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Abstract 

Objectives:  A unique dataset of airway flow/pressure from healthy subjects on Continuous Positive Airway Pressure 
(CPAP) ventilation was collected. This data can be used to develop or validate models of pulmonary mechanics, and/
or to develop methods to identify patient-specific parameters which cannot be measured non-invasively, during 
CPAP therapy. These models and values, particularly if available breath-to-breath in real-time, could assist clinicians in 
the prescription or optimisation of CPAP therapy, including optimising PEEP settings.

Data description:  Data was obtained from 30 subjects for model-based identification of patient-specific lung 
mechanics using a specially designed venturi sensor system comprising an array of differential and gauge pres‑
sure sensors. Relevant medical information was collected using a questionnaire, including: sex; age; weight; height; 
smoking history; and history of asthma. Subjects were tasked with breathing at five different rates (including passive), 
matched to an online pacing sound and video, at two different levels of PEEP (4 and 7 cmH2O) for between 50 and 
180 s. Each data set comprises ~ 17 breaths of data, including rest periods between breathing rates and CPAP levels.
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Objective
CPAP is a form of non-invasive ventilation used in both 
hospital and home settings to treat respiratory conditions 
and wean patients off invasive ventilation [1, 2]. Positive 
end-expiratory pressure (PEEP) is the key CPAP setting. 
Insufficient PEEP can result in under-oxygenation or air-
way collapse [3, 4]. Conversely, excessive PEEP causes 
pulmonary barotrauma [3, 4]. Rupture of tissue (emphy-
sema) and air trapping can lead to pneumothorax [3, 4]. 
Excessive PEEP can also cause increases in intracranial 
pressure due to intrathoracic pressure increases, as well 
as increased fluid retention [3, 5]. Hence, the setting is 

critical care and outcomes, as well as carrying risk with 
sub-optimal settings.

Protocols for PEEP settings vary significantly and are 
predominantly based on clinical judgment of the com-
parative foreseeable risks of hyperinflation and under 
oxygenation [6–8]. Thus, variability of results and ineq-
uity of care can lead to issues of unconscious bias [9]. In 
CPAP ventilation, the “CPAP Titration Protocol” [6, 10, 
11] is commonly used to titrate PEEP based on patient 
blood oxygenation or symptoms of airway collapse.

The described dataset [12] has been used to develop 
a method of extrapolating patient breathing effort and 
ventilator unloading non-invasively in CPAP therapy 
[13]. Objective, model-based quantification of ventilator 
unloading in CPAP creates novel real-time monitoring. 
This metric provides further, novel feedback to clinicians 
on the efficacy of the CPAP therapy at given PEEP set-
tings with the potential to guide clinical decision support 
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and care. More specifically, the goal of CPAP is to sup-
port the work of breathing, so a metric quantifying this 
support in real-time would offer potential clinical value. 
Future work will involve a larger trial with a secondary 
measurement method to further validate the model using 
a larger subject pool.

Data description
Data was collected using a customised sensor system 
consisting of a Venturi tube on either side of the CPAP 
expiration hole (Fig.  1). The dual-Venturi apparatus 
(Fig. 2) with a central expiration hole was 3D printed to 
fit standard CPAP masks (FreeMotion RT041, Fisher and 
Paykel Healthcare, New Zealand), with an inner diameter 
of 15  mm (D1) and a venturi diameter of 12  mm (D2). 
The data set [12] thus captures flow delivered from the 
CPAP machine and flow delivered to the CPAP mask.

Differential pressure sensors connected in both direc-
tions over the Venturi restrictions enable flow measure-
ment (Fig.  3), and static pressure was also measured at 
both locations. As flow sensors were uni-directional, 
both inspiratory and expiratory flow were measured at 
each Venturi tube separately, using two sets of differential 
pressure (flow) sensors.

Data was recorded at a frequency of 83.33 Hz (resam-
pled to 100  Hz) from the sensors via a central Arduino 
unit (Nano V3, Baite Electronics, China) in analogue-
to-digital converter (ADC) counts, which was serially 
interfaced with a laptop for data acquisition. The sensor 
system design approach is open access with details in 
[14]. Sensors were calibrated against a known flow pro-
file obtained from a hospital-grade mechanical ventilator 
(PB840, Puritan Bennet, USA, using CURESoft [15]).

The trial protocol consisted of a sequence of breaths 
at resting, 6, 9, 30, and 60 breaths per minute, repeated 
at nominal PEEP levels of 4 and 7 cmH2O. At each cued 
breathing rate, 17 breaths were cued for inhalation and 
exhalation by an audio-visual pacer.

Raw data was processed in Matlab (Matlab 2020a, The 
Mathworks Inc, Natick, MA, USA), with pressure val-
ues calculated based on datasheet information for each 
of the sensors [16, 17]. The flow was calculated from 
differential pressure (∆P = P1−  P2) across each Venturi 
as a function of its relationship to the ratio decrease in 
cross-sectional tube area at the venturi restriction ( A1

A2
 ) 

by derivation of Bernoulli and continuity equations 
(Eq. 1), yielding:

Given a drag coefficient (cd) of 0.97 and the density of 
air (ρ) as 1.225 kg/m3, and assuming total flow into the 
Venturi restriction equals the total flow out of the same 
Venturi.

The inspiratory and expiratory flow were merged into 
a single multidirectional flow dataset for each Venturi 
by a minimum inspiration length and volume based on 
the cued breath rate. The final data set thus has flow in 
[L/s] and pressure in [cmH2O] at two locations: at the 
entry to the CPAP mask (Q1, P2) and downstream of the 
expiration hole (Q2, P2) as illustrated in Fig. 1.

Data (Table  1) [12] is collated into Excel files and 
organised into raw (“RAW_CSV_Data_Files”) and 
processed data (“Processed_CSV_Data_Files”) fold-
ers. Both Folders contain subfolders of the 10 PEEP 
and breath rate combinations, which in turn contain 
an excel file per subject. Raw data is arranged in col-
umns of time, pressure, and flow (at both venturis and 
in both directions). Processed data is arranged in col-
umns of time, pressure, and flow (at both venturis). 
Corresponding subject demographic data is provided 
as an excel file organised in columns by subject, sex, 
age, weight, height, BMI, smoking history, and vaping 
history. A “README” text document is also included 
outlining how the data a stored.
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Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file 
extension)

Data repository and identifier (DOI or accession number)

Data set 1 Processed_CSV_Data_Files .zip Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data set 2 RAW_CSV_Data_File .zip Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 1 README.txt .txt Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 2 SubjectDemographicData.csv .csv Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 3 Figure 1.png .png Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 4 Figure 2.png .png Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 5 Figure 3.png .png Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 6 LICENSE.txt .txt Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

Data file 7 SHA256SUMS.txt .txt Physionet https://​doi.​org/​10.​13026/​xfae-​vv63 [12]

https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63
https://doi.org/10.13026/xfae-vv63


Page 3 of 3Guy et al. BMC Research Notes          (2022) 15:257 	

Limitations
Data with significant observed sensor error was removed 
during processing. Significant error was considered when 
no distinguishable breaths (inspiration and expiration) 
were captured. These breaths showed no flow from the 
two differential pressure sensors. A potential source of 
this error was moisture in the pressure tubing causing 
pressure sensor failure for some smaller breaths due to 
moisture blocking the sensor tube. The dataset remains 
unedited, and these breaths were simply not processed. 
These breaths comprised less than 20% of the data 
in the entire data set. 2% of the data in the set was not 
processed due to human error in recording trial data. A 
more optimally fitted mask would be expected to reduce 
the error in fully capturing expiration, by reducing leaks 
around the mask’s seal with the face.

The inclusion of subjects with significant respiratory 
abnormalities and/or induced respiratory distress would 
provide more comprehensive data for the development of 
clinical metrics, decision-support systems, and/or clini-
cal CPAP protocols. The preliminary patient WOB and 
ventilator unloading findings [13] establish the value of 
this data, and hence an extended trial is scheduled to col-
lect information from a larger and more diverse (in age, 
ethnicity, and respiratory condition) subject pool.
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