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Perylene diimide (PDI) is a widely explored chromophore for constructing non-fullerene

acceptors (NFAs) for polymer solar cells (PSCs). The advantage of using PDI derivatives

lies in the readily availability of PDI unit which largely reduces the synthesis cost and

improves material stability. Indeed, the recent development of high performance NFAs

shed light on the feasibility of the commercialization, but the complex synthesis and

poor stability of the top performing NFAs cast a shadow on this bright future. Our

previous work has demonstrated a propeller-like structure with three PDIs lined to a

benzene center core with a C-C bond which prevented the PDIs to aggregate into

undesired large crystals. In this work, we designed and synthesized three new propeller-

like PDI derivatives with extra chalcogen linkages between the PDIs and the center core

to form all-fused rigid structures. These molecules showed more suitable absorption

range than that of their unfused counterparts when blend with donor polymer PTB7-Th.

Comparing between the molecules with extra oxygen, sulfur or selenium linkages, the

sulfur-based BTT-PDI outperformed the others due to its higher photon absorption and

charge transport abilities. This work demonstrated the great potential of PDI derivatives

for PSC applications and explored the influences of linkage type on the fused PDI

derivatives, which provided a useful tuning knob for molecular design of PDI-based NFAs

in the future.

Keywords: polymer solar cells, non-fullerene acceptor, perylene diimide, propeller-like, all fused molecular

structure

INTRODUCTION

Polymer solar cell (PSC) is widely considered as a viable alternative for solar energy harvesting
for its relatively low manufacturing cost and intrinsic characteristics such as light weight and
flexibility (Inganäs, 2018). The recent development of non-fullerenes acceptor (NFA) molecules
has promoted this technology by delivering largely increased power conversion efficiency (PCE)
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of the PSCs (Cheng et al., 2018; Hou et al., 2018; Yan et al., 2018;
Zhang G. et al., 2018; Xu et al., 2019a). Top performing devices
using NFAs have exceed 16% in PCE, which demonstrate a bright
future for this technology maturing into commercialization (Cui
et al., 2019; Sun et al., 2019; Xu et al., 2019b, 2020; Yan et al., 2019;
Yu et al., 2019).

On the other hand of the fast rising top PCEs lies a
reality that the used NFAs are often with complex and costly
synthesis routes. The high synthesis cost, which impaired
the full exploration of the low-cost advantage of PSCs, was
mainly raised because each of the component chromophores
needed to be bottom-up synthesized. Hence, the utilization of
readily available chromophores has drawn increasing attention
as the potential of commercialization emerges. PDI and its
derivatives are long explored candidates for NFAs (Duan
et al., 2017a; Hou et al., 2018; Yan et al., 2018; Zhang
G. et al., 2018; Zhang J. et al., 2018; Genene et al.,
2019), because the PDI chromophore is relatively inexpensive
and with high electron mobilities. However, the flat PDI
molecules are well-known for strong aggregation (Hartnett
et al., 2014). Large crystals of PDI derivatives delivered
outstanding performances for N-type transistors (Zhan et al.,
2011) but deviated the PSC nanostructure far from the optimized
phase separation scale, which limits the PCE (Zhan et al.,
2011).

Connecting a few PDI molecules was a method widely
explored to disturb the crystallization of PDI derivatives. In
comparison with connecting the PDIs heat to tail (Ye et al., 2015;
Liang et al., 2016; Eastham et al., 2017), a more widely adopted
method was to connect the PDIs at the bay positions. Connecting
two or more PDI side by side by either ridged (Zhong et al.,
2014, 2015, 2016; Eastham et al., 2017; Sisto et al., 2017; Wang
et al., 2020) or flexible (Yan et al., 2013; Zhang et al., 2013; Liu
et al., 2016; Meng et al., 2016a; Wu et al., 2018; Kim et al., 2019)
linkages at the bay positions have been demonstrated to optimize
the nanostructure of PSCs. These linked PDI molecules were
found to be twisted with chromophores not positioned in the
same plane, which was a cause for the reduction in crystallization
tendency. A propeller-like structure connecting three or four
PDI molecules with a center core through a flexible linkage have
also been demonstrated with success (Lin et al., 2014, 2016; Lee
et al., 2016; Duan et al., 2017b; Sun et al., 2017; Bian et al.,
2019; Tang et al., 2019; Weng et al., 2019; Zhang et al., 2019;
Ding et al., 2020; Wang et al., 2020). Strong steric hindrance
effect twisted the molecules sharply and large coplanar angles
where found between these PDIs and the center core. The 3D
structure largely reduced the aggregation tendency of PDIs and
thin films containing these molecules were often found to be
amorphous. Fusing the PDIs on the center core can reduce the
coplanar angle between them (Meng et al., 2016b; Wang et al.,
2019; Wu et al., 2019). Hence fused rigid propeller-like structure
were found with both improved intra- and intermolecular charge
transport (Meng et al., 2016b; Wang et al., 2019; Wu et al.,
2019).

Particularly, triperylene hexaimides (TPH) with PDI
molecules simply fused together by a benzene ring was a
successful example of fused propeller-like structure with three

PDI units delivering high PCE (Meng et al., 2016b). The small
center core unit dramatized the steric hindrance effect and the
molecule was found with an extremely twisted structure. In
this work, we elegantly separated the three PDIs of the TPH
with an additional planar five-membered heterocyclic ring
between the PDIs and the benzene ring at the center. This
design was in hope to further extend the conjugation length
and reduce the molecule torsion. The choice of the additional
five-membered heterocyclic ring was also investigated. Furan
(BTO-PDI), thiophene (BTT-PDI), or selenophene (BTSe-PDI)
were added between the PDIs and the center benzene ring by
introducing additional oxygen, sulfur, or selenium linkages to
the flexible linked Ph-PDI molecule we reported previously
(Duan et al., 2017b). The chemical structures and the synthesis
routes of these three NFAs are presented in Scheme 1. In fact,
chalcogens were often used to decorate the bay position of the
PDIs to influence their optoelectronic properties (Li et al., 2019,
2020). Differences in size and electron withdrawing ability of
the three chalcogen elements shall influence both the molecular
conformations, energetic structures, and device performances
of these PDIs (Heeney et al., 2007; Chen et al., 2010; Das and
Zade, 2010; Jahnke et al., 2013). The molecules developed in
this work shows more delocalized and deeper HOMO level than
TPH (Meng et al., 2016b) and Ph-DPI (Duan et al., 2017b). The
larger band gap caused by the deeper HOMO level formed an
improved complimentary absorption of these three new NFAs
incorporated with the donor polymer PBT7-Th comparing with
TPH and Ph-PDI. The highest performances were observed
with BTT-PDI for its high photon absorption and charge
transport mobility.

RESULTS AND DISCUSSIONS

Thermal Study
Thermal stabilities of the three NFAs were examined by
thermogravimetry analysis (TGA, Figure 1A). All the three
materials showed a single weight loss as a step function.
The temperatures reaching 5% weight loss were recorded
for BTO-PDI, BTT-PDI, and BTSe-PDI at 368, 376, and
381◦C, respectively, as the decomposition temperature. Hence,
all the three molecules could be considered thermally stable
for PSC application. Differential scanning calorimetry (DSC,
Figure 1B) scans of the three NFAs were also performed to
look for thermal transitions. However, no endo- or exothermal
transition was observed between 50 and 300◦C for any of
the three molecules during heating and cooling at rate of
10◦C/min suggesting no melting, phase transformation or other
secondary transitions in this temperature range for all the
three NFAs.

Optical Property
UV-vis absorption spectroscopy was conducted on the three
NFAs to characterize their photon absorption abilities as well
as band structures. Strong absorptions of the three molecules
in chloroform solution were found in 300–400 nm region and
420–550 nm region with distinguishable vibronic structures as
shown in Figure 2A. The maximum extinction coefficient of
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SCHEME 1 | Synthesis routes for the NFAs presented in this work.

FIGURE 1 | TGA (A) and DSC (B) thermograms of the three NFAs.

the BTO-PDI, BTT-PDI, and BTSe-PDI in 300–400 nm region
reached 5.8 × 104 M−1 cm−1(at 330 nm), 8.9 × 104 M−1 cm−1

(at 376 nm), 6.6 × 104 M−1 cm−1 (at 381 nm), respectively.
In the 420–550 nm region, maximum extinction coefficient

for BTO-PDI, BTT-PDI, and BTSe-PDI were found to be
6.5 × 104 M−1 cm−1 (at 490 nm), 6.3 × 104 M−1 cm−1

(at 516 nm), 4.2 × 104 M−1 cm−1 (at 518 nm), respectively.
BTT-PDI absorbed significantly more at the low wavelength
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region. However, BTO-PDI show slightly higher maximum
extinction coefficient than BTT-PDI in the high wavelength
region. Additionally, the maximum absorption edge was found
to be red shifted as the linking chalcogen getting heavier.
This agreed with the observation in most conjugated molecular
systems containing chalcogens that heavier chalcogen atoms
provides poorer electron withdrawing strength and larger
distortion of the five-membered ring both of which favor the
extension of conjugation (Heeney et al., 2007; Chen et al.,
2010; Das and Zade, 2010; Jahnke et al., 2013). Because the
absorption range of BTT-PDI extended to significantly (46 nm)
higher wavelengths than BTO-PDI, the BTT-PDI was found
with stronger absorption in the high wavelength region as
well. In a contrast, the absorption of BTSe-PDI was found
to be relatively low in both regions. Absorption spectra of
thin films containing neat NFAs and the donor polymer
were presented in Figure 2B. The vibronic structures of the
absorption spectra for the three molecules were all found to be
similar and slightly red shifts comparing with their solutions

suggesting that the aggregation of molecules in solid-state was
weak. The largest red shift of 15 nm was found for BTT-
PDI indicating its strongest inter-molecular aggregation and
interaction among the three (Brown et al., 2003; Spano and
Silva, 2014). The maximum absorption wavelength (λonset) of
the three molecules were used to extract the optical bandgap
(Eoptg ) using equation E

opt
g = 1,240/λonset. The E

opt
g for BTO-

PDI, BTT-PDI, and BTSe-PDI were found at 2.25, 2.20, 2.20 eV,
respectively. Compared with the TPH (Meng et al., 2016b) with
a simple benzene core or the unfused Ph-PDI (Duan et al.,
2017b), the absorption of these three NFAs overlaps less with
the absorption of the donor polymer PTB7-Th, suggesting an
improved complimentary absorption.

Electrochemical Study
Electrochemical analysis was carried out using cyclic
voltammetry (CV, Figure 3A) to measure the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) levels of the NFAs. The energy levels of these

FIGURE 2 | UV-vis absorption spectra of chloroform solution containing the acceptors (A) and thin films of the donor and acceptor materials used in this work (B,

normalized).

FIGURE 3 | (A) Cyclic voltammograms (CV) of the three NFAs, (B) energy diagrams of the three NFAs in comparison with the donor polymer PTB7-Th.
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TABLE 1 | Photonic and electrochemical properties of the acceptors.

Material Solution Film E
opt
g

(eV)

HOMO

(eV)

LUMO

(eV)

Ecv
g

(eV)

λmax (nm) ε (M−1 cm−1) λmax (nm)

BTO-PDI 490 6.5 × 104 348 2.25 −3.80 −6.18 2.38

BTT-PDI 376 8.9 × 104 387 2.20 −3.87 −6.17 2.30

BTSe-PDI 381 6.6 × 104 393 2.20 −3.98 −6.21 2.23

frontier orbitals were summarized in Table 1 and compared with
the donor polymer in Figure 3B. The energy levels of the frontier
orbitals (HOMO/LUMO) of BTO-PDI, BTT-PDI, and BTSe-PDI
were found at −6.18/−3.80, −6.17/−3.87 and, −6.21/−3.98 eV,
with extracted bandgap of 2.38, 2.30, and 2.23 eV, respectively.
Deeper LUMO levels were found for the molecules with heavier
chalcogens while the HOMO levels were hardly affected leading
to a clear reduction in bandgap agreeing with the red shifted
UV-vis absorption. A lower LUMO level of the acceptor molecule
can lead to reduced open circuit voltage (Voc) of the PSC devices
for molecules with heavier chalcogens linkage. The HOMO level
of these NFAs were significantly deeper than that of the TPH
(EHOMO = 6.02 eV) (Meng et al., 2016b) or the Ph-PDI (EHOMO

= 6.02 eV) (Duan et al., 2017b) suggesting that it was strongly
affected by the linkage type of the PDI units to the center core
while the LUMO level remained within proximity.

Molecular Simulations
To obtain further insight on the molecular conformation and
the frontier orbitals, molecular simulation based on density
function theory (DFT, B3LYP/6-31G(d) level) were carried
out for these three NFAs. The molecular conformations were
clearly less twisted comparing with the benzene core TPH
(Meng et al., 2016b) and unfused Ph-PDI (Duan et al., 2017b).
From the calculated frontier orbital distribution displayed in
Figure 4, the HOMO of all three NFAs were found to be largely
delocalized over more than one PDI unit while the LUMOs were
almost localized to one or two isolated PDI units. Hence, the
HOMO levels were more sensitive to the connection between
the PDI units and the center core, which explained the more
significant deeper HOMO levels of these NFAs than the TPH
and the Ph-PDI. The calculated frontier orbital energy levels
(HOMO/LUMO) for BTO-PDI, BTT-PDI, and BTSe-PDI were
−6.04/−3.29, −6.10/−3.36, −6.13/−3.39 eV, respectively. The
increasing trend in the HOMO levels and LUMO levels within an
approximate range agreed with optical and CV measurements.

Photovoltaic Performances
The PSC devices containing the three NFAs were fabricated in an
inverted architecture. The J-V characteristics of top performing
devices were presented in Figure 5A and the extracted figure-
of-merits were summarized in Table 2. The Voc of devices
containing BTO-PDI, BTT-PDI, and BTSe-PDI were found at
0.924, 0.910, and 0.876V, respectively. The decreasing of Voc as
the linking chalcogen getting heavier agreed with the decreasing

LUMO levels of the NFAs. In a contrast, higher Jsc and the fill
factors (FF) were found for devices containing BTT-PDI (Jsc
= 13.91 mA/cm2, FF = 62.22%). BTO-PDI delivered lower Jsc
(12.06 mA/cm2) and FF (60.74%) yielding an overall PCE of
6.77% which was lower than that of BTT-PDI (PCE = 7.87%).
All figure-of-merits of photovoltaic performances of devices
containing BTSe-PDI were lower than those of the other two
NFAs with Jsc = 11.35 mA/cm2, FF= 54.17% and PCE= 5.39%.

External quantum efficiencies (EQE) were measured for these
devices to obtain understanding on the Jsc differences. The EQE
responses of these PSC devices were displayed in Figure 5B. In
the 300–400 nm region, BTT-PDI generated high EQE up to 70%
while the other two materials delivered EQE under 50% within
this range. A sharp drop of EQE around 400 nm for BTO-PDI
was noticed, which agreed with its low extinction coefficient
at this wavelength. In a contrast, BTO-PDI delivered high
maximum EQE in the 420–550 nm region due to its relatively
high extinction coefficient in this range. Above 550 nm, the EQE
responses were mainly generated from the photons absorbed by
the donor polymer PTB7-Th. Interestingly, BTT-PDI provided
higher EQE response than the other two NFAs. Hence, there are
additional causes for the differences in Jsc other than the photon
absorption ability of the NFAs. The total integrated JEQE were
found to be similar to the Jsc of the devices.

Charge Carrier Mobilities
The charge carrier mobilities of the PTB7-Th/acceptor blends
were measured using space charge limited conductivity (SCLC,
Figure 6) method (Malliaras et al., 1998) to further understand
the origin for the differences in Jsc and FF. The SCLC
measurements were conducted in hole only and electron only
devices to obtain hole mobility (µh) and electron mobility (µe)
separately. The extracted charge carrier mobilities (µh/µe)of
PTB7-Th in blend with BTO-PDI, BTT-PDI, and BTSe-PDI were
found to be 4.51 × 10−4/2.79 × 10−4, 6.43 × 10−4/4.44 × 10−4,
and 3.98 × 10−4/2.49 × 10−4 cm2 V−1 s−1 with µh/µe ratio of
1.62, 1.45, and 1.60, respectively. The significantly higherµe from
the BTT-PDI agrees with its strongest red shift between its thin
film and solution. The higherµe and the relatively more balanced
µh/µe ratio could lead to a more efficient charge transferring
process and higher Jsc and FF (Andersson et al., 2011).

Crystallinity and Blend Morphology
The crystallinity of the NFAs and nano phase separations of
the corresponding blend films were characterized by using
X-ray diffraction (XRD) and atomic force microscopy (AFM)
techniques. The three XRD diffractograms of thin films
containing the PTB7-Th/acceptor blends in Figure 7 show
similar features with two diffraction peaks one around 5◦

and the other around 22.5◦ in 2θ . The two diffractions were
corresponding to a lamellar packing distance of 17.7 Å and
a π stacking distance of 3.9 Å from the PTB7-Th. Hence,
the PDI derivatives remained predominantly amorphous in the
thin films. The 3D fused propeller-like structure indeed largely
prevented the generation of large crystals of PDI which was a
source for the high performances. AFM images of thin films
containing PTB7-Th/acceptor blends all showed homogeneously
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FIGURE 4 | Calculated distribution and energy levels of the frontier orbitals of the three NFAs based on the density function theory (DFT).

distributed sub-micrometer features in both height and phase
images (Figure 8). The root mean square (RMS) of the height of
thin films containing BTO-PDI, BTT-PDI, and BTSe-PDI were

found to be 3.23, 2.65, and 4.55 nm, respectively. The smooth
films also excluded the existence of micrometer sized crystals
often found in conventional PDI based PSCs.
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FIGURE 5 | J-V characteristics (A) and EQE responses (B) of the top performing PSC devices, the acceptor used in each PSC was noted in the figures.

TABLE 2 | Photovoltaic performance of the PSC devices.

Active layer Va
oc (V) Jsc (mA/cm2) FF (%) PCE (%)

PTB7-Th:BTO-PDI 0.919 ± 0.006 (0.924) 11.88 ± 0.31 (12.06) 60.01 ± 0.95 (60.74) 6.55 ± 0.35 (6.77)

PTB7-Th:BTT-PDI 0.907 ± 0.005 (0.910) 13.79 ± 0.35 (13.91) 61.65 ± 0.76 (62.22) 7.71 ± 0.21 (7.87)

PTB7-Th:BTSe-PDI 0.873 ± 0.005 (0.876) 11.11 ± 0.32 (11.35) 52.97 ± 1.44 (54.17) 5.14 ± 0.36 (5.39)

aAveraged parameters were calculated from 10 devices.

FIGURE 6 | SCLC measurements for extracting hole (A) and electron (B) transport mobility for thin films containing PTB7-Th in blend with each of the three NF

ninety-nine noted in the figures).

EXPERIMENTAL

Materials
All chemicals used for synthesis and device fabrications were
purchased from Aladdin and Chron Chemicals without further
purification. Compound 1a, 1b, 1c, 2b, and 3 were synthesized
according to the previously reported procedures (Sonoda et al.,
2001; Nicolas et al., 2004; Tsuji et al., 2014; Viswanath et al., 2014).

Material Synthesis
Synthesis of Compound 2a
An n-butyllithium solution (1.62mL, 4.04 mmol, 2.50M in
hexane) was added into a solution of compound 1a (0.20 g, 1.01

mmol) in anhydrous tetrahydrofuran (30mL) at 0◦C and stirred
for 1 h at room temperature under argon protection. After that,
tributyltin chloride (1.90mL, 4.10 mmol) was added into the
mixture and stirred for 8 h at room temperature under argon
protection. The obtained mixture was poured into deionized
water, extracted by dichloromethane, dried with MgSO4 and
filtered. The solvent was removed via rotary evaporation. The
crude product was purified by column chromatography with
petroleum ether as eluent to get the compound 2a as a colorless
oil (0.97 g, 89.56%). 1H NMR (400 MHz, CDCl3, δ/ppm): 7.32
(s, 3H), 1.68–1.60 (m, 18H), 1.41–1.34 (m, 18H), 1.24–1.17
(m, 18H), 0.95–0.91 (m, 27H). 13C NMR (100 MHz, CDCl3,
δ/ppm): 137.10, 135.74, 132.72, 132.52, 130.77, 130.65, 130.54,
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FIGURE 7 | Strength ratio (A) and Watrefall (B) XRD diffractograms of thin films containing PTB7-Th in blend with each of the three NFAs (noted in the figures).

FIGURE 8 | AFM height (a–c) and phase (d–f) images of thin films containing PBT-7-Th in blend with BTO-PDI (a,d), BTT-PDI (b,e), and BTSe-PDI (c,f).

77.36, 77.24, 77.04, 76.72, 29.75, 29.15, 29.04, 28.94, 27.62, 27.33,
27.03, 13.72, 12.73, 12.65, 11.79, 10.96, 9.27. Anal. calcd for
(C48H84O3Sn3) (%): C, 54.12; H, 7.95. Found (%): C, 53.72;
H, 8.37.

Synthesis of Compound 2c
An n-butyllithium solution (6.40mL, 10.20 mmol, 2.50M in
hexane) was added into a solution of compound 1c (0.66 g, 1.70
mmol) in anhydrous tetrahydrofuran (50mL) at 0◦C and stirred
for 2 h at room temperature under argon protection. After that,
tributyltin chloride (3.0mL, 11.10 mmol) was added into the
mixture and stirred at room temperature for 12 h under argon

protection. The obtained mixture was poured into deionized
water, extracted by dichloromethane, dried with MgSO4 and
filtered. The solvent was removed via rotary evaporation.
The crude product was purified by column chromatography
with petroleum ether as eluent to get the compound 2c

as a light-yellow oil (1.89 g, 87.40%). 1H NMR (400 MHz,
CDCl3, δ/ppm): 7.86 (s, 3H), 1.69–1.60 (m, 18H), 1.39–1.32
(m, 18H), 1.25–1.17 (m, 18H), 0.95–0.89 (m, 27H). 13C NMR
(100 MHz, CDCl3, δ/ppm): 141.16, 141.10, 138.67, 138.17,
137.94, 137.72, 136.20, 136.11, 135.21, 130.61, 130.55, 77.41,
77.30, 77.09, 76.78, 29.80, 29.23, 29.04, 28.94, 28.60, 27.56,
27.34, 27.22, 13.94, 13.78, 12.65, 12.57, 11.29. Anal. calcd for
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(C48H84Se3Sn3) (%): C, 45.97; H, 6.75. Found (%): C, 45.78;
H, 6.81.

Synthesis of Compound 4a
A mixture of compound 3 (0.49 g, 0.68 mmol), compound 2a

(0.18 g, 0.17 mmol), degassed toluene (30mL), and Pd(PPh3)4
(4% mol) was stirred for 20 h at 100◦C under argon protection.
The obtained mixture was poured into deionized water,
extracted by dichloromethane, dried with MgSO4 and filtered.
The solvent was removed via rotary evaporation. The crude
product was purified by column chromatography with petroleum
ether/dichloromethane (1:3) as eluent to get the compound 4a as
a dark red solid (0.124 g, 34.42%). 1H NMR (400 MHz, CDCl3,
ppm): 8.89 (s, 3H), 8.71–8.65 (m, 12H), 8.34 (s, 3H), 8.03–8.01
(m, 3H), 7.49 (s, 3H), 5.23–5.11 (m, 6H), 2.27–2.17 (m, 12H),
1.84–1.82 (m, 12H), 1.33–1.25 (m, 48H), 0.86–0.75 (m, 36H). 13C
NMR (100 MHz, CDCl3, ppm): 164.67, 163.54, 155.79, 146.89,
137.14, 135.02, 134.14, 133.50, 131.06, 129.25, 129.18, 128.92,
128.12, 128.03, 127.32, 126.25, 126.00, 124.15, 123.74, 123.45,
123.02, 119.69,111.72, 103.76, 77.27, 77.26, 77.05, 76.74, 54.76,
54.65, 32.94, 29.10, 22.62, 22.57, 14.05, 13.98. Anal. calcd for
(C138H138N6O15) (%): C, 78.16; H, 6.56; N, 3.96. Found (%): C,
77.56; H, 6.96; N, 4.27.

Synthesis of Compound 4b
A mixture of compound 3 (0.5 g, 0.7 mmol), compound 2b

(0.19 g, 0.17 mmol), degassed toluene (30mL), and Pd(PPh3)4
(4% mol) was stirred for 20 h at 100◦C under argon protection.
The obtained mixture was poured into deionized water,
extracted by dichloromethane, dried with MgSO4 and filtered.
The solvent was removed via rotary evaporation. The crude
product was purified by column chromatography with petroleum
ether/dichloromethane (1:3) as eluent to get the compound 4b as
a dark red solid (0.14 g, 38.00%). 1H NMR (400 MHz, CDCl3,
δ/ppm): 8.85 (s, 3H), 8.74–8.67 (m, 12H), 8.57 (s, 3H), 8.45–8.39
(m, 3H), 7.94 (s, 3H), 5.20–5.16 (m, 6H), 2.34–2.22 (m, 12H),
1.90–1.78 (m, 12H), 1.39–1.16 (m, 48H), 0.94–0.79 (m, 36H). 13C
NMR (100 MHz, CDCl3, δ/ppm): 164.49, 164.15, 163.26, 152.14,
145.69, 144.36, 143.47, 138.35, 137.24, 135.46, 134.13, 132.35,
129.01, 125.89, 123.45, 122.11, 119.67, 117.89, 55.83, 45.37, 42.70,
33.14, 32.03, 31.73, 30.47, 29.36, 26.47, 22.91, 21.79, 14.45, 13.34.
Anal. calcd for (C138H138N6O12S3) (%): C, 76.42; H, 6.41; N, 3.87.
Found (%): C, 76.36, H, 6.62, N, 3.92.

Synthesis of Compound 4c
A mixture of compound 3 (0.5 g, 0.7 mmol), compound 2c

(0.21 g, 0.17 mmol) degassed toluene (30mL), and Pd(PPh3)4
(4% mol) was stirred for 20 h at 100◦C under argon protection.
The obtained mixture was poured into deionized water,
extracted by dichloromethane, dried with MgSO4 and filtered.
The solvent was removed via rotary evaporation. The crude
product was purified by column chromatography with petroleum
ether/dichloromethane (1:3) as eluent to get the compound 4c as
a red solid (0.14 g, 36.12%). 1HNMR (400 MHz, CDCl3, δ/ppm):
8.88–8.85 (m, 6H), 8.81–8.68 (m, 12H), 8.48 (s, 3H), 8.03 (s,
3H), 5.23–5.16 (m, 6H), 2.28–2.20 (m, 12H), 1.87–1.81 (m, 12H),
1.32–1.23 (m, 48H), 0.86–0.80 (m, 36H). 13C NMR (100 MHz,
CDCl3, δ/ppm): 164.66, 163.53, 148.99, 137.82, 136.36, 134.90,

134.15, 133.45, 131.63, 129.13, 128.04, 127.35, 123.78, 123.06,
77.37, 77.26, 77.06, 76.74, 54.79, 54.72, 32.08, 29.72, 29.11, 22.63,
22.38, 14.07, 14.05. Anal. calcd for (C138H138N6O12Se3) (%): C,
71.77; H, 6.02; N, 3.64. Found (%): C, 70.56; H, 6.93; N, 3.87.

Synthesis of BTO-PDI
A mixture of compound 4a (0.42 g, 0.20 mmol), degassed
toluene (30mL), anhydrous ferric chloride (1.62 g, 10 mmol),
and nitromethane (5mL) was stirred for 12 h at 100◦C under
argon protection. The obtained mixture was poured into
deionized water, extracted by dichloromethane for three times,
dried with MgSO4 and filtered. The solvent was removed via
rotary evaporation. The crude product was purified by column
chromatography with petroleum ether/dichloromethane (1:3) as
eluent to get the compound BTO-PDI as a red solid (0.38 g,
90.52%). 1H NMR (400 MHz, CDCl3, δ/ppm): 11.64 (s, 3H),
10.81 (s, 3H), 9.49–9.36 (m, 6H), 9.29–9.05 (m, 6H), 5.82–5.39
(m, 6H), 2.49–2.33 (m, 12H), 2.10–2.00 (m, 12H), 1.42–1.34
(m, 48H), 0.86–0.82 (m, 36H). 13C NMR (100 MHz, CDCl3,
δ/ppm): 166.38, 165.27, 163.93, 151.92, 150.81, 135.46, 133.90,
130.79, 129.68, 128.79, 127.45, 125.01, 123.67, 122.56, 120.56,
119.67, 109.21, 103.76, 55.38, 42.04, 32.69, 29.14, 23.35, 22.46,
14.01, 13.87. Anal. calcd for (C138H132N6O15) (%): C, 78.38;
H, 6.29; N, 3.97. Found (%): C, 77.86; H, 7.26; N, 4.12. MS
(MALDI-TOF-MS):[M]+: Calcd: 2113.97; Found: 2113.96.

Synthesis of BTT-PDT
A mixture of compound 4b (0.43 g, 0.20 mmol), degassed
toluene (30mL), anhydrous ferric chloride (1.62 g, 10mmol), and
nitromethane (5mL) was stirred for 12 h at 100◦C under argon
protection. The obtained mixture was poured into deionized
water, extracted by dichloromethane, dried with MgSO4 and
filtered. The solvent was removed via rotary evaporation. The
crude product was purified by column chromatography with
petroleum ether/dichloromethane (1:3) as eluent to get the
compound BTT-PDT as a red solid (0.39 g, 89.14%). 1H NMR
(400 MHz, CDCl3, δ/ppm): 10.95 (s, 3H), 9.61–9.56 (m, 6H),
9.48–9.47 (d, J = 7.9Hz, 3H), 9.32–9.28 (m, 3H), 9.15–9.13 (m,
3H), 5.37–5.25 (m, 6H), 2.41–2.37 (m, 12H), 2.29–2.27 (m, 12H),
1.34–1.25 (m, 48H), 0.84–0.81 (m, 36H). 13C NMR (100 MHz,
CDCl3, δ/ppm): 164.61, 164.13, 138.90, 137.98, 133.45, 131.51,
129.98, 129.13, 127.36, 127.11, 125.40, 125.27, 124.55, 124.06,
123.71, 123.21, 55.02, 54.67, 32.10, 29.71, 29.24, 29.07, 22.64,
22.49, 14.04, 14.01. Anal. calcd for (C138H132N6O12S3) (%): C,
76.64; H, 6.15; N, 3.89. Found (%): C, 75.56; H, 6.83; N, 4.37. MS
(MALDI-TOF-MS):[M]+: Calcd: 2161.90; Found: 2161.89.

Synthesis of BTSe-PDT
A mixture of compound 4c (0.46 g, 0.20 mmol), degassed
toluene (30mL), anhydrous ferric chloride (1.62 g, 10mmol), and
nitromethane (5mL) was stirred for 12 h at 100◦C under argon
protection. The obtained mixture was poured into deionized
water, extracted by dichloromethane, dried with MgSO4 and
filtered. The solvent was removed via rotary evaporation. The
crude product was purified by column chromatography with
petroleum ether/dichloromethane (1:3) as eluent to get the
compound BTSe-PDT as a red solid (0.41 g, 88.31%). 1H NMR
(400 MHz, CDCl3, δ/ppm): 10.67 (s, 3H), 9.56–9.50 (m, 6H),
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9.48–9.45 (d, 3H), 9.32–9.28 (m, 3H), 9.15–9.13 (m, 3H), 5.37–
5.25 (m, 6H), 2.41–2.31 (m, 12H), 2.12–1.73 (m, 12H), 1.89–1.25
(m, 48H), 0.90–0.86 (m, 36H). 13C NMR (100 MHz, CDCl3,
δ/ppm): 164.57, 163.97, 142.16, 141.15, 137.42, 135.34, 133.66,
133.11, 131.08, 130.07, 127.52, 127.16, 125.94, 124.72, 124.64,
124.09, 123.71, 122.84, 77.37, 77.25, 77.05, 76.73, 54.99, 32.16,
31.94, 29.72, 29.38, 29.14, 22.49, 22.48, 14.14, 14.03. Anal. calcd
for (C138H132N6O12Se3) (%): C, 71.96; H, 5.78; N, 3.65. Found
(%): C, 71.56; H, 5.83; N, 3.74. MS (MALDI-TOF-MS):[M]+:
Calcd: 2303.74; Found: 2303.73.

Materials Characterization and Methods
1H and 13C NMR spectra were recorded on a Bruker Avance-
400 spectrometer with d-chloroform (CDCl3) or d-dimethyl
sulfoxide [(CD3)2SO] as the solvents and tetramethylsilane
(TMS) as internal standard. Thermalgravimetric analysis (TGA)
and differential scanning calorimetry (DSC) analysis were carried
out using a TA TGA Q500 and a Netzsch DSC 200, respectively,
under N2 protective gas. The heating and cooling rates for
thermal analysis were kept at 10◦C/min. UV-vis absorption
spectra were collected using a Persee TU1901 spectrometer.
Cyclic voltammetry (CV) measurements were conducted using a
CHI660 potentiostat/galvanostat electrochemical workstation at
a scanning rate of 50mV s−1. A platinum wire was used as the
counter electrode and the reference electrode was Ag/AgCl with
its energy level calibrated by a ferrocene/ferrocenium (Fc/Fc+)
redox couple to be −4.34 eV. X-ray diffraction (XRD) was
measured with a Philips X’pert X-ray diffractometer. Atomic
force microscopy (AFM) images were recorded using a Bruker
Innova Atomic Force Microscope in tapping mode.

Device Fabrication and Measurements
PSC devices were fabricated with an inverted configuration
(ITO/ZnO/active layer/MoO3/Al). Thirty nanometer thick ZnO
layer was prepared with a Sol-Gel method on ITO glass
substrates. The active layer of thickness around 100 nm
containing PTB7-Th and the acceptormolecules (1:1.5 wt%) were
spin coated onto the substrate from a chlorobenzene solution
with total concentration of 25 mg/mL and 1% 1,8-diiodooctane
as additive. MoO3 (10 nm) and Al (80 nm) layers were deposited
onto the active layer via thermal evaporation. The device area was
exactly fixed to 4.00 mm2

The I-V characteristics of the PSC devices were obtained
by placing the PSCs under an AM 1.5G (100 mW cm−2)
illumination created by a solar simulator (XES-70S1, SAN-EI,
calibrated with a Konica Minolta AK-200 standard Si solar cell)
and measuring using a Keithley 2400 Source Measure Unit.

The EQE curves were measured with a Newport QE Test
Model during illumination with monochromatic light from a
xenon lamp. The fabrication of PSC devices for I-V and EQE
characteristic as well as the I-V measurements were conducted
in a high purity argon filled glove box (<0.1 ppm O2 and H2O).
EQE characteristics were performed in air on devices shortly
removed from the glove box.

Charge Transport Characterization
The charge carrier mobilities presented in this work were
obtained using the space-charge limited conductivity (SCLC)

method. Hole only (ITO/PEDOT:PSS/active layer/Mo3O/Au)
and electron only (Al/active layer/Al) devices were fabricated
similar to the PSC devices. The dark J-V current was collected
by a Keithley 2400 Source Measure Unit and fitted to equation:
J = 9ε0εrµV2/8L3, where J is the current density, L is
the active layer thickness, µ is the charge transport mobility,
εr and ε0 are the relative and free space (8.85 × 10−12 F
m−1) permittivity, V is the internal voltage in device deduced
from: V = Vappl − Vbi − Va, where Vappl is the
applied voltage, Vbi is the built-in voltage and Va is the
voltage drop.

CONCLUSIONS

In this work, we designed and synthesized three fused propeller-
like PDI derivatives namely BTO-PDI, BTT-PDI, and BTSe-
PDI by introduce an additional chalcogen (oxygen, sulfur, and
selenium, respectively) linkage to our previously reported Ph-
PDI molecule to form rigid fused linkages. The fused PDI
derivatives show flatter molecular conformation and more
delocalized HOMO with deeper HOMO energy levels. The
larger band gaps provide blue shifted absorption which was
beneficial for the complimentary absorption incorporated with
the donor polymer PTB7-Th. The propeller-like structure largely
prevented the formation of large PDI crystals. In comparison
between the three NFAs introduced in this work, heavier
chalcogen linkage reduced the LOMO energy level and the
Voc of the devices. Highest PSC performances was found
with the BTT-PDI which combines high absorption with high
electron transport mobility. Our work demonstrated the great
potential of PDI derivatives for PSC application and explored
the influences of linkage type on the fused PDI derivatives
which provide a useful tuning knob for molecular design
of NFAs.
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