH radical level. The crude cell extracts induced the suppression of DMPO/·OH spin-adduct 
signal from the outset. The suppression capacity was examined in time-dependent manner.  

As it follows from Fig. 1A, cells exposed to 2 µM of Cr(VI) reveal the high suppressing capacity 
against formation of the hydroxyl radical, similar to the control untreated cells. The time-course of the 
ESR signal intensity in model Fenton reaction in the presence of the crude cell extracts of L-41 cells 
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grown without chromium for 72 and 96 h (controls) did not differ (data not shown). These data agree with 
the lack of cytotoxicity at the 2 µM of Cr(VI) action for 48 h and should be attributed to the elevated 
activity of some antioxidants in response to chromium action after 24 h and to the restoration of 
antioxidant activity to the control level in the next 24 h (Table 1).  

The intracellular antioxidant capacity of chromium-induced apoptotic L-41 cells deteriorated as 
compared with the control cells, but it was still high (Fig. 1B). We were surprised by the high defensive 
capacity of L-41 cells grown under toxic 20 µM of Cr(VI) action for 48 h. As mentioned above, at this 
time point, the basic enzymes (such as GPx, GR, and low molecular weight antioxidant GSH) are 
completely depleted, and they cannot defense cells. Catalase activity is decreased compared to control (96 
h of the cell growth), but it is not depleted. Hence the defense could be accomplished by catalase and/or 
by products of the cell catabolism, which could be presented at high level in apoptotic cells as the result 
of the activation of catabolic enzymes. 

The catabolic processes providing the utilization of protein and nucleotide excess play the key role at 
the late stages of oxidative stress, when the depletion of the cell energy sources takes place. 
Mononucleotides, obtained at the decomposition of nucleic acids, and proteins are generally hydrolyzed 
forming low molecular weight nitrogen-containing compounds (amino acids, peptides, urea, uric acid, 
etc). These products along with the other low molecular weight compounds (glucose, thiourea, uracyl, and 
alcohol) promote the inhibition of ·OH radicals, and hence these products could accomplish the 
antioxidant defense at apoptosis. 

Estimation of the Inhibitor Action 

Generally, catalase and GPx are thought to be the most specific enzymes for H2O2 decomposition, 
although other enzymes such as peroxidases and peroxiredoxins have H2O2 decomposition capacity. 

To estimate the unexpected high suppression capacity of L-41 cells grown under permanent exposure 
to 20 µM of Cr(VI) and to confirm the possible role of catabolic products in the intracellular antioxidant 
capacity of apoptotic cells, the effect of a catalase inhibitor, such as sodium azide (NaN3), was 
investigated. It was reported that in the presence of H2O2, catalase was reduced by the addition of NaN3. 
NaN3 is an inhibitor responsible for the inactivation of heme enzymes including catalase by directly 
attaching to the coordination position of the iron in the heme moiety and producing an inactive ferrous 
derivative[34,35]. 

In all discussed cases, 2, 4, and 6 mM NaN3 added to the crude cell extracts caused the same effect 
(data not shown). Hence, 2 mM of NaN3 is completely capable of inhibiting catalase existing in the crude 
cell extracts. NaN3 added to the crude cell extracts provoked the increase of ·OH radical levels via 
inhibition of catalase, but to different extent. In the case of control cells (grown without Cr[VI]) and cells 
exposure to 2 µM of Cr(VI), the ·OH radical level achieved the model system level (Fig. 2). After the 
inhibition of the catalase activity by NaN3, the level of ·OH radical was not to reach the model level, as 
other uninhibited enzymes responsible for H2O2 decomposition could remain in the cell extract. Such a 
high level of ·OH radicals could be connected with a high contribution of catalase compared with other 
enzymes decomposing H2O2 and/or SOD pro-oxidant effect. It was observed that SOD could provoke a 
toxic effect[36]. This effect is bound to the peroxidatic activity of Cu,Zn-SOD (nonspecific function) 
causing ·OH radical production via Fenton-like reaction[23,27,37].  

At the cell exposure to 20 µM of Cr(VI), catalase activity decreased (Table 1), but it was still high 
and remained about at the same level after 24 and 48 h of Cr(VI) action. In spite of this, NaN3 action 
induced different effects on the antioxidant capacity of the crude cell extracts. After 24 and 48 h of 20 µM 
of Cr(VI), permanent action ·OH radical levels achieve 88 and 55% of the model Fenton system, 
respectively. As 2 mM of NaN3 was sufficient for total inhibition of catalase, catalase is probably not 
completely responsible for the defensive capacity against H2O2 at 48 h of toxic chromium action. The 
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influence of the SOD pro-oxidant effect on the ·OH radical level is not likely to be true, as Cu,Zn SOD 
was practically exhausted in 48 h of 20 µM of Cr(VI) action[33].  

The activation of caspase-3 at 24 h of Cr(VI) action leads to the formation of the elevated intracellular 
level of amino acids and short oligopeptides as the result of cleavage of a variety of intracellular 
polypeptides. Another intracellular change typical of apoptosis is the degradation of the chromosomal 
DNA into high molecular weight and oligonucleosomal fragments. The remarkable DNA ladder 
(oligonucleosomal fragmentation) was observed after 48 h of exposure of L-41 cells to 20 µM of 
Cr(VI)[33]. Thus, apoptosis involves activation of catabolic mediators and enzymes[38]. Apoptosis and 
especially a late stage of the apoptotic process generally trigger production of above-mentioned catabolic 
compounds, which possess scavenging capacity against hydroxyl radical. Probably, it is a reason of the 
high suppressing capacity of L-41 cells exposed to 20 µM of Cr(VI) in the model Fenton reaction. 

The presented approach using the ESR technique along with inhibitors lets us discern the cell extract 
defense capacity connected with the enzymatic activity in viable cells and the catabolic activity in dying 
cells. The use of different inhibitors in the proposed approach could raise the possibility of distinguishing 
the contribution of nonenzymatic and enzymatic antioxidants to the defense against various stress factors 
in viable cells. 
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