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Abstract

Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises

the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the

nasopharyngeal barrier and invade the bloodstream where it becomes one of the

most harmful extracellular bacterial pathogen. This infectious cycle involves the colo-

nisation of two different environments. (a) In the nasopharynx, N. meningitidis grow

on the top of mucus‐producing epithelial cells surrounded by a complex microbiota.

To survive and grow in this challenging environment, the meningococcus expresses

specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci

have the ability to survive in the extra cellular fluids including blood and cerebrospinal

fluid. The interaction of N. meningitidis with human endothelial cells leads to the for-

mation of typical microcolonies that extend overtime and promote vascular injury,

disseminated intravascular coagulation, and acute inflammation. In this review, we

will focus on the interplay between N. meningitidis and these two different niches

at the cellular and molecular level and discuss the use of inhibitors of piliation as a

potent therapeutic approach.
1 | INTRODUCTION

Neisseria meningitidis (the meningococcus) is a Gram‐negative

bacterium that asymptomatically colonises the nasopharynx of 4% to

20% of humans (Christensen, May, Bowen, Hickman, & Trotter,

2010). For unknown reasons, N. meningitidis may invade the blood-

stream where it becomes one of the most harmful extracellular bacte-

rial pathogen. In some cases, meningococcemia will rapidly progress

toward a septic shock leading in the worst cases to a purpura

fulminans, an acute systemic inflammatory response associated with

an intravascular coagulation and tissue necrosis (Bonazzi et al., 2018;

Brandtzaeg & van Deuren, 2012; Capel et al., 2017; Lecuyer et al.,

2018; Lecuyer, Borgel, Nassif, & Coureuil, 2017). Alternatively,
- - - - - - - - - - - - - - - - - - - - - - - - - -
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N. meningitidis can be responsible for cerebrospinal meningitis after

crossing the blood brain barrier (Coureuil, Lecuyer, Bourdoulous, &

Nassif, 2017; Simonis & Schubert‐Unkmeir, 2016). The fatality ratio

of meningococcal disease is 10–15% and may be up to 40% in case

of purpura fulminans, with 20% of the survivors having permanent

sequelae (Centers for Disease Control and Prevention (CDC), 2017).

The infectious cycle of N. meningitidis involves the colonisation of

two different environments. (a) The natural habitat of N. meningitidis

is the human nasopharynx from where bacteria are transmitted from

person to person by aerosol droplets or direct contact with contami-

nated fluids. In the nasopharynx, N. meningitidis grows on the top of

mucus‐producing epithelial cells surrounded by a complex microbiota.

(b) During pathogenesis, meningococci have the ability to survive in
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the extra cellular fluids including blood and cerebrospinal fluid. The

interaction of N. meningitidis with human endothelial cells is very

unusual because it leads to the formation of typical microcolonies that

extend overtime to ultimately fill in the microvessels. In this review,

we will focus on the interplay between N. meningitidis and these two

different niches at the cellular and molecular level.
2 | COLONISATION OF THE
NASOPHARYNX

The nasopharynx is lined by two types of epithelia: a stratified squa-

mous epithelium that covers 60% of the nasopharynx and a columnar

respiratory epithelium (Ali, 1965; Freeman & Kahwaji, 2018). Airway

epithelial cells are covered by a 10–12‐μm thick airway surface liquid,

itself composed of a low‐viscosity periciliary liquid layer and a high‐

viscosity mucus facing the lumen and containing mucins polymers

and antimicrobial peptides (Brandtzaeg, 2009; Cole, Dewan, & Ganz,

1999; Ganz, 2002). The airway mucus plays the role of a physical bar-

rier (Fahy & Dickey, 2010; Lillehoj, Kato, Lu, & Kim, 2013). It also facil-

itates the elimination of particles or bacteria by the mucociliary

clearance. Indeed, airway epithelial cells expressed cilia that beat syn-

chronously to allow the clearance of the airway surface liquid (at a

speed of 6.9 ± 0.7 mm/min [Hoegger et al., 2014]) from the lung to

the pharynx and from the nose to the pharynx from where the mucus

is swallowed (Paul et al., 2013). This mechanism is considered as the

main defence against microorganisms and particles. Continuously

drained from other compartments of the airways and unable to escape

the mucus clearance, N. meningitidis is restrained to the nasopharyn-

geal mucosa at the crossroads of the two mucociliary escalators.

The airway mucus also possesses bacteriostatic and bacteriolytic

properties that limit the growth of bacteria. (a) The mucus is a poor

nutritive medium with low concentration of glucose (Garnett et al.,

2016) and iron (Smith, Lamont, Anderson, & Reid, 2013), and (b) it is

enriched in antimicrobial peptides/proteins (such as β‐defensins and

cathelicidin LL‐37; Bals & Hiemstra, 2004), components of the comple-

ment system, and specific secretory immunoglobulin A that function by

preventing attachment of bacteria to the components of the mucus

itself (De Rose, Molloy, Gohy, Pilette, & Greene, 2018). The natural

niche of meningococci is the human nasopharynx, and these bacteria

are perfectly adapted to this niche. N. meningitidis is able to use several

carbon sources including glucose, pyruvate, and lactate, the latter being

found in the mucus in the millimolar range during inflammation of the

airways (Bensel et al., 2011). It is also particularly well equipped to cap-

ture iron (see below #3). N. meningitidis expresses IgA protease and is

extremely well equipped to survive against the innate immune system

through expression of a polysaccharide capsule, the lipooligosaccharide

(LOS) (Lo, Tang, & Exley, 2009), and the factor H binding protein (Seib

et al., 2009; for an extended review, see Laver, Hughes, & Read,

2015). Meningococci also express the MtrCDE efflux pump that efflux

antimicrobial peptides (Handing, Ragland, Bharathan, & Criss, 2018;

Rouquette, Harmon, & Shafer, 1999). On the other hand,N.meningitidis

is lack classical toxins, proteases, or type VI secretion system.
The mucus is highly colonised with a complex microbiota

(Biesbroek et al., 2014; Cremers et al., 2014; Esposito & Principi,

2018; Santee et al., 2016; Wang et al., 2018) that does not seem to

be favourable for colonisation by other bacterial species. Nonetheless,

recent studies have revealed that families of polymorphic toxins and

the presence of a prophage designated MDAΦ could play an essential

role in the colonisation of the nasopharynx by meningococci, the for-

mer by allowing N. meningitidis to fight the local microbiota and the

latter by increasing the colonisation rate.
2.1 | Polymorphic toxins

Polymorphic toxins (PT) are multidomain secreted proteins primarily

involved in competition between bacteria (Jamet & Nassif, 2015a;

Jamet & Nassif, 2015b; Zhang, de Souza, Anantharaman, Iyer, &

Aravind, 2012). Each family is defined by a conserved N‐terminal

region and diverse C‐terminal toxic domains (e.g., nucleases, pore

forming, or protein‐modifying activities). In PT systems, a gene

encoding a protective immunity protein is always located immediately

downstream of the toxin gene (Figure 1a). This immunity protein pro-

tects the toxin‐producing cell both from autointoxication and from

toxin produced by other strains (Jamet & Nassif, 2015a; Jamet &

Nassif, 2015b; Zhang et al., 2012). N. meningitidis possesses two dis-

tinct families of PTs encoded by maf and tps loci, which are not related

to one another but share several common features of PT. The most

obvious similarity lies in their typical gene organisation. Indeed, down-

stream of the full‐length toxin gene and its cognate immunity gene,

there is a variable number of 5′ truncated toxin genes called CT(C‐ter-

minal)‐cassettes, also associated with their specific immunity gene

(Arenas, Schipper, van Ulsen, van der Ende, & Tommassen, 2013;

Jamet et al., 2015). These alternative toxic domains could potentially

allow antigenic variation by recombination with the full‐length toxin

gene (i.e., mafB or tpsA; Arenas et al., 2013; Arenas et al., 2015; Jamet

et al., 2015). Hence, CT‐cassettes constitute a potential reservoir of

toxic domains. Strikingly, the number of CT‐cassettes and the nature

of the toxic activities they encode are highly variable from one strain

to another. Because CT‐cassettes are always found associated with

their cognate specific immunity genes, it suggests that their repertoire

of toxin‐immunity modules could determine the ability of strains to

compete or cooperate with each other (Figure 1a).

The tps loci encode two‐partner secretion systems (TPS). An outer

membrane transporter generically named TpsB allows the translocation

of a very large filamentous protein (>2,000 amino acid residues) gener-

ically named TpsA (Hodak et al., 2006; ur Rahman, Arenas, Ozturk,

Dekker, & van Ulsen, 2014). TpsA proteins are well‐known to carry

adhesive properties as described for the filamentous hemagglutinin

adhesin from Bordetella pertussis (Hodak et al., 2006). Several roles have

been attributed to meningococcal TpsA proteins including adhesion to

epithelial cells (Schmitt et al., 2007) and promotion of biofilm formation

(Neil & Apicella, 2009). A TpsA protein carrying a toxic domain at its C‐

terminus is usually renamed CdiA toxins (Aoki et al., 2005). CdiA toxins

have been initially described in Escherichia coli, where they have been

shown to mediate a contact‐dependent inhibition of the growth of



FIGURE 1 Neisseria meningitidis, a commensal and pathogenic bacterium. A.N.meningitidis grow in the mucus in nasopharynx where it encounters
a poor nutritive medium and a rich microbiota. Meningococci survive by expressing capsule, LOS, the MtrCDE efflux pump, and factors that capture
nutrients. N. meningitidis also express two families of polymorphic toxins: MafB and CdiA. A1 depicts the domain organisation found in CdiA and
MafB polymorphic toxins constituted by a conserved N‐terminal domain (blue boxes) apposed to a toxic domain in the variable C‐terminal region
(green boxes). Many toxic activities have been reported for toxic domains (Zhang et al., 2012). SP, signal peptide; Hemag activity, hemagglutination
activity domain, also called a “TPS domain” (PF05860); fil hemag repeats, filamentous hemagglutinin repeats (PF13332); PT‐VENN, pre‐toxin
domain with a VENN motif; DUF1020, domain of unknown function 1020. A2: Simplified genomic organisations of maf and cdi loci. Full‐length
toxin genes cdiA andmafB are depicted in blue with their extremity encoding the toxic activity depicted in green. Genes encoding immunity proteins
are depicted in red (cdiI and mafI). Open Reading Frame (ORF) encoding alternative C‐terminal toxic domains of CdiA and MafB are depicted in
green surrounded with dotted lines. cdiB encodes the dedicated transporter of CdiA toxin, whereas the role of mafA in MafB secretion is unknown.
Black boxes indicate regions potentially involved in recombination. Left panel: aggregates harvested from the biomass covering a monolayer of
FaDu cells infected by the meningococcal Z5463 strain (Bille et al., 2017) and labelled by the anti‐MDA polyclonal antibody coupled to
8 nm‐diameter gold particles. Representative picture of meningococcal MDAΦ phage‐dependant aggregates. Bar: 1 μm. B. For an unknown reason,
meningococci cross the epithelial layer and enter the bloodstream where bacteria adhere to the vascular wall. Adhesive bacteria proliferate and
induce an active signalling that leads to better adhesion and opening of the vascular barrier, vessel leakage, and massive thrombosis
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neighbouring bacteria ((Contact‐dependent inhibitor (CDI); Aoki et al.,

2005). A role in interbacterial competition has been experimentally

confirmed for a tps locus in the meningococcal strain B16B6 belonging

to the hypervirulent cc11 clone (Arenas et al., 2013). This suggests that

other meningococcal TpsA proteins harbouring various CT toxic

domains could constitute functional CDI systems able to mediate

growth inhibition of bacteria that lack protective immunity protein.

The MafB family is restricted to the Neisseria genus, in contrast

with CdiA and most other PT families that are found in several genera

(Zhang et al., 2012). Strikingly, maf genes represent 2% of the genome

of pathogenic Neisseria and are likely to play important roles for path-

ogenesis of this genus (Jamet et al., 2015). Maf proteins are encoded

by genes belonging to the multiple adhesin family (maf). MafA is a

putative adhesin because it has been shown to interact with a specific
glycolipid found on mammalian cells (Paruchuri, Seifert, Ajioka,

Karlsson, & So, 1990). There are three maf genomic islands with

conserved chromosomic location in meningococcal genomes that

harboured mafB and mafI genes (Jamet et al., 2015). Anne Jamet

et al. recently demonstrated that mafB genes encode secreted poly-

morphic toxins specifically neutralised by immunity proteins encoded

by cognate mafI genes (Jamet et al., 2015). Of note, apart from the

toxic domain that can be the same in a CdiA or a MafB toxin, MafB

proteins do not show any similarity with TpsA proteins. Nor there is

any similarity between MafA and CdiB proteins. While MafB proteins

are secreted by meningococcus, their mode of secretion remains

unknown, and there is no clue of a role of MafA in MafB secretion.

The presence of MafA adhesin and MafB toxins in outer‐membrane

vesicles (OMVs; Zielke, Wierzbicki, Weber, Gafken, & Sikora, 2014)
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suggests that OMVs could be a vehicle for delivery of MafB toxins to

neighbouring bacteria or even to eukaryotic cells because MafA is able

to bind cellular glycolipids (Paruchuri et al., 1990). Hence, MafB toxins

could have multiple roles in vivo during pathogenesis or commensal-

ism, which remain to be deciphered.
2.2 | The MDA filamentous phage

Filamentous bacteriophages are part of the horizontally mobile ele-

ments (Mai‐Prochnow et al., 2015). As example, CTXΦ of Vibrio

cholerae, which encodes the cholera toxin, can transduce nontoxigenic

strains into toxigenic strains. The Pf bacteriophages of Pseudomonas

aeruginosa are involved in the formation of biofilm by inducing cell

death and the subsequent release of bacterial DNA (Rice et al.,

2009). Filamentous bacteriophages are also involved in horizontal

gene transfer (VPIΦ of V. cholerae), increase of motility (RSS1Φ of

Ralstonia solanacearum, SW1Φ of Shewanella piezotolerans) and forma-

tion of host morphotypic variants (Cf1tΦ of Xanthomonas campestris,

Pf4Φ, and Pf6Φ of P. aeruginosa; Mai‐Prochnow et al., 2015).

Whole genomes comparison using a collection of meningococci of

defined pathogenic potential allowed the identification of an 8‐kb

island that was associated with invasive infections. This island, desig-

nated MDA for Meningococcal Disease Associated island, encodes a

functional filamentous prophage able to produce infectious filamen-

tous phage particles (MDAΦ; Bille et al., 2005; Bille et al., 2008).

The MDAΦ particles, each about 1,200 nm long, are secreted through

the type IV pilus secretin PilQ and form a mesh of long bundles of fil-

aments anchored to meningococci (Meyer et al., 2016). To infect naive

recipient strains, MDAΦ particles use type IV pili as receptor and ben-

efit from pilus retraction to access the cytoplasm of new hosts. Inter-

estingly, production of MDAΦ particles and type IV pili seems to be

mutually exclusive. Bille et al. demonstrated that MDAΦ particles form

large bundles surrounding and connecting bacteria. These bacteria‐

bacteria interactions increase the biomass of encapsulated meningo-

cocci interacting with monolayer of epithelial cells (Bille et al., 2017).

Altogether, these data suggest that MDAΦ increases the bacterial load

at the site of entry that in turn enhances the probability of bacterial

translocation into the bloodstream and/or the dissemination of the

bacteria in the general population.
3 | INVASION OF THE BLOODSTREAM
FROM THE PORT OF ENTRY

The mechanisms by which meningococci leave the nasopharynx and

invade the bloodstream remain unknown. Active translocation of

N. meningitidis following bacterial internalisation and trafficking within

intracellular vacuoles is one of the major hypothesis, especially consid-

ering that the outer membrane proteins Opa and Opc were involved in

an active process of internalisation that could be followed by translo-

cation of bacteria through cellular monolayers (Billker, Popp, Gray‐

Owen, & Meyer, 2000; de Vries, van Der Ende, van Putten, & Dankert,

1996; Schmitter et al., 2007; Virji, Makepeace, Ferguson, Achtman, &
Moxon, 1993). Internalisation of meningococci may also be enhanced

by other bacterial factors such as NadA (Bozza et al., 2014; Montanari

et al., 2012), GltT‐GltM (Takahashi, Kim, & Watanabe, 2011), AutB

(Arenas et al., 2016), or interaction of porin with TLR2 host receptor

(Toussi, Wetzler, Liu, & Massari, 2016). Interestingly, two studies

observed that infection of fully differentiated epithelial cells (Calu‐3

cell line) restrained meningococci at the apical domain (Barrile et al.,

2015; Sutherland, Quattroni, Exley, & Tang, 2010), suggesting that dif-

ferentiated epithelial cells prevent the dissemination of meningococci.

Further experiments using Calu‐3 cells in air‐liquid interface culture, a

model in which cells are grown with the apical domain facing the air,

which generates a model more morphologically representative of the

airway epithelium with a more rugged apical topography and greater

glycoprotein secretion (Grainger, Greenwell, Lockley, Martin, &

Forbes, 2006), will be needed to address the question of physiologi-

cally relevant colonisation of epithelial cells. It should be pointed out

that circumstances, such as viral infections (Hubert, Watier, Garnerin,

& Richardson, 1992) or climatic conditions (Sultan, Labadi, Guegan, &

Janicot, 2005) possibly responsible for damaging the airway epithe-

lium can favour meningococcal infections.
4 | BLOOD‐BORNE COLONISATION OF THE
VASCULAR COMPARTMENT

Once in the blood, themeningococcus benefits from the same virulence

factors that ensure its survival in mucus to survive and proliferate in the

blood: the polysaccharidic capsule and the LOS, the factor H binding

protein (fHBP), the MtrCDE efflux pump, up to four different trans-

porters to capture iron including transferrin binding proteins, lactoferrin

binding proteins, and two independent heme transport systems that

recognise haemoglobin and haptoglobin‐haemoglobin (HmbR and

HpuAB, respectively; Perkins‐Balding, Ratliff‐Griffin, & Stojiljkovic,

2004). The virulence factor appearing to be specific to blood infection

is the type IV pilus, which is the only mean by which capsulated menin-

gococci adhere to endothelial cells in vivo (Join‐Lambert et al., 2013)
4.1 | The importance of endothelial cell colonisation,
the Achilles' heel of meningococci

Examination of post‐mortem samples of meningococcemia has shown

that N. meningitidis forms large colonies at the apical surface of capil-

lary endothelial cells throughout the body including spleen, skin, liver,

kidney, heart, and brain. Retraction of endothelial cells, capillary dis-

ruption, haemorrhages, and luminal thrombi is observed. These obser-

vations are uncommon compared with most invasive bacterial

pathogens. Thus, the specific ability of N. meningitidis to colonise and

specifically interact with peripheral and brain microvessels is likely

responsible for its capacity to both cross the blood–brain barrier and

induce a thrombotic/leakage syndrome that in severe forms lead to

purpura fulminans. Meningococcal interaction with endothelial cells is

specific of human cells. Meningococci are unable to interact with

any non‐human cells, thus hampering the ability to study the
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mechanisms and the consequences of this interaction in vivo.

Recently, a humanised model using severe combined immunodefi-

ciency mice grafted with human skin was developed (Join‐Lambert

et al., 2013). In this model, where vessels of human origin from the

graft anastomose to the mice vessels, blood‐borne N. meningitidis

readily adhere to human endothelial cells. Bacterial‐induced vascular

damages are very similar to those described in patients, including

perivascular infiltrates, thrombosis, and vascular leakage associated

with massively infected vessels (Harrison et al., 2002) that ultimately

lead to the death of infected grafted animals (Capel et al., 2017). In

addition, vascular damages are localised only in vessels colonised by

meningococci. Capel et al. showed that adhesion to human skin ves-

sels is a prerequisite for virulence of N. meningitidis and the mainte-

nance of a sustained bacteremia because bacteria unable to adhere

to microvessels are rapidly cleared from the bloodstream (Capel

et al., 2017). Altogether, this points out the essential role of microvas-

cular colonisation in meningococcal pathogenesis (Figure 1b).

Due to the predominant role of meningococcal adhesion in

pathogenesis, targeting bacterial colonisation to microvessels

represents a particularly promising strategy in the treatment of inva-

sive meningococcal infections. Recently, Denis et al. have identified a

family of compounds, which promotes within minutes the loss of type

IV pili (see next paragraph) and, subsequently, alter all the functions

carried by these structures, including twitching motility and adherence

to human endothelial cells (Denis et al., 2019). Using the humanised

mouse model of skin infection, they showed that these compounds

exert a strong protective effect against the pathophysiological events

occurring during meningococcemia. They reduce colonisation of the

human vessels by circulating meningococci and prevent subsequent

vascular dysfunctions, intravascular coagulation, and overwhelming

inflammation, the hallmarks of invasive meningococcal infections.

Finally, in consistence with the role of the vascular niche in promoting

sustained bacteraemia leading to mice lethality (Capel et al., 2017),

these compounds reduce bacteraemia and increase mice survival. In

association with antibiotics, they reduce vascular inflammatory and

thrombotic responses that were shown to be highly detrimental and

correlated with the severity of the disease in patients (Girardin, Grau,

Dayer, Roux‐Lombard, & Lambert, 1988; van Deuren et al., 1995;

Waage, Brandtzaeg, Halstensen, Kierulf, & Espevik, 1989).

The identified molecules (trifluoperazine and thioridazine) belong

to phenothiazines, a family of compounds previously used in human

medicine to treat psychotic disorders. Due to the well‐conserved set

of proteins involved in type IV pilus biosynthesis in Gram‐negative

bacteria, interfering with Tfp‐mediated host cell interaction by these

phenothiazines represents an attractive strategy to modify the course

of diseases induced by piliated bacterial pathogens. Data strongly

suggest that these phenothiazines target the sodium pumping

NADH:ubiquinone oxidoreductase complex (Na+‐NQR). This protein

complex, highly conserved among numerous nonpathogenic and

pathogenic bacteria, creates a sodium motive force through the

translocation of Na+ across the inner cell membrane. In many patho-

genic bacteria, Na+ gradient is an entry site for electrons into the

respiratory chain toward ATP synthesis or to sustain ionic
homeostasis, nutrient transports, flagellum rotation, and other essen-

tial processes (Juarez & Barquera, 2012; Reyes‐Prieto, Barquera, &

Juarez, 2014). Interestingly, meningococcal isogenic mutants, devoid

of individual nqr genes were poorly piliated and aggregative, thus

linking piliation and NQR‐mediated Na+ pumping activity. How this

sodium gradient affects type IV pilus dynamics remains to be explored.

4.2 | Type IV pili and their interaction with human
cell receptors

Tfp are long and dynamic polymeric fibres made of pilin monomers

(Egelman, 2017; Kolappan et al., 2016). This fibre is assembled from

a platform in the inner membrane (PilM,N,O,P,G). Two ATPases permit

the elongation (PilF) and the retraction (PilT) of the fibre that protrudes

through the secretin PilQ (Hospenthal, Costa, & Waksman, 2017). The

fibre is composed of the monomeric core pilin PilE and of three minor

pilins that are responsible for Tfp‐associated phenotypes. ComP is

responsible for natural competence for DNA transformation (Brown,

Helaine, Carbonnelle, & Pelicic, 2010; Cehovin et al., 2013); PilV is

involved in adhesion and signalling to human cells (Bernard et al.,

2014; Mikaty et al., 2009), and the minor pilin PilX is essential to pro-

mote interbacterial interactions, a process named aggregation (Helaine

et al., 2005; Helaine, Dyer, Nassif, Pelicic, & Forest, 2007). Aggregation

of bacteria is allowed by the interaction between antiparallel pili and is

a key aspect of colonisation. Indeed, a PilX‐defective mutant is piliated

and unable to form aggregates or colonies on the top of endothelial

cells. This interaction between antiparallel pili also exerts forces on

both fibres that are responsible for a transition between two confor-

mations: a packed and an elongated conformation. This transition

reveals new epitopes, previously buried into the fibre and involved in

the interaction with cellular receptors (see below; Biais, Higashi, Brujic,

So, & Sheetz, 2010; Brissac, Mikaty, Dumenil, Coureuil, & Nassif, 2012;

Kolappan et al., 2016). Furthermore, the dynamic of bacterial aggre-

gates is key during colonisation of the blood capillary network. Bonazzi

et al. recently revealed that the ATPase PilT drives adaptation of aggre-

gates to tubular geometry found in capillaries, a property necessary for

colonisation of blood vessels (Bonazzi et al., 2018).

Initial attachment of N. meningitidis to endothelial cells requires the

interaction of tfp with human cell receptors. Several receptors were

proposed as being able to interact with Tfp: the complement regula-

tory protein CD46, the Laminin receptor, or the platelet activating

factor receptor (Jen et al., 2013; Kallstrom, Liszewski, Atkinson, &

Jonsson, 1997; Kirchner, Heuer, & Meyer, 2005; Orihuela et al.,

2009). During the last decade, CD147 (also known as

Basigin/Emmprin) has been identified as an important adhesion recep-

tor on both brain and peripheral endothelial cells. CD147 is a member

of the immunoglobulin (Ig) superfamily comprising two Ig‐like domains

(Iacono, Brown, Greene, & Saouaf, 2007). CD147 is massively

recruited at sites of N. meningitidis adhesion. This recruitment pre-

cedes cytoskeletal rearrangement specific of meningococcal signalling

onto endothelial cells (Carbonnelle et al., 2009). Bernard et al. showed

that CD147 directly interacts with recombinant PilE and PilV, in

contrast to other minor pilins: PilX and ComP (Bernard et al., 2014).
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Interestingly, CD147 is associated in a preformed complex with the α‐

actinin‐4 scaffolding protein and the β2‐adrenergic receptor (β2AR;

family of G protein coupled receptor [GPCR]). This pre‐existing associ-

ation facilitates the activation of the β2AR by the two pilins PilE and

PilV that activate and amplify a βarrestin‐dependent signalling path-

way leading to the enrichment of ERM proteins. These proteins

anchor the actin network at the site of bacterial adhesion in a struc-

ture named cortical plaque (Coureuil et al., 2010; Maissa et al., 2017;

Merz, Enns, & So, 1999; Slanina, Hebling, Hauck, & Schubert‐Unkmeir,

2012). Actin polymerisation is the consequence of the local recruit-

ment of ErbB2, small Rho GTPases, and that of the Src tyrosine kinase

activation. This cell signalling is responsible for the elongation of host‐

cell membrane protrusions that stabilise bacterial colonies at the sur-

face of blood vessels (Coureuil et al., 2010; Lambotin et al., 2005;

Mikaty et al., 2009). Besides, it has been recently proposed that the

interaction of Tfp with host‐cell plasma membrane triggers its remod-

elling as discrete and dynamic protrusions in a process reminiscent of

membrane wetting (referred to as 1D‐wetting; Charles‐Orszag et al.,

2018). The authors suggest that membrane 1D‐wetting drives subse-

quent actin polymerisation and recruitment of cortical plaque associ-

ated proteins. In this context, the exact role of 1D‐wetting in β2AR‐

induced remodelling of the apical surface is not clear; all the more

since the involvement of this former phenomenon in meningococcal‐

induced signalling has not been formally proven.

The nature of the epitope targeted by meningococcal Tfp on

their cellular receptors is still unknown. To date, studies aiming at dem-

onstrating receptor‐pilin interaction never revealed how both partners

interact with each other. Some evidences suggested that Tfp from

other pathogens interact with host cell carbohydrates. For instance,

Tfp of Pseudomonas aeruginosa bind complex N‐glycans (Bucior,

Pielage, & Engel, 2012) and that of Vibrio parahaemolyticus interact

with chitin, a long‐chain polymer of N‐acetylglucosamine (Frischkorn,

Stojanovski, & Paranjpye, 2013). A recent study by Mubaiwai et al.

revealed that Tfp of the meningococcal strain MC58 can interact with

complex N‐glycan such as GD2 ganglioside, a glycan composed of a

core GalNAcβ1‐4Galβ1‐4Glc, and a terminal sialic acid (Neu5Ac;

Mubaiwa et al., 2017). However, this glycan is only expressed in the

cerebellum and peripheral nerves in humans and cannot account for

the ability of meningococci to colonise human vessels (Ahmed &

Cheung, 2014). Another open question is the role of the mechanical

forces applied by Tfp. Indeed, using optical tweezers, Biais et al.

showed that retraction of a single pilus generates forces up to 110

pN. Bundles of Tfp, which result from the association of eight to 10 pili,

act as coordinated retractable units. Thus, bundles can generate retrac-

tion forces in the nanonewton range (Biais, Ladoux, Higashi, So, &

Sheetz, 2008). Interestingly, some GPCRs were described as

mechanosensors and, as such, may sense membrane tension. For

instance, angiotensin II type 1 receptor is capable of sensing mem-

brane stretching (Wang, Hanada, Gareri, & Rockman, 2018) and para-

thyroid hormone type 1 receptor senses mechanochemical signals in

preosteoblatic cells (Zhang, Frangos, & Chachisvilis, 2009). The possi-

bility that CD147 and/or the β2AR can be involved in mechanosensing

of Tfp pulling forces needs to be further studied.
4.3 | Consequences of blood vessels colonisation

A major consequence of bacterial adhesion to endothelial cells is the

loss of vessels integrity. N. meningitidis causes vascular leakage

through several parallel pathways that ultimately lead to the disassem-

bly of both adherens and tight junctions, which is likely to be respon-

sible in vivo for the peripheral leakage syndrome and in the brain for

the crossing of the blood–brain barrier. Following bacterial adhesion

onto endothelial cells, the adherens‐junction protein VE‐cadherin is

relocated at sites of bacterial adhesion via the mislocalization of the

Par3/6 polarity complex (Coureuil et al., 2009). Besides, N. meningitidis

also promotes the cleavage of occludin (a component of the tight junc-

tions) by the metalloproteinase MMP‐8, further altering the sealing of

intercellular junctions (Schubert‐Unkmeir et al., 2010). In addition,

N. meningitidis activates other signalling events in endothelial cells,

but their exact consequences on endothelium integrity have not been

assessed yet. Meningococci induce host‐cell calcium release from

intracellular stores (Asmat, Tenenbaum, Jonsson, Schwerk, & Schroten,

2014); p21 and cyclin G2‐dependent cell cycle arrest at S phase

(Oosthuysen, Mueller, Dittrich, & Schubert‐Unkmeir, 2016); Acid

sphingomyelinase (ASM) and ceramide exposure in ErbB2 containing

domain at plasma membrane (Simonis, Hebling, Gulbins, Schneider‐

Schaulies, & Schubert‐Unkmeir, 2014).

Another major consequence of meningococcal interaction with

endothelial cells is an increase of the procoagulant activity of the

endothelium. Indeed, meningococcemia is very often complicated by

thrombosis events. Up to 70% of patients develop a cutaneous pur-

pura that reflects skin microvascular thrombosis and red blood cell

extravasation (Thompson et al., 2006). Moreover, about 25% of the

patients develop a purpura fulminans syndrome that associates exten-

sive cutaneous thrombosis, ischemic necrosis of skin and organs (such

as the adrenal glands), and a severe septic shock (Powars et al., 1993).

All these thrombotic events are far more common in

meningococcemia than in any other bacterial infections, suggesting

that meningococci induce a specific dysregulation of coagulation.

The humanised mouse model of meningococcal vascular colonisation

described above has unveiled an important step in thrombosis devel-

opment during meningococcemia: In this model, thrombosis was spe-

cifically associated with meningococcal adhesion to human

endothelial cells. These results suggest that meningococcal interaction

with endothelial cells is a key contributor to thrombosis. While menin-

gococci express common prothrombotic factors (such as the LOS that

mediates tissue factor expression [Mirlashari, Hoiby, Holst, & Lyberg,

2001; Ovstebo et al., 2012; Schlichting, Lyberg, Solberg, & Andersen,

1993]), a recent work has demonstrated that meningococcal Tfp‐

mediated adhesion on endothelial cells specifically induces the activa-

tion of a membranous protease, a disintegrin metalloprotease 10,

which subsequently cleaves the endothelial protein C receptor (EPCR)

in a process known as shedding. This shedding is detrimental in the

context of meningococcemia. Indeed, EPCR normally binds Protein C

(PC), and this binding accelerates the rate of PC activation. Activated

Protein C (aPC) is a potent anticoagulant that cleaves several coagula-

tion factors and by such it prevents any overwhelming coagulation
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activation. An acquired or congenital severe deficit in PC is per se a

cause of non‐infectious purpura fulminans, demonstrating the key role

of this protein in preventing this syndrome. Hence, meningococcal

Tfp‐mediated adhesion on endothelial cells, by inducing EPCR shed-

ding, impairs the aPC negative feedback on coagulation (Lecuyer

et al., 2018). So far, such dysregulation of coagulation system seems

to be specific to the meningococcus. Besides, fibrinolysis that ends

with fibrin clot destruction is also impaired during meningococcal

infection. Indeed, meningococcal LOS induces the release of the fibri-

nolysis inhibitor plasminogen activator inhibitor by monocytes, and

this certainly contributes to the extensive microvascular thrombosis

(Mirlashari et al., 2001; Schlichting et al., 1993).
5 | CONCLUSION

Many studies aiming at understanding how N. meningitidis colonise the

pharyngeal niche, disseminate, and colonise blood vessels have been

carried out and gave a clear overview of N. meningitidis interaction

with epithelial and endothelial cells, providing a promising route to

the treatment of invasive meningococcal diseases. However, so far,

the lack of suitable models has limited our understanding of meningo-

coccal colonisation of the upper airway or that of the opening of the

blood–brain barrier. The understanding of the “colonisation phase”

of N. meningitidis is a prerequisite to addressing the dissemination

route responsible for bloodstream dissemination.
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