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Nonthermal plasma induces head and neck cancer cell
death: the potential involvement of mitogen-activated
protein kinase-dependent mitochondrial reactive
oxygen species

SU Kang', J-H Cho?, JW Chang’, YS Shin', KI Kim?, JK Park', SS Yang®, J-S Lee*, E Moon®*, K Lee® and C-H Kim*'

Nonthermal plasma (NTP) is generated by ionization of neutral gas molecules, which results in a mixture of energy particles
including electrons and ions. Recent progress in the understanding of NTP has led to its application in the treatment of various
diseases, including cancer. However, the molecular mechanisms of NTP-induced cell death are unclear. The purpose of this
study was to evaluate the molecular mechanism of NTP in the induction of apoptosis of head and neck cancer (HNC) cells. The
effects of NTP on apoptosis were investigated using MTT, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end
labeling, Annexin V assays, and western blot analysis. The cells were examined for production of reactive oxygen species (ROS)
using DCFCA or MitoSOX staining, intracellular signaling, and an animal model. NTP reduced HNC cell viability in a dose-
dependent manner and induced apoptosis. NTP resulted in alteration of mitochondrial membrane potential and accumulation of
intracellular ROS generated from the mitochondria in HNC cells. Blockade of ROS production by N-acetyl-L-cysteine inhibited
NTP-induced apoptosis. NTP led to the phosphorylation of ¢-JUN N-terminal kinase (JNK) and p38, but not extracellular-
regulated kinase. Treatment with JNK and p38 inhibitors alleviated NTP-induced apoptosis via ROS generation. Taken together,
these results show that NTP induced apoptosis of HNC cells by a mechanism involving MAPK-dependent mitochondrial ROS.
NTP inhibited the growth of pre-established FaDu tumors in a nude mouse xenograft model and resulted in accumulation of
intracellular ROS. In conclusion, NTP induced apoptosis in HNC cells through a novel mechanism involving MAPK-mediated
mitochondrial ROS. These findings show the therapeutic potential of NTP in HNC.
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Head and neck cancer (HNC) is the fifth most common cancer
worldwide.! Despite technical advances in surgery, radio-
therapy, and chemotherapy, survival rates have remained
virtually unchanged over the past 50 years in patients with
advanced HNC.? Therefore, a new modality for treatment of
HNC is needed to improve survival and decrease toxicity.

Nonthermal plasma (NTP) is being investigated in terms of
its biomedical application and has recently emerged as a
novel tool in cancer treatment. The anticancer activity of NTP
has been demonstrated in several in vitro and in vivo animal
models, including skin, liver, and colon cancers.>® Plasma is
an ionized gas composed of charged particles, electronically
excited atoms and molecules, radicals, and UV photons. The
effects of NTP are owing to the active species, mainly oxygen/
hydroxyl radicals and nitric oxide, that are generated in the
plasma or tissue brought into contact with NTP.®”

Acting as primary coordinators of the apoptotic processes,
reactive oxygen species (ROS) generated by NTP can mediate

apoptosis of mammalian cancer cells by mitochondrial dysfunc-
tion.”® Free radicals have important roles in a number of
biological processes and have also been implicated in cellular
redox signaling. However, excessive amounts of free radicals
secondary to an imbalance of the redox milieu can lead to cell
damage and death.® It has been increasingly reported that DNA
damage and reactive species generated by NTP could be the
main causes of apoptosis in various types of cancer.*%1011
However, the molecular mechanism of the particular NTP
that induces apoptosis and the specific signals that stimulate
NTP-induced apoptosis remain unclear. In this study, we
investigated whether NTP in HNC cells causes ROS-induced
apoptosis, along with the molecular signals involved.

Results

Analysis of NTP on cell death and apoptotic effect. A gas
(helium and oxygen)-only treatment was used as a control to
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exclude the gas effects of NTP. Gas-only treatment did not
show any significant effect on cell viability. NTP treatment of
FaDu cells (2kV for 1s (15.7%) and 4kV for 1s (29.1%))
resulted in a significant increase in apoptosis compared with
the control (5.1%) and gas-only (7.8%) groups (Figure 1b).
Consistent with the Annexin V assay results of FaDu cells,
treatment with NTP resulted in increased apoptosis of HN9,
SNU899, and SNU1041 cells (Figure 1b). In addition, NTP
treatment significantly increased the number of terminal
deoxynucleotidyl transferase-mediated dUTP-biotin nick-end
labeling (TUNEL)-positive cells, indicating that NTP indeed
induces apoptosis in FaDu cells (Figure 1c).

Activation of the mitogen-activated protein kinase
pathway in FaDu cells treated with NTP. Next, we
investigated the activation of apoptotic signal molecules in
NTP-treated cells. Increased expression of p-p38, p-c-JUN
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N-terminal kinase (JNK), and p-extracellular-regulated
kinase (ERK) was detected after NTP treatment in FaDu
cells. Moreover, the dose-dependent activation of PARP and
cleaved caspase-3 was associated with NTP-induced apop-
tosis of FaDu cells (Figure 1d).

Increased ROS generation and loss of mitochondrial
dysfunction are involved in NTP-induced apoptosis. An
approximate twofold increase in intracellular peroxide levels
was found in cells treated with NTP compared with the controls
(Figure 2a). Next, to determine whether the ROS induced by
NTP was generated in the mitochondria, we stained plasma-
treated cells with MitoSOX and performed fluorescence-
activated cell sorting (FACS) analysis. Mitochondrial
superoxide levels were increased in NTP-treated cells. In
addition, confocal microscopy images showed that the Mito-
SOX (stained red) colocalized with the mitochondria-staining
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Figure 1  Apoptotic effects of NTP on HNC cells. (a) Photograph of a plasma jet, schematic diagram of the plasma system, and image of a plasma jet. (b) Various HNC
cells were analyzed 24 h after treatment with NTP by staining with Annexin V/PI. (c) Apoptosis of FaDu cells was determined by the TUNEL method using a detection kit.
(d) The cell lysates were then separated by SDS-PAGE and immunoblotted with anti-p-JNK, p-p38, p-ERK, cleaved caspase-3, and PARP antibodies. Scale bar denotes

50 um. *P<0.05, **P<0.01, and ***P<0.001
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dye MitoTracker (green) (merged as yellow in Figure 2b),
confirming that the ROS were generated by the mitochondria.

In the mitochondrial membrane potential (MMP) measure-
ment, NTP increased the green fluorescence of cells,

Nonthermal plasma induced apoptosis in HNSCC

SU Kang et al

w

Control Gas 2K-1s 4K-1s
Control Gas 2K-1s 4K-1s
— m— 0-n38
T-p38
— E‘ p-JNK
e | .
E % ¥ ¥ _ 3
' ' Cleaved Caspase-3
— e . 2| P \RP
— —_— ]
— e ey W | o-tubulin

indicating a loss of MMP and mitochondrial damage
(Figure 2c). Taken together, these results show that NTP
induced apoptosis via mitochondrial ROS generation and
mitochondrial dysfunction.
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Figure 2 Induction of ROS in NTP-treated FaDu cells. (a) FaDu cells were treated with DCFDA and assayed using flow cytometry. (b) For measurement of mitochondrial
superoxide, the cells were incubated with 2.5 uM of MitoSOX and then stained with 180 nM MitoTracker. (¢) MMP was measured by flow cytometry using JC-1 fluorescence.
Scale bar denotes 50 um. *P<0.05, **P<0.01, and ***P<0.001
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Figure 3 Effect of NTP-generated ROS on apoptosis. Cells were treated with NAC (10 mM) for 1 h before treatment with NTP. (a) Measurement of ROS generation using
flow cytometry. (b) Measurement of mitochondrial superoxide with MitoSOX and MitoTracker. (¢) Measurement of MMP with JC-1. (d) Analysis of apoptosis by FACS with
Annexin V-Pl. (e) The cell lysates were assessed by western blot analysis using antibodies against p-JNK, p-p38, p-ERK, cleaved caspase-3, and PARP. *P<0.05,

*P<0.01, and ***P<0.001
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Antioxidants alleviate apoptosis following NTP
treatment. We determined whether the ROS generated by
NTP are implicated in NTP-mediated apoptosis. N-acetyl
cysteine (NAC) is a well-known thiol antioxidant. In combination
with NTP and NAC, the levels of ROS generation, mitochondria
superoxide, and MMP were significantly lower than those of
NTP-treated cells (Figures 3a-c). In combination with
NAC treatment, apoptosis induced by NTP was alleviated

Non-Plasma

compared with the control and gas groups (Figure 3d). In a
similar manner, NAC attenuated the apoptotic effect of NTP
(Figure 3d). These findings suggest that removal of ROS can
abrogate NTP-induced cell death and that ROS mediate
NTP-induced apoptosis.

To examine the relationship between the role of ROS and
the underlying mechanism of apoptosis induced by NTP, we
determined whether the NTP-induced apoptotic pathway was
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Involvement of MAPK in the generation of mitochondrial ROS and mitochondrial dysfunction. Apoptosis of FaDu cells was assessed 24 h after NTP with or

without preincubation with NAC (10 mM), SB2023580 (10 M), or SP 600125 (10 xM). (a) Immunoblotting was performed using antibodies against p-JNK, p-p38, p-ERK,
cleaved caspase-3, and PARP. (b) Analysis of apoptosis by FACS with Annexin V-PI. (c) Measurement of ROS generation by flow cytometry. (d) Measurement of
mitochondrial superoxide using MitoSOX and MitoTracker. (e) Measurement of MMP using JC-1. *P<0.05, **P<0.01, and ***P<0.001
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inhibited by NAC. Interestingly enough, as shown in Figure 3e,
the increased expression of cleaved caspase-3 and PARP by
NTP was attenuated by NAC pretreatment. Furthermore,
NAC prevented NTP-mediated p-p38 and p-JNK expression.

Mitogen-activated protein kinase involves generation of
mitochondrial ROS and mitochondrial dysfunction in
NTP-induced apoptosis. We used NAC and specific
inhibitors for JNK (SP600125) and p-38 (SB203580) to
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further confirm the involvement of ROS and the mitogen-
activated protein kinase (MAPK) signaling pathway in NTP-
induced apoptosis. Activated caspase-3 and the specific
cleavage of PARP were identified in cells treated with NTP
for 24h, followed by the activation of JNK and p38.
Cotreatment with NAC, SP600125, or SB203580 reduced
the expression of p-JNK and p-p38, leading to decreased
cleavage of caspase-3 and PARP (Figure 4a). As shown in
Figure 4b, when cells were treated with NAC, SP600125, or

~
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SB203580 in combination with NTP, the percentage of
apoptosis was reduced significantly when compared with
combined treatment. Approximately 39% of cells were
undergoing apoptotic death after NTP treatment; however,
cotreatment with NAC, SP600125, or SB203580 reduced this
to 28.1%, 283.05%, and 31.55%, respectively (Figure 4b).
Furthermore, levels of ROS generation, mitochondria super-
oxide, and MMP were significantly lower than those in the
NTP-treated cells (Figures 4c—e).

These findings suggest that removal of ROS can abrogate
NTP-induced cell death and that ROS mediate the NTP-
induced apoptosis. These results also suggest that NTP
induces apoptosis via downregulation of p38 and JNK.

NTP treatment inhibits tumor growth and induces
apoptosis in vivo. NTP significantly suppressed the tumor
growth after 11 days of treatment (Figure 5a). In addition, the
volume and weight of the tumors were decreased by NTP
(Figures 5b and c). Figure 5d reveals that tumor tissue from
the NTP-treated mice showed increased caspase-3 and
Nox-3 levels, and TUNEL staining, compared with control
tissue. Therefore, these results suggest that NTP more
effectively inhibited tumor growth than did the control, and
that ROS mediated the NTP-induced apoptosis in vivo, as
observed in vitro.

Discussion

Several recent studies revealed that NTP can induce cancer
cell apoptosis in a dose-dependent manner and that this might
be related to DNA damage resulting from the generation of
ROS.""'2 Also, they present preferential killing of cancer cells
over the normal cells by NTP.'"12

HNCs usually begin in the squamous cells that line the
mucosal surface of head and neck area. Therefore, HNC can
be approached and managed via natural orifice (oral and
nasal cavity). Thus, we hypothesized that if NTP can induce
cell death in the HNC cells, it could be a novel way to treat
locoregional head and neck squamous cell carcinoma (SCC)
or premalignant lesion. NTP can be a promising adjuvant
modality to handle microinvolvement of tumor after surgical
resection.

ROS seem to be indispensable for the signal-transduction
pathways that regulate cell growth and the redox status.
However, overproduction of ROS can damage lipids, proteins,
and DNA. This study demonstrated that intracellular ROS
production was increased significantly by NTP treatment. An
increase in ROS and a consequent loss of MMP were reported
to be typical phenomena during mitochondria-dependent
apoptosis.'® Loss of MMP also induces apoptosis by causing
the release of proapoptotic factors, such as cytochrome c,
from the mitochondrial inner space to the cytosol.'* Cyto-
chrome c¢ release from the mitochondria can activate
caspase-9, which in turn activates executioner caspase-3
via cleavage induction.® This idea is strongly supported by
the fact that the antioxidant NAC effectively blocked the
NTP-induced activation of apoptosis-related proteins and the
decline in cellular viability.

MAPKSs are mediators of cellular responses to extracellular
signals, including ERK 1/2, JNK, and p38. The results of our
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study showed that NTP caused activation of JNK and p38
rather than ERK. Generally, activation of ERK enhances cell
proliferation, while activation of JNK and p38 facilitates cell
death.® In the present study, we performed an inhibitor study
of p38 and JNK to elucidate the roles of MAPK involved in
NTP-induced apoptosis. The JNK inhibitor (SP600125) and
the p38 inhibitor (SB203580) reversed the NTP-induced
activation of caspase-3. The inhibitor assay showed that
blockade of JNK and p38 activation largely rescued plasma-
induced apoptosis and significantly decreased the levels of
ROS generation, mitochondria superoxide, and MMP. In
addition, these results indicate that the phosphorylation of
JNK and p38 can be suppressed by NAC.

This is the first study to evaluate the molecular signals
involved in ROS-induced apoptosis by NTP in HNC. In
conclusion, our data show that NTP induces dose-dependent
cell apoptosis via ROS production. It may induce apoptosis of
HNC cells through a ROS/MAPK-mediated mitochondrial
pathway. These findings provide insight into the mechanism
underlying NTP-mediated apoptosis.

Materials and Methods

Cell lines and reagents. FaDu and SNU1041, SCC lines that originated
from human hypopharynx, SNU899, originating from human laryngeal SCC, and
HN9, established from an undifferentiated carcinoma of the parotid gland, were
used. FaDu was purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA), and SNU1041 and SNU899 cells were from the Korean Cell
Line Bank (KCLB, Seoul, Korea). HN9 was kindly provided by Dr. Sang-Yoon Kim
(Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Korea).
FaDu and HN9 cells were grown in minimum essential medium (MEM; Gibco,
Carlshad, CA, USA), whereas SNU899 and SNU1041 were maintained in RPMI
1640 medium (Gibco), supplemented with 10% fetal bovine serum and 100 U/ml
penicillin-streptomycin (Gibco). The cells were maintained at 37 °C with 5% CO,
under humidified conditions.!” NAC was purchased from Sigma Chemical Inc.
(St. Louis, MO, USA). SB203580 and SP600125 were purchased from Calbiochem
(San Diego, CA, USA).

Experimental system specifications and NTP treatment. We
designed and manufactured a spray-type atmospheric pressure NTP system with
a newly designed arc-free and antistatic plate to provide uniform NTP for biological
research applications (Figure 1a).> The plasma source is equipped with a pair of
electrodes that is made of AlLOz (high voltage and ground electrodes,
10 x 40mm? dimension, 2mm gap between electrodes) that is isolated from
direct contact with the plasma by a ceramic barrier. The specifications of the power
supply with this system are 2kV minimum, 13kV maximum, and mean frequency
20-30 kHz; these specifications can vary with the type and amount of gas used. In
this study, helium and oxygen were used as carrier gases because we previously
found that the addition of O, to an He plasma improved the efficiency of cancer
cell inhibition.>® The voltage and current of NTP were measured uniformly and
stably. The plasma density, in our study, using He + O, as a carrier gas was
calculated as ~ 10%/m® by optical emission spectroscopy, and the ROS density
was ~10'3/m°. The temperature of plasma gas was kept low at ~35°C even
after 10 min treatment at 13kV for NTP treatment.

For NTP treatment, we used 3ml of cell suspension with a concentration of
1% 10° cells/ml on the petridish (diameter ~60mm, 10060; SPL, Pochen-Si,
Gyeonggi-do, Korea). The depth of media was about 10mm, and we kept the
distance between the plasma device and the bottom of petridish ~3cm. The NTP
jet partially dispel a media, but not all.

Annexin V and propidium iodide staining. Cell death was detected
using an FITC Annexin V-PE apoptosis detection kit | according to the
manufacturer's protocol (BD Biosciences, Bedford, MA, USA), as described
previously.'® Briefly, cells were treated with gas-only or plasma jets for 2 or 4V for
1s and then incubated further for 24 h. The cells were harvested, washed with
PBS, and stained with Annexin V-FITC and propidium iodide (PI). The early and
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Figure 5 Effect of NTP on tumor growth and induction of apoptosis in vivo. (a) Sixteen mice were randomly divided into two groups and treated with NTP daily for 20's.
Tumor volumes were measured using a caliper two times per week. (b) Tumor volume and (c) weight were measured after they were killed. (d) Caspase-3, Nox-3, and TUNEL
assays were performed on the tissues excised from the mice that were on day 21. Scale bar denotes 200 um. *P<0.05 and **P<0.01

late apoptosis were quantified according to the manufacturer’s instructions.
Apoptosis was detected using a FACS Canto system (BD Biosciences), with the
excitation and emission settings of 488 and 530 nm, respectively.

TUNEL assay. DNA fragmentation was analyzed using an in situ cell death
detection kit (Roche Molecular Biochemicals, Basel, Switzerland), according to the
manufacturer's instructions. Digital images of apoptotic cells were selected
randomly under a light microscope.

Mitochondrial membrane potential assay. The MMP of intact cells
was measured by flow cytometry using the lipophilic cationic probe 5,5 V,6,6
V-tetrachloro-1,1 V 3,3 V-tetra ethylbenzimidazolcarbocyanine iodide (JC-1;
Molecular Probes, Eugene, OR, USA), as described previously.'® The culture
medium was briefly removed from the adherent FaDu cells, and the cells were
rinsed with PBS. Cell monolayers were incubated with MEM and 5 ug/ml JC-1 at
37 °C for 20 min. The cells were subsequently washed two times with cold PBS
and trypsinized. Cell pellets were then resuspended in 500 ul of PBS. The change

o
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in MMP was measured by flow cytometry (BD Biosciences) and fluorescence
microscopy (Zeiss, Jena, Germany) at 24 h after NTP.

Measurement of ROS production and localization of mitochondrial
superoxide. For measurement of ROS production and mitochondrial
superoxide, FaDu cells were treated with plasma for 24 h and then treated with
10 uM of 5-(and-6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate (carboxy-
H,DCFDA) dye (Molecular Probes) and MitoSOX Red (Molecular Probes), as
described previously.'® Fluorescence-stained cells (1 x 10%) were then analyzed
by flow cytometry. For localization of mitochondrial superoxide, cells on coverslips
were exposed to 2.5 uM MitoSOX Red for 10 min and then stained with 180 nM
MitoTracker Green for 20min at 37°C. Cells were then fixed in 4%
paraformaldehyde. Image processing was performed using the fluorescence
microscopy with a x 40 water objective

Western blot analysis. Cells were lysed in lysis buffer containing 150 mM
NaCl, 1.0% NP40, 0.5% sodium deoxycholate, 0.1% SDS, and 50mM Tris
(pH 8.0) and a protease inhibitor cocktail (Roche Molecular Biochemicals), as
described previously.2’ The proteins from FaDu cells were electrotransferred to
Immobilon-P membranes (Millipore Corporation, Bedford, MA, USA). Detection of
specific proteins was carried out with an ECL Western blotting kit (Bio-Rad,
Hercules, CA, USA) according to the manufacturer’s instructions.

In vivo studies. Sixteen male BALB/c nu/nu mice were purchased from Orient
Bio Co. Ltd (SungNam, Korea). FaDu cells (1 x 10) resuspended in PBS were
administered subcutaneously into the lower right flank of each mouse. Procedures
and handling were conducted in accordance with the Committee for Ethics in
Animal Experiments of the Ajou University School of Medicine. After 1 week, when
tumors reached ~ 150 mm in diameter, the mice were randomly divided into two
groups (eight mice per group) and daily treatment of a single 20 s NTP, 1 cm apart
from the upper margin of tumor was performed for 20 days. Tumors were
measured using a sliding caliper two times per week, and the volumes (mm?®) were
calculated as described previously."® On day 21, the tumors were excised from
the mice that were killed for caspase-3, Nox-3, and TUNEL assays.

Immunohistochemistry. Caspase-3 and Nox-3 immunohistochemistry was
performed on paraffin-embedded tumor sections collected on polylysine-coated
slides. Briefly, the specimens were incubated with antiactive caspase-3 (Cell
Signaling Technology, Beverly, MA, USA) and Nox-3 (Sigma-Aldrich, St. Louis,
MO, USA) mouse primary antibody, diluted 1:400 in blocking solution, overnight
at 4 °C. The sections were thoroughly rinsed in PBS and incubated for 2 h at room
temperature with a streptavidin-biotin—peroxidase complex (Vectastain ABC Kit;
Vector Laboratories, Burlingame, CA, USA). Immunolabeling was revealed after
three washes in PBS using 2,3'-diaminobenzidene as a substrate, and diluted
1:10 in the buffer, according to the manufacturer’s instructions (Roche Molecular
Biochemicals). Staining was completed by incubation with 3,3-diaminobenzidine
substrate chromogen, which results in a brown-colored precipitate at the antigen
site. Measurements of active caspase-3- or Nox-3-positive cells were performed
on 10-15 images per slide, captured by an independent observer who was blinded
to the experiment.

Statistical analysis. Statistical evaluation of the data was carried out using
the Student’s ttest.
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