
Review Article
Dietary Phytochemicals: Natural Swords Combating
Inflammation and Oxidation-Mediated Degenerative Diseases

Md. Asiful Islam,1 Fahmida Alam,1 Md. Solayman,2 Md. Ibrahim Khalil,1,2

Mohammad Amjad Kamal,3,4,5 and Siew Hua Gan1

1Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian,
Kelantan, Malaysia
2Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
3King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, Saudi Arabia
4Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
5Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia

Correspondence should be addressed to Md. Asiful Islam; ayoncx70@yahoo.com and Siew Hua Gan; shgan@usm.my

Received 13 May 2016; Revised 8 July 2016; Accepted 22 August 2016

Academic Editor: Yolanda de Pablo

Copyright © 2016 Md. Asiful Islam et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of
life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic
causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD).
Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe.
Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products
such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and
inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds
have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and
inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease
involving the bone, metabolism, and the heart are described.

1. Introduction

Degenerative diseases occur due to the continuous deteriora-
tion of cells and tissues that ultimately affects major organs.
Both oxidative stress and inflammation are considered major
role players in the pathogenesis of chronic degenerative dis-
eases including cardiovascular diseases (CVDs) [1], diabetes
mellitus (DM) [2], and rheumatoid arthritis (RA) [3]. All
chronic degenerative diseases exert an immense impact on
the global health economy [4–6]. Currently, although several
synthetic regimens are used to attenuate oxidative stress and
inflammation-mediated degenerative diseases, none are free
from side effects when utilized in the treatment of CVDs [7],
DM [8], or RA [9].

Over the last two decades, tremendous experimental
advancements have been made in the use of natural products
against different types of degenerative diseases targeting
oxidative stress and inflammation [10]. Many studies have
also demonstrated that phytochemicals are important ther-
apeutic agents targeting oxidative stress and inflammation,
which are the major culprits in the pathogenesis of chronic
degenerative diseases [11, 12]. Some of these phytochemicals
are good candidates for future drug discovery and develop-
ment to treat degenerative diseases [13–16].

In this review, we discussed the pathogenesis of CVDs,
DM, and RA, which involve the heart, metabolism and
the joints, respectively, and we discussed the use of phyto-
chemicals (which are synthesized by fruits, vegetables, and
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spices) in attenuating the oxidative stress and inflammation
associated with these chronic diseases.

2. Methodology

ThePubMed database was systematically searched to retrieve
evidence of potential dietary natural products (fruits, vegeta-
bles, and spices) and their active substances (antioxidants,
polyphenols, carotenoids, anthocyanins, alkaloids, glyco-
sides, saponins, and terpenes) for use against CVDs, DM,
and RA by attenuating oxidative stress and inflammation (see
Appendix). To retrieve clinical and experimental evidences of
dietary phytochemicals associated with CVDs, DM, and RA,
only papers published in English between January 2000 and
March 2016 were considered.

3. Cardiovascular Diseases

CVDs are a group of diseases associated with complications
of the heart and blood vessels; most are associated with
coronary heart disease. Major risk factors of CVDs include
hypertension (HTN), hypercholesterolemia, diabetes, obe-
sity, inflammation, smoking, consumption of alcohol, lack of
exercise, and a familial history of heart diseases [17, 18].

CVD is believed to be themajor contributor to worldwide
mortality and morbidity in both developed and developing
countries. In 2012, it was estimated that 17.5 million people
died from CVDs, which represents 31% of all global deaths.
Among these deaths, it was estimated that 7.4 million were
due to coronary heart disease. It has also been predicted that,
by 2030, over 28 million people will die from CVDs [19].
Based on theAmericanHeart Association Report (2016), 85.6
million American adults were afflicted with CVDs, and this
number is anticipated to rise and add a greater economic
burden to the overall health care system [4].

3.1. Pathogenesis. Thepathogenesis of CVDs ismultifactorial,
resulting from the interplay of genetic and environmental
factors. However, atherosclerosis, which occurs due to the
accumulation of atherosclerotic plaques within the walls of
the arteries (Figure 1), is believed to be the major precursor
of CVDs.

Plaque formation is initiated by endothelial damage and is
followed by the adherence of circulating monocytes and sub-
sequent exposure to homocysteine, inflammation, increased
platelet aggregation, and higher levels of oxidized low density
lipoprotein (LDL-ox) and reactive oxygen species (ROS)
[20]. In addition, increased serum lipids such as triglyc-
erides (TG) and cholesterol (C), increased plasma fibrinogen
and coagulation factors, abnormal glucose metabolism, and
hypertension play crucial roles in the pathogenesis of CVDs
[21]. Adherent monocytes differentiate into macrophages,
which ingest LDL-ox and transform into large foam cells,
appearing as a fatty streak.

Additionally, although intact endothelium can prevent
smooth muscle proliferation by releasing nitric oxide (NO)
when the endothelium is damaged, smooth muscle prolif-
eration and migration are observed from the tunica media
into the tunica intima in response to damaged endothelial

cell-secreted cytokines.This activity induces the formation of
a fibrous capsule covering the fatty streak. Due to calcification
in the smooth muscle cells and on the unstable fatty streak,
plaque hardening occurs, which further blocks the coronary
arteries [22, 23].

Further, genetic alterations can adversely promote the
development of CVDs. Some examples include mutations or
allelic variations of the renin-angiotensin pathway, endothe-
lial NO synthase, coagulation factors, and fibrinogen, which
can lead to the development of atherosclerosis [24]. In addi-
tion, diets that are high in saturated fat, trans-fats, and salt;
diets that are low in fruits, vegetables, and fish; smoking; the
consumption of tobacco; and insufficient physical activity are
cardiovascular risk factors [25, 26]. High density lipoprotein
(HDL) levels are negatively correlated with CVDs; there-
fore, the consumption of fiber-rich diets, including fruits
and vegetables, the control of high blood pressure, proper
regulation of lipid and lipoprotein metabolism, decreased
platelet aggregation, and increased antioxidant status should
limit the progress of CVDs.

3.2. The Role of Dietary Phytochemicals. Although there are
several synthetic regimens available for treating CVDs, none
are free of side effects and limitations (Table 1). Over the last
two decades, researchers confirmed that the consumption of
regular fresh fruits, vegetables, and spices has the potential to
lower CVD risks by attenuating oxidative stress and inflam-
matory mediators. Here, we discuss some of the potential
experimental and clinical evidence (Table 2) in favor of
treating CVDs by supplementation with fruits, vegetables,
and spices.

3.2.1. Fruits. A population-based prospective cohort study
from nine areas in Japan (77,891 male and female subjects
aged 45–74 years) suggested that fruit consumption protects
against the risk of CVDs [27]. A meta-analysis by Wang
et al. [28] provided evidence that a higher consumption of
fruits and vegetables correlated with a lower risk of all-cause
mortality, predominantly cardiovascular mortality. A cross-
sectional study on Hispanic (𝑛 = 445) and non-Hispanic
white elders (𝑛 = 154) found that the high-frequency
consumption of fruits and vegetables lowered plasma C-
reactive protein (CRP) and homocysteine concentrations,
consequently reducing inflammation, which is considered
the major risk factor of CVDs [29]. Recently (2016), a study
on a Chinese population (512,891 adults ranging from 30 to
79 years old) from 10 diverse localities also revealed that a
high level of fruit consumptionwas associatedwith decreased
HTN and blood glucose levels, which significantly decrease
the risks of CVDs [30]. Another study by van’t Veer et al. [31]
on a Dutch population reported that cardiovascular deaths
could be reduced by 16% (approximately 8,000 deaths per
year), ranging from 6% to 22%, through high intake of fruits
and vegetables. A number of randomized controlled trials
have also been conducted in previous years (Table 2), where
fruits, vegetables, and spices have proven beneficial for CVD
management.

Apple is one of the most commonly consumed fruits, and
its polyphenolic extract has a significant effect on decreasing
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Figure 1: Inflammation and oxidative stress-mediated pathogenesis of (a) cardiovascular disease, (b) diabetes mellitus, and (c) rheumatoid
arthritis.

the serum total-C and LDL-C levels in healthy individuals
with relatively high body mass index (BMI), which conse-
quently limits CVD risk [32]. Another study showed that the
consumption of banana decreased the oxidative modification
of LDL, plasma lipids, and lipoproteins and thus ultimately
aids in protection from atherogenesis due to its antioxi-
dant properties [33]. In addition, berry fruits (blueberries,
strawberries, and cranberries) can also reduce cardiovascular
risk factors such as lipid peroxidation, inflammation, and
the control of HTN due to the presence of high levels of
anthocyanins and ellagitannins in their skin and flesh [34–
36]. In addition, for being good sources of polyphenols,
berries are rich in micronutrients such as folate, 𝛼-carotene,
𝛽-carotene, potassium, vitamin C, and vitamin E, which
exhibit noteworthy antioxidant activities [37].

Several studies have shown that citrus fruits such as
mandarins, lemons, oranges, and grapefruits contain high

quantities of flavanones (e.g., naringin and hesperidin) that
improve significant vascular functions and the lipid profile
in patients with coronary artery diseases [38–40]. The deli-
cious pomegranate fruit and its juice and peel extracts have
antihypertensive, antiatherosclerotic, antioxidant, and anti-
inflammatory effects due to the presence of polyphenolic
compounds including anthocyanins, catechins, and tannins,
which contribute to the attenuation of CVD risk factors [41,
42].

The consumption of polyphenol-rich peach and plum
juice showed preventive effects against risk factors for car-
diometabolic disorders. This protection was largely achieved
by decreasing the expression of plasma proatherogenic
and proinflammatory molecules, intercellular cell adhesion
molecule-1 (ICAM-1), monocyte chemotactic protein-1, and
nuclear factor kappa B (NF-𝜅B) and by decreasing foam
cell adherence to aortic arches. In addition, the ingestion
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of peach and plum juice reduced angiotensin II levels in
plasma and reduced the expression of its receptor Agtr1
in cardiac tissues, thus demonstrating the ability of peach
and plum polyphenols to act as peroxisome proliferator-
activated receptor-𝛾 (PPAR𝛾) agonists [43]. An in vivo and
ex vivo experiment by Hong et al. demonstrated that water-
melon improved lipid profiles and antioxidant capacity and
decreased inflammation, thus altering gene expression for
lipid metabolism and consequently reducing the risk factors
for CVDs [44].

3.2.2. Vegetables. A group of widely consumed flavonoids
present in vegetables exhibit some protective activities against
CVD progress [45]. Sulfur-containing organic compounds
(organosulfur) from garlic (Allium sativum), onion (Allium
cepa), and cruciferous vegetables such as broccoli, cauli-
flower, cabbage, and Brussels sprouts showed cardiopro-
tective effects mediated by their antioxidant and anti-in-
flammatory properties [46]. Moreover, experimental stud-
ies on garlic suggested the blocking of platelet aggrega-
tion through ADP and platelet-activating factor (PAF)
inhibition [47]. A key flavonoid from onion, quercetin
(3,3󸀠,4󸀠,5,7-pentahydroxyflavone), exerts antiatherosclerotic
effects, and its metabolites, which showed antioxidant and
anti-inflammatory activities, accumulate in the aorta tissue
[48].

Upaganlawar et al. [69] showed that lycopene, a bright
red carotene and carotenoid pigment in tomato, considerably
reducedmyocardial infarction (MI) in isoproterenol-induced
rats because of its antioxidant activities. A recent study (2015)
also demonstrated that the supplementation of tomato with
corn oil improved diastolic function, changed cardiacmiRNA
expression, and attenuated both lipid hydroperoxidation and
oxidative stress [70]. Similarly, tomato-based products such
as tomatoes, tomato sauce, and tomato juice had cardiovas-
cular advantages due to the presence of dietary lycopene [71].

3.2.3. Spices. Several studies have observed that the widely
used spice ginger (Zingiber officinale) helps in the treat-
ment of CVDs. Ginger exhibits anti-inflammatory as well
as antithrombotic properties by inhibiting the production
of NO, inflammatory cytokines, cyclooxygenase (COX), and
lipoxygenase (LOX), and it shows no or very few side effects,
unlike nonsteroidal anti-inflammatory drugs (NSAIDs) [72,
73]. Ginger also displays antioxidant [74], antiplatelet [75],
positive inotropic [76], hypotensive [77], and hypoglycemic
and hypolipidemic effects [78] in in vitro and in vivo studies
and human clinical trials. One of the most regularly con-
sumed spices, black pepper, and its active principle (piperine)
showed significant decreases in the levels of C, free fatty
acids, phospholipids, and triglycerides and an increase in the
concentration of high density lipoprotein cholesterol (HDL-
C), thus reducing the risk of atherosclerosis [79, 80]. Another
spice called saffron (Crocus sativus L.) and its essential oil-like
constituent safranal show remarkable cardioprotective effects
in isoproterenol-induced MI Wistar rats by maintaining
the redox status of the cell [81, 82]. Cinnamon is another
spice that is abundantly found in Bangladesh, India, China,
Sri Lanka, Egypt, and Australia; the leaves and barks of

cinnamon are used widely in food or to yield essential oils,
and they show cardioprotective effects [83].

3.2.4. Miscellaneous. A meta-analysis reported that the con-
sumption of 1 cup/day of green tea could decrease by 10%
the chance of developing coronary artery disease due to
the presence of polyphenols such as catechins, epicatechin
3-gallate (ECG), and epigallocatechin (EGC) and thereby
prevent CVD; however, no significant relationship was found
between black tea polyphenols and cardioprotective effects
[84].

Chocolate, cocoa, and cocoa products provide a sub-
stantial quantity of dietary polyphenols. There is numerous
evidence from in vivo and ex vivo experiments as well
as clinical studies showing the roles of these products in
protecting against the risk factors of CVDs. A cross-sectional
study by Buijsse et al. [85] showed that the consumption of
cocoa-containing foods was inversely related to the blood
pressure and 15-year cardiovascular mortality. Several meta-
analyses have also established that the consumption of cocoa
could modulate multiple cardiovascular risk factors such as
flow-mediated vascular dilatation, activation of platelets [86],
insulin resistance [87], and the blood C level [88].

Because CVD is a multifactorial disorder, the consump-
tion of fruits, vegetables, spices, green tea, red wine, or other
polyphenol-rich phytochemicals is expected to decrease the
risk of CVD via multiple mechanisms to ensure a healthy life.

4. Diabetes Mellitus

DM is a group of metabolic diseases that are caused by
overnutrition (mainly high-fat diet) and a lack of physical
activity [89]. In healthy individuals, active pancreatic 𝛽-cells
secrete insulin to reduce glucose levels in insulin-sensitive
liver, muscle, and adipose tissues [90]. In type 1 diabetes
mellitus (T1DM), defective insulin secretion occurs due to
dysfunctional pancreatic 𝛽-cells or a decrease in 𝛽-cell mass
over time, whereas in type 2 diabetes mellitus (T2DM),
insulin-stimulated glucose uptake in hepatic and adipose
tissues is reduced due to insulin resistance [91]. Over time,
insulin resistance tends to increase with age. In contrast,
𝛽-cells that initially produce insulin in sufficient quantities
eventually produce insufficient quantities, thereby leading to
the onset and progression of diabetes [92].

Worldwide, DM is themost common endocrine disorder;
the reported prevalence in 2013was 382million people, which
is anticipated to increase to as many as 592 million by 2035
[93]. The majority (80%) of DM patients are from low and
middle income countries, where the incidence of DM is
expected to increase in the next 22 years [93].

4.1. Pathogenesis. Chronic low-grade inflammation and the
activation of the innate immune system are considered to be
closely involved in the pathogenesis of DM [94]. Excessive
levels of nutrients (glucose and free fatty acids) initiate
cellular stress in the pancreatic islets and insulin-sensitive
tissues including adipose tissue, leading to the activation
of c-Jun N-terminal kinase (JNK) and NF-𝜅B (Figure 1)
[95]. The inflammatory signaling pathways regulate protein
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phosphorylation and cellular transcriptional events, thereby
increasing the adipocyte production of proinflammatory
cytokines, including tumor necrosis factor alpha (TNF-𝛼),
interleukin (IL) 6, IL-1𝛽, leptin, resistin, and chemokines
such as MCP-1, CC-chemokine ligand 2 (CCL2), CCL3,
and CXC-chemokine ligand 8. As a result, immune cells
such as monocytes are recruited to the adipose tissues, thus
contributing to tissue inflammation. The monocytes that
differentiate into macrophages produce several inflamma-
tory cytokines, further promoting local inflammation. In
addition, the release of cytokines and chemokines from the
adipose tissues into the circulation promotes inflammation
in other tissues including the islets [95].

Both JNK and IKK𝛽/NF-𝜅B play important roles in
inflammation-induced insulin resistance. JNK is a stress
kinase that normally phosphorylates the c-Jun component of
the AP-1 transcription factor and promotes insulin resistance
through the phosphorylation of serine residues in insulin
receptor substrate 1 (IRS-1) [96]. Insulin receptor signaling
that normally occurs through a tyrosine kinase cascade
[90] is inhibited by counter-regulatory serine/threonine
phosphorylation [97]. IKK𝛽 is highly selective towards its
physiological substrates, the I𝜅B protein inhibitors of NF-
𝜅B. Phosphorylation by IKK𝛽 targets I𝜅B𝛼 for proteasomal
degradation, which liberates NF-𝜅B for translocation into
the nucleus, where it promotes the expression of numerous
target genes whose products induce insulin resistance. IKK𝛽
causes insulin resistance through the transcriptional activa-
tion of NF-𝜅B. Therefore, anti-inflammatory therapies have
the potential to decrease gene expression and improve insulin
resistance.

Increasing adiposity is reported to increase inflammatory
gene expression in the liver [98], which further increases
the production of cytokines and chemokines. Immune cells
including monocytes and macrophages are recruited and/or
activated, which leads to local insulin resistance. Alterna-
tively, the portal delivery of abdominal fat-derived cytokines
and lipids contributes to hepatic inflammation.However, NF-
𝜅B is activated in hepatocytes, causing the overproduction
of cytokines including IL-6, TNF-𝛼, and IL-1𝛽 in fatty
liver. The proinflammatory cytokines then contribute to the
development of insulin resistance in skeletalmuscle and other
tissues [95].

Oxidative stress contributes to DM by modifying the
enzyme systems, impairing glutathionemetabolism and lipid
peroxidation and reducing vitamin C levels [99]. In fact, a
close relationship exists between hyperglycemia and oxida-
tive stress inDM.Hyperglycemia fuels glucose autooxidation,
NADPH oxidase activity, oxidative phosphorylation, protein
glycation, and the polyol pathway, which leads to ROS
generation and oxidative stress (Figure 1) [100]. ROS attack
the healthy cells by damaging the functional and structural
integrity of the cells, which consequently leads to many
pathophysiological conditions [101].

4.2. The Role of Dietary Phytochemicals. Several groups of
synthetic drugs and insulin possess antioxidative and anti-
inflammatory potential that can be used in the treatment
of DM. Unfortunately, none are free from adverse effects

(Table 1). Therefore, the quest for alternative and safer treat-
ment regimens for DM is ongoing. In this review, successful
clinical trials based on intervention with fruits, vegetables,
and spices are considered (Table 2), and in vivo and in vitro
experiments using the phytochemicals from these dietary
sources that have exhibited potential to attenuate oxidative
stress and inflammation for DM treatment are discussed.

4.2.1. Fruits. Numerous in vivo and in vitro experiments
with fruits, fruit products, and fruit-derived compounds
have been extensively conducted for DM management. The
oral administration of naringin (4󸀠,5,7-trihydroxyflavonone-
7-rhamnoglucoside) at 50mg/kg/day is reported to reduce
oxidative stress and increase fasting plasma insulin in
streptozotocin- (STZ-) induced diabetic Sprague Dawley
rats. Naringin is considered to be the main flavonoid in
grapefruit juice, and it is thought to ameliorate oxidative
stress through its antioxidant effects, thereby improving ATP
synthesis in pancreatic 𝛽-cell mitochondria and ameliorating
the subsequent insulin secretion by 𝛽-cells [102]. Another
study also investigated the effect of naringin treatment (25,
50, and 100mg/kg/day) on diabetic Wistar albino male
rats for 28 days. Naringin significantly ameliorated 𝛽-cell
dysfunction, insulin resistance, and hyperglycemia, reduced
TNF-𝛼, IL-6, CRP, and antioxidant enzyme activities and
NF-𝜅B expression, and increased adiponectin and PPAR𝛾
expression. Additionally, naringin effectively rescued kidney
cells, 𝛽-cells, and liver cells from further pathological modi-
fications and oxidative damage [103].

Resveratrol, a naturally occurring polyphenol found in
grapes and red wine, has recently been shown to exert potent
antidiabetic, antioxidative, and anti-inflammatory activities.
In the liver and spleen of STZ-induced male Long-Evans rats
(type 1 diabetic animal models), resveratrol treatment (0.1
or 1.0mg/kg/day) for 7 days significantly reduced oxidative
stress (including superoxide anion content, protein carbonyl
level, and manganese-superoxide dismutase expression) in
hepatic and splenic tissues, and it reduced hepatic inflamma-
tion (NF-𝜅B and IL-1𝛽) and decreased the TNF-𝛼 and IL-6
levels in diabetic spleen [104].

Phlorizin (PZ) is a predominant phenolic compound that
is found in apples. Preexposure to docosahexaenoic acid ester
of PZ (PZ-DHA) in inflammation-induced macrophages
[stimulated by lipopolysaccharide (LPS)] was effective in
reducing the TNF-𝛼, IL-6, and COX-2 protein levels com-
pared with DHA. Both PZ-DHA ester and DHA have the
potential to inhibit NF-𝜅B activation. Therefore, PZ-DHA
ester has the potential to be used in T2DM-associated
inflammation [105].

Diabetes mellitus is associated with the reduction of
glutathione levels, thus indicating the critical role of oxidative
stress in its pathogenesis. In Ins-1E pancreatic 𝛽-cells, pre-
treatment with the flavonoid epicatechin (present in green
tea, grapes, and cocoa) prevented tert-butyl hydroperoxide-
induced cell damage, ROS, and p-JNK expression. In addi-
tion, it restored insulin secretion which indicates the protec-
tive potentiality of epicatechin against oxidative stress on 𝛽-
cells [106].
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Pomegranate (Punica granatum) fruit contains flavonoids
such as flavonols, anthocyanins, ellagitannins, gallotannins,
and proanthocyanidins. Pomegranate has been reported to
provide a beneficial effect in T2DM by decreasing the lipid
peroxidation and oxidative stress by increasing some of
the enzymes’ antioxidant activity, decreasing the ROS, and
preventing or activating PPAR𝛾 and NF-𝜅B [107].

Anthocyanins can alter tissue PPAR activity, which fur-
ther affectsmetabolism and inflammation. In the Zucker fatty
rat model of obesity and metabolic syndrome, the effect of
whole tart cherry powder (prepared from anthocyanin-rich
tart cherries) was evaluated after 90 days’ treatment. The
intake of tart cherry reduced retroperitoneal IL-6 and TNF-𝛼
mRNAexpression,NF-𝜅B activity, and plasma IL-6 andTNF-
𝛼 levels, and it increased retroperitoneal PPAR𝛼 and PPAR𝛾
mRNA expression. As a whole, tart cherry consumption
reduced both systemic and local inflammation andmetabolic
syndrome, which may reduce the risk of T2DM development
[108].

Macrophage infiltration in adipose tissue due to increased
adiposity can lead to T2DM. In an in vitro model of
inflammation in which the pathologic relationships between
adipocytes and macrophages were mimicked, anthocyanin-
enriched fractions fromblackberry-blueberry beverageswere
found to inhibit the secretion of NO and TNF-𝛼 and the
phosphorylation of NF-𝜅B p65 in LPS-induced macrophages
[109].

T2DM is associated with chronic, low-grade, systemic
inflammation accompanied by an increased production of
adipokines or cytokines by obese adipose tissue. The treat-
ment of diabetic db/db mice with grapefruit (0.5 g/kg) for six
weeks produced antihyperglycemic effects that were accom-
panied by the reducedmRNA expression of proinflammatory
genes such as COX-2,monocyte chemotactic protein-1, TNF-
𝛼, and NF-𝜅B in the liver and epididymal adipose tissue.
Hypermethylation at the CpG3 site of TNF𝛼 in adipose tissue
was also found, which may contribute to a reduction of the
inflammation associated with T2DM [110].

In pancreas, liver, and adipose tissue, endoplasmic reticu-
lum (ER) stress is an early event linked to T2DM pathogene-
sis. In the skeletal muscle of diabetic rats, 500mg/kg of grape
seed proanthocyanidin extract (GSPE) administration for 16
weeks decreased the plasma glucose levels and insulin resis-
tance, restored the normal activities of antioxidant enzymes
and ATPases, and partially alleviated severe ER stress, which
suggests that GSPE could be a useful treatment strategy
for T2DM [111]. A similar study on GSPE using human
adipocytes (SGBS) and macrophage-like (THP-1) cells found
reduced cytokine (IL-6 and MCP-1) gene expression after an
inflammatory stimulus and enhanced the production of the
anti-inflammatory adipokines adiponectin (APM1) and LEP,
which may prevent the low-grade inflammation of T2DM
[112].

Milk fat globule epidermal growth factor-8 (MFG-E8)
is highly involved in the inflammatory response. In dia-
betic db/db mice, the administration of grape seed pro-
cyanidin B2 (a natural complex of polyphenol polymers)
provided anti-inflammatory protection in pancreatic tissues
by downregulating MFG-E8 and attenuating the levels of the

proinflammatory cytokines IL-1𝛽 and NLRP3 [113]. Because
the dysfunction of pancreatic islets is one of the mainstays in
T2DMpathogenesis, protecting the pancreas from inflamma-
tion may lead to potential therapeutic approaches.

4.2.2. Vegetables. There is abundant in vitro and in vivo
evidence that vegetables have anti-inflammatory and antiox-
idant potential for DM management. In diabetic Wistar
rats, the immunomodulatory effects of a mycelial sub-
merged culture and the broth of Grifola frondosa mush-
rooms were explored on splenocytes and peripheral blood
cells. Two weeks of intragastric administration of fermented
mycelia, broth, or their combination (1 g/kg/day) significantly
decreased the 2-hour postprandial blood glucose level, the
production of T-leukocyte-derived interferon gamma (IFN-
𝛾), monocyte-derived IL-4 and IL-6, and T-splenocyte-
derived IL-4, and this treatment significantly enhanced
macrophage-derived TNF-𝛼 production [114].

In STZ-induced diabetic rats, the administration of
fermented carrot juice by Lactobacillus plantarum NCU116
for five weeks positively regulated the blood glucose level,
hormone, and lipid metabolism, reestablished the antiox-
idant capacity, restored the morphology of pancreas and
kidney, and upregulated the LDL receptor, cholesterol 7𝛼-
hydroxylase (CYP7A1), GLUT4, and PPAR𝛼 and PPAR𝛾
mRNA expression [115].

Sulforaphane (SFN) is an isothiocyanate that is naturally
available in widely consumed vegetables, particularly broc-
coli. In diabetic male C57BL/6J mice, sulforaphane (0.5mg/
kg) treatment for four months significantly inhibited car-
diac lipid accumulation and improved cardiac inflammation,
oxidative stress, and fibrosis by downregulating diabetes-
induced PAI-1, TNF-𝛼, CTGF, TGF-𝛽, 3-NT, and 4-HNE
expression. SFN also upregulated nuclear factor (erythroid-
derived 2-) like factor 2 (Nrf2) and its downstream genes,
NQO1 and HO-1; SFN decreased 4-HNE-LKB1 adducts and
reversed the diabetes-induced inhibition of LKB1/AMPK and
its downstream targets, including sirtuin 1, PGC-1𝛼, phos-
phorylated acetyl-CoA carboxylase, and carnitine palmitoyl
transferase-1. These results suggest that the SFN treatment
of T2DM mice may attenuate the cardiac oxidative stress-
induced inhibition of the LKB1/AMPK signaling pathway,
thereby preventing T2DM-induced lipotoxicity and car-
diomyopathy [116].

Onion-derived quercetin derivatives have been regarded
as the most important flavonoids for improving diabetic con-
ditions in both in vivo and in vitro models. In STZ-induced
male Sprague Dawley rats, eight days of treatment with onion
peel extract (1%) significantly (𝑝 = 0.0148) improved glucose
tolerance, liver and skeletal muscle glycogen content (𝑝 <
0.0001 and 𝑝 = 0.0089, resp.), and insulin receptor (𝑝 =
0.0408) and GLUT4 (𝑝 = 0.0346) expression in muscle
tissues.Theoxidative stress-inducing activities, such as super-
oxide dismutase activity, the formation of malondialdehyde,
free fatty acids in the plasma, and IL-6 expression in hepatic
protein, were significantly (𝑝 = 0.0393, 0.0237, 0.0148, and
0.0025, resp.) decreased [117].

Cordycepin (3󸀠-deoxyadenosine) is produced by a tradi-
tional medicinal mushroom known as Cordyceps militaris.
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Although cordycepin has been shown to exert immunological
stimulation and anti-infection and anticancer activities, the
molecular mechanisms of cordycepin in T2DM are unclear.
In LPS-stimulated RAW 264.7 cells, cordycepin has been
found to inhibit NO, suppressNF-𝜅B activation, and suppress
the protein expression of proinflammatory mediators that
further inhibit the production of proinflammatory cytokines
such as IL-1𝛽, IL-6, and TNF-𝛼. Moreover, an increased
concentration of cordycepin decreased the T2DM-regulating
genes such as 11𝛽-HSD1 and PPAR𝛾 as well as the expression
of costimulatorymolecules such as ICAM-1 and B7-1/-2 [118].

The administration of MT-𝛼-glucan (isolated from Gri-
fola frondosa mushroom fruit body), in a murine T2DM
model, significantly decreased the body weight, fasting
plasma glucose levels, HbA1c, TG, cholesterol, FAA, NO,
NO synthase, inducible NO synthase, and malondialdehyde
content in the liver. MT-𝛼-glucan also significantly increased
the serum insulin content and hepatic glycogen content, and
it reduced both the glutathione levels and the superoxide
dismutase and glutathione peroxidase activity. These results
suggest that the hypoglycemic effects of MT-𝛼-glucan in
T2DM mice might be connected to its protection of pancre-
atic 𝛽-cells accomplished by decreasing oxidative stress and
NO synthesis [119].

In an in vitro study, cocoa (Theobroma cacao) extract
has shown dose-dependent inhibition of 𝛼-amylase, 𝛼-
glucosidase, and angiotensin-1-converting enzyme activities
and has also shown scavenging ability for several radicals
[DPPH (16.94±1.34mg/mL), NO (6.98±0.886mg/mL), OH
(3.72±0.26mg/mL), and ABTS (15.7± 1.06mmol/TEAC⋅g)]
[120].

4.2.3. Spices. A variety of spices also show potential for
managing DM by reducing inflammation and oxidative
stress. Turmeric (Curcuma longa) contains curcumin (a
polyphenolic compound) as the active ingredient, which
possesses broad-spectrum biological actions such as anti-
inflammatory, antioxidant, and antitumor activities. In the
injured lungs of diabetic rats, curcumin has been found
to reduce oxidative stress and inflammatory responses and
inhibit prostaglandin E2 (PGE2) and NOS. Further results
revealed that curcumin inhibited the activation of NF-𝜅B,
which is a key player in inflammatory responses [121]. In
db/db mice, curcumin treatment for eight weeks increased
AMPK and PPAR𝛾 expression and diminished NF-𝜅B pro-
tein levels [122]. In T1DM patients, the development of
skeletal muscle atrophy is associated with chronic inflamma-
tion. According to an in vivo study on STZ-induced T1DM
C57BL/6J mice, curcumin at a dose of 1500mg/kg/day for
two weeks ameliorated skeletal muscle atrophy by inhibiting
NF-𝜅B activation, inflammatory cytokine (TNF-𝛼 and IL-1𝛽)
concentrations, oxidative stress, and protein ubiquitination
[123]. According to an in vitro study, the treatment of
solid lipid curcumin particle (SLCP) formulations (10 to
50𝜇g/mL) using LPS-stimulatedRAW264.7 culturedmurine
macrophages significantly decreased the LPS-induced proin-
flammatory mediators NO, PGE2, and IL-6 by inhibiting
the activation of NF-𝜅B [124]. In another study on STZ-
induced diabetic Wistar-NIN rats, treatment with 0.01%

curcumin or 0.5% turmeric for a period of eight weeks
controlled the oxidative stress and restored normal antioxi-
dant enzyme activities [125]. Neuronal injury can be induced
by hyperglycemia-mediated oxidative stress due to diabetes.
Curcuminoids, which are polyphenols of turmeric, exhibited
protective effects against oxidative stress in the brain of STZ-
induced diabetic rats by restoring the normal level of lipid
peroxidation and nitrite content and endogenous antioxidant
marker enzymes [126]. In an in vitro study, curcumin was
found to attenuate insulin-induced oxidative stress in hepatic
stellate cells by inducing the expression of glutamate-cysteine
ligase, leading to the de novo synthesis of glutathione and
the suppression of insulin receptor expression [127]. In an
in vitro study, pretreatment with a novel curcumin analogue
(B06) at 5 𝜇Msignificantly reduced the high glucose-induced
overexpression of inflammatory cytokines in macrophages
via the inhibition of c-Jun N-terminal kinase/NF-𝜅B activa-
tion [128].

Diabetic complications occur as a result of increased ROS
due to long-termhyperglycemia.Honey and ginger have been
shown to exhibit antioxidant activity by scavenging ROS. In
STZ-induced Sprague Dawley rats, the combined adminis-
tration of honey (2 g/kg body weight) and ginger (60mg/kg
body weight) for three weeks significantly (𝑝 < 0.05) re-
duced the superoxide dismutase and catalase activities and
the malondialdehyde levels, whereas the reduced glutathione
level and the reduced glutathione/oxidized glutathione ratio
were significantly elevated (𝑝 < 0.05) [129]. In STZ-in-
duced diabetic rats, oral administration with the combined
extract of purple waxy corn and ginger at doses of 100, 200,
and 300mg/kg body weight for 21 days improved chronic
constriction at the right sciatic nerve by improving the
oxidative stress status and the axon density in the lesion nerve
[130]. Ginger was also found to inhibit 𝛼-glucosidase and 𝛼-
amylase enzymes, which is useful for T2DM management,
and inhibition of COX was observed, which protects against
inflammation [131]. The oral administration of ginger in
diabetic rats was found to exert neuroprotective effects by
increasing antioxidant defense mechanisms and downregu-
lating malondialdehyde (MDA) levels to the normal levels
in brain [132]. In another similar study, ginger administered
at a dose of 500mg/kg/day revealed a protective role on
diabetic brain accomplished by reducing oxidative stress,
apoptosis, and inflammation in STZ-induced diabetic rats
[133]. According to another in vivo study, the treatment of
STZ-induced inbred male Wistar/NIN rats for one month
with ginger powder (0.5%, 1%, and 5%) showed protective
effects against diabetes by modulating antioxidant enzymes
and glutathione and downregulating lipid and protein oxi-
dation [134]. In nicotinamide and STZ-induced diabetic
rats, treatment with garlic bulb, ginger rhizome, turmeric
rhizome, and their mixture (200mg/kg body weight) for 28
consecutive days significantly alleviated hyperglycemia and
dyslipidemia, increased insulin production, enhanced GSH,
and decreased lipid peroxidation [135].

In diabetic patients, diabetic encephalopathy is one of
the more severe complications. In diabetic encephalopathy
rats, saffron at 40 and 80mg/kg significantly increased the
body weight and serum TNF-𝛼 levels and decreased the
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blood glucose, glycosylated proteins, and advanced glycation
end product (AGE) levels in serum. Furthermore, saffron
significantly increased the glutathione content, superoxide
dismutase, and catalase but remarkably decreased the cogni-
tive deficit and serum TNF-𝛼, and it induced NOS activity
in hippocampus tissue [136]. In STZ-induced diabetic rats
with renal injury, the administration of crocin, an active con-
stituent of saffron, significantly decreased malondialdehyde
(𝑝 < 0.01) and xanthine oxidase (𝑝 < 0.05) activities and
elevated glutathione (𝑝 < 0.05) levels, thus ameliorating
renal injury [137]. Safranal is one of the components of
the saffron plant. In high-fat diet (HFD) and STZ-induced
T2DM rats, safranal treatment for a period of four weeks
decreased the oxidative stress caused by T2DM and reduced
the inflammation by reducing the TNF-𝛼 and IL-1𝛽 levels in
the plasma and pancreas tissue [138].

The protective effect of onion against oxidative stress
was evaluated in an in vivo study. In STZ-induced male
diabetic Wistar rats, daily treatment with 1mL of Allium cepa
solution (0.4 g Allium cepa/rat) increased the fasting serum
high density lipoprotein levels and alleviated hyperglycemia
by decreasing superoxide dismutase activities [139]. Another
in vivo study also investigated the protective effects of onion
against oxidative stress; 12 weeks of onion intake suppressed
the diabetes-induced oxidative stressmore effectively in STZ-
induced diabetic rats [140]. In STZ-induced diabetic male
Sprague Dawley rats, supplementation with onion powder
(7% w/w) suppressed the glutathione peroxidase, glutathione
reductase, and glutathione S-transferase activities from high
to normal levels [141].

Mustard leaf (Brassica juncea) has been reported to
strongly inhibit the formation of AGE and free radical-
mediated protein damage in in vitro studies. According to
an in vivo study with STZ-induced diabetic rats, the oral
administration of the EtOAc fraction of mustard leaf at doses
of 50 and 200mg/kg body weight/day for 10 days reduced the
serum levels of glucose and glycosylated protein as well as the
superoxide and nitrite/nitrate levels, which suggests that the
EtOAc fraction of mustard leaf has the capacity to attenuate
damage caused by the oxidative stress involved in diabetes
and its complications [142].

Sesame butter is a natural product produced by grind-
ing sesame seeds and is thus free from any chemical or
nonchemical additives. In STZ-induced male albino Wistar
rats, oral treatment with sesame butter (1.25 g/kg) for six
weeks significantly decreased the blood glucose, high density
lipoprotein, and malondialdehyde levels and increased the
total antioxidant capacity [143]. Sesame contains sesamin,
a lignan that has been found to diminish the elevation of
malondialdehyde and the reduction of superoxide dismutase
activity induced by diabetes after seven weeks of treatment in
male diabetic rats [144].

Eugenol (EU) is an active principle of cloves (Syzygium
aromaticum) that can also be found in basil and cinnamon.
In an in vitro study with SHSY5Y cells under experimen-
tally induced hyperglycemic conditions, the exposure of
cells to EU (5–10 𝜇M) improved cell viability, reduced the
glutathione (GSH) levels, and significantly decreased the
glucose-associated oxidative stress (by diminishing ROS and

peroxide levels). From the in vivo experiment on STZ-
induced diabetic rats, treatment with EU at a dose of
10mg/kg body weight/day for six weeks diminished the
oxidative marker levels, GSH, and total thiols and enhanced
the antioxidants activities [145]. In high-fat-diet and STZ-
induced T2DM rats, the administration of clove bud pow-
der (20–40 g/kg) reduced the blood glucose level and 𝛼-
glucosidase and liver enzyme (alanine aminotransferase,
aspartate aminotransferase, and alkaline phosphatase) activ-
ities and elevated the antioxidant (glutathione, ascorbic acid,
superoxide dismutase, and catalase) levels [146].

Cumin (Cuminum cyminum) is widely used as a spice
in many countries. In STZ-induced diabetic rats, treatment
with a methanolic extract of C. cyminum seeds for 28 days
effectively controlled the oxidative stress, inhibited AGE
formation, and improved the antioxidant status in the kidney
and pancreas [147].

5. Rheumatoid Arthritis

RA is an inflammatory, systemic autoimmune disorder
with primary degenerating articular structures involving, in
particular, the cartilage (movable synovial joints of knees,
shoulders, and hands) and the bones (osteoarthritis and
osteoporosis) as a result of pannus formation over the joint
surfaces (abnormal layer of fibrovascular or granulation
tissues) [148, 149]. The symptoms include swelling, warmth,
and redness of the joints with pain, morning stiffness, fatigue,
and limited functioning of the joints, which can result in poor
coordination of the limbs and the deterioration of the posture
[150, 151].

RA is the most common inflammatory arthritis and
affects approximately 1% of the world population, with more
than 3 million new patients being diagnosed yearly [152,
153]. It has been reported that 80% of RA patients become
disabled within 20 years of diagnosis, and if left untreated,
approximately 20–30% of RA patients can be permanently
disabled within 2-3 years of their first diagnosis [154, 155]. In
addition, women are three times more likely to be affected
than men [156]. According to a 2013 report, one in every
five adults (22.7%) in the United States has been diagnosed
with arthritis [157], and the number of affected individuals
is projected to increase to approximately 67 million by 2030
[158]; this is going to be an alarming health issue imposing a
great socioeconomic impact worldwide.

5.1. Pathogenesis. The pathogenesis of RA involves a com-
plex interplay between genetic and environmental factors
leading to autoimmune inflammatory responses against the
connective and synovial tissues of the joints [3]. In addition,
increased ROS levels are actively involved in RA pathogenesis
(Figure 1) [159, 160]. In typical physiological conditions,
different types of cytokines are actively present in synovial
tissues.However, in patients with RA, immune cells including
T cells, B cells, and macrophages penetrate the affected
synovial tissues and promote the overexpression, release,
and activity of proinflammatory cytokines including TNF-
𝛼, TNF-induced NF-𝜅B, vascular endothelial growth factor
(VEGF), IL-1 beta (IL-1𝛽), IL-6, IL-8, and IFN-𝛾 [3, 161, 162].
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In response to these proinflammatory cytokines, fibroblast-
like synoviocytes (FLS) proliferate and produce large quan-
tities of cytokines, matrix metalloproteinases (MMPs), and
COX-2, which progressively degrade cartilage and lead to
joint destruction (Figure 1) [163, 164].

Oxidative stress was recently shown to be involved in
the degeneration of cartilage due to the deregulation of
Nrf2 or NFE2L2 [165]. When Nrf2 is activated, it binds
to antioxidant response elements (AREs), resulting in the
increased expression of antioxidative enzyme [e.g., Heme
oxygenase-1 (HO-1)] encoding genes [166, 167]. Thus, both
oxidative stress and inflammatory processes are implicated in
the pathogenesis of RA.

5.2. The Role of Dietary Phytochemicals. Although synthetic
regimens have been used to treat patients with RA, side effects
are common and unavoidable (Table 1). Researchers have
found that the regular consumption of fresh fruits, vegetables,
and spices rich in important phytochemicals can attenuate
oxidative stress and inflammation and relieve RA. According
to some cohort studies on RA, high consumption of fruits
and vegetables not only is inversely correlated with disease
progression but also exerts some protective effects against RA
[168–170]. Here, we discuss some of the clinical (Table 2) and
experimental evidence of phytochemicals being successfully
used as alternative treatments against RA.

5.2.1. Fruits and Vegetables. Osteoclastogenesis (the process
of destroying bone tissues by osteoclast cells) has been
observed as a clinical phenomenon in patients with RA
[171]. Polyphenols extracted from dried plums can inhibit
osteoclastogenesis by suppressing the activity of TNF-𝛼 and
NO synthase and downregulating the transcription factor-
nuclear factor for activated T cells (NFATc1) [172]. Therefore,
polyphenols have the potential to be used in RA treatment.

Anthocyanins from cherry can reduce both oxidative
stress (increase superoxide dismutase and decrease serum
malondialdehyde) and inflammatory mediators (decrease in
TNF-𝛼 levels) in an adjuvant-induced RA rat model (male
Sprague Dawley) [173].

In 2015, resveratrol polyphenol found in red grape skin
was reported to confer a significant protective effect against
an aggressiveRA ratmodel [174]. In the experiment, the activ-
ity of specific rheumatoid biomarkers [serum rheumatoid
factor (RF), MMP-3 and cartilage oligomeric matrix protein
(COMP)], immunological biomarkers [IgG and antinuclear
antibody (ANA)], immunomodulatory cytokines (TNF-𝛼),
and oxidative stress biomarkers [myeloperoxidase (MPO),
CRP, and MDA] were significantly reduced by the anti-
inflammatory and antioxidative activities of resveratrol.

In an in vivo study with RA-induced DBA-1/J male mice,
mangiferin (a natural polyphenol found especially in man-
goes) suppressed the expression of IL-1𝛽, IL-6, TNF-𝛼, and
receptor activator of NF-𝜅B ligand (RANKL) via the activa-
tion of extracellular signal-regulated kinase 1/2 (ERK1/2) and
the inhibition of NF-𝜅B [175]. Another study withmangiferin
demonstrated protection against joint destruction in RA
by exerting strong proapoptotic effects on human synovia-
derived synoviocytes [176].

Recently, Natarajan et al. [177] showed the suitability of
using intra-articular injections with polyphenols to protect
against cartilage degradation in collagen-induced arthritic
rats. They injected a combination of different polyphenols
(EGC, gallate, catechin, tannic acid, and quercetin) in RA-
induced rats and observed significant (𝑝 < 0.05) protection
effect against cartilage degradation along with attenuated
inflammation.

Kaempferol (found especially in grapefruits) was shown
to inhibit synovial fibroblast proliferation by suppressing
inflammatory cytokines (inhibiting IL-1𝛽), inhibiting the
phosphorylation of ERK-1/2, p38, and JNK, inhibiting the
activation of NF-𝜅B, and reducing oxidative stress by inhibit-
ing the production of MMPs, COX-2, and PGE2 in RA-
derived synovial fibroblasts [178]. All of these cytokines,
transcription factors, cell signaling pathways, and enzymes
are established compounds in the pathogenesis of RA that
in combination destroy the articular bone and cartilage in
patients with RA [179, 180].

An in vivo study on p-coumaric acid (a polyphenol
present in grapes, apples, oranges, spinach, tomatoes, pota-
toes, wheat, oats, and maize) confirmed its potent immuno-
suppressive activity because it significantly (𝑝 < 0.05) re-
duced the expression of TNF-𝛼 in adjuvant-induced arthritic
rats [181]. In a collagen-induced RA rat model (female
Sprague Dawley), genistein (a polyphenol rich in soybeans)
exerted anti-inflammatory activities; it maintained a balance
between the T helper cell-1 (Th1) andTh2 cells by significantly
suppressing IFN-𝛾 and augmenting the production of IL-4
[182].

Pattison et al. [183] reported that the modest intake of
beta-cryptoxanthin (a natural carotenoid) via the daily con-
sumption of a glass of freshly squeezed orange juice is
inversely correlated with the risk of RA in humans. Addition-
ally, arterial dysfunction is a common clinical manifestation
in patientswithRA that leads to cardiovascular complications
[184, 185]. Nevertheless, daily vegetable consumption was
significantly (𝑝 = 0.002) associated with more favorable
arterial function in patients with RA [186].

5.2.2. Spices. An in vivo study [187] revealed the beneficial
effects of using a mixture of blended ginger, which is rich
in pungent phenolic compounds (e.g., shogaols and gin-
gerols), and turmeric, which is rich in phenolic curcum-
inoids (including curcumin, bisdemethoxycurcumin, and
demethoxycurcumin), against extra-articular complications
of RA including hematological, metabolic, and cardiovas-
cular complications in adjuvant-induced arthritic rats (male
Wistar albino). Earlier, the same group of researchers con-
firmed that both ginger and turmeric could independently
and significantly (𝑝 < 0.05) protect against RA in adjuvant-
induced arthritic male Wistar albino rats [188].

Cinnamon bark (Cinnamomum zeylanicum), one of the
most common spices used in Indian, Bangladeshi, Burmese,
and Sri Lankan dishes, can confer some protective effects
against RA. Rathi et al. [189] observed a significantly (𝑝 <
0.001) higher level of anti-inflammatory activities [inhibition
of cytokines (IL-2, IL-4, and IFN-𝛾) and reduction of TNF-
𝛼 concentration] upon the treatment of RA animal models
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(male Wistar rat and Swiss albino mice) with the polypheno-
lic fractions of cinnamon bark.

An in vitro study with FLS (derived from RA patients)
demonstrated that curcumin is a potent anti-inflammatory
spice [190] that blocks the expression of IL-1𝛽 and IL-6, which
are believed to play crucial roles in RA pathogenesis [191].
Elevated apoptosis within the joint is therapeutically useful
[192], and curcumin has been found to increase the levels of
apoptosis in rheumatic FLS [190].

Methotrexate is an antirheumatic drug widely used to
treat patients with RA [193]. Vascular endothelial dysfunction
has been reported as one of its most deleterious side effects
due to its ability to increase oxidative stress and decrease
NO levels [194].The coadministration of curcumin with folic
acid was found to abrogate methotrexate-induced vascular
endothelial dysfunctions in male Wistar rats due to the
attenuation of oxidative stress and the regulation of NO
production [195].

Another recent in vivo study on male Sprague Dawley
rats [196] revealed that the administration of curcumin
could decrease the expression of NF-𝜅B, TNF-𝛼, and IL-
1𝛽 in both synovial fluid and blood serum, thus producing
effects similar to a standard antirheumatic regimen with
methotrexate.Therefore, it is anticipated that curcumin could
be given as antirheumatic therapy for patients with RA either
administered alone or as an adjuvant with modern therapies.

5.2.3. Miscellaneous. Extra virgin olive oil (EVOO) is con-
sumed all over the world, especially in the Mediterranean
countries [197]. In 2014 [198], a group of Spanish researchers
observed that polyphenolic extracts of EVOOare potent anti-
inflammatory substances protecting against RA-associated
inflammation. An in vivo experiment conducted with
a group (𝑛 = 10) of collagen-induced RA mice (male
DBA-1/J) confirmed that polyphenolic extracts of EVOO
inhibit JNK (associated with the regulation of cytokine
function, T-cell differentiation, and apoptosis), p38 [involved
in mitogen-activated protein kinase (MAPK) pathway, reg-
ulating cytokines and apoptosis], and signal transducer
and activator of transcription-3 (STAT-3) and decrease the
translocation of NF-𝜅B. Interestingly, the activation of JNK,
p38, and NF-𝜅B and the overexpression of STAT-3 actively
contribute to the pathogenesis of RA [180, 199, 200]. There-
fore, EVOO is a potential natural source of polyphenols that
can combat RA.

A recent experiment in 2015 [201] with a green tea-
derived polyphenolic compound called epigallocatechin-3-
gallate (EGCG) demonstrated that EGCG significantly (𝑝 <
0.01) upregulates the expression of the Nrf-2 antioxidant
pathway in mice (male DBA-1/J) with RA. Yoon et al. [202]
observed in FLS that gallic acid (a polyphenol found in
grapes, tea, gall nuts, sumac, and wine) reduced the expres-
sion levels of proinflammatory cytokines (IL-1𝛽 and IL-6) and
enzymes, including MMP-9 and COX-2, which are involved
in the inflammation and oxidation-induced pathogenesis of
RA. However, the black tea-derived polyphenol theaflavin-
3,3󸀠-digallate (TFDG) demonstrated some protective activity
against osteoclast formation and osteoporosis via the inhibi-
tion of MMP-2 and MMP-9, both of which are responsible

for the degradation of collagens and joint destruction in RA
patients [203, 204].

An in vivo study with cocoa-extracted polyphenols
reported the suppression of TNF-𝛼-induced VEGF expres-
sion (involved in RA) via the inhibition of phosphoinositide
3-kinase (PI3 K) and MAPK kinase-1 (MAP2K1) activi-
ties. Grape polyphenolic extracts have been confirmed to
have potent anti-inflammatory activity against RA-mediated
inflammation by attenuating the expression of TNF-𝛼, IL1𝛽,
IL-6, and IFN-𝛾, and they can reduce the “arthritis score” in
experimental rats [205].

In LPS-stimulated macrophages, the secretion of IL-6
(found at elevated levels in patients with RA)was significantly
reduced (by at least 25%) upon incubation with polyphenol-
rich extracts of rooibos tea, black pepper, ginger, allspice, car-
away, bay leaves, cinnamon, licorice, paprika, clove, nutmeg,
and apples [206]. In addition, decreased TNF-𝛼 secretion
(by at least 25%) was observed upon incubation with chili
pepper, black pepper, cinnamon, bay leaf, caraway, licorice,
nutmeg, and bilberry extracts containing high concentrations
of polyphenols [206].

6. Conclusion

Dietary phytochemicals are some of the most potential
natural sources for developing novel drugs with improved
efficiency, efficacy, and safety. Well-designed clinical trials
are warranted to address the safety issues and the con-
current utility of synthetic drugs and natural compounds
in attenuating oxidative stress and inflammation-mediated
degenerative diseases such as RA, DM, and CVD. In in vitro
and in vivo or ex vivo experiments, more emphasis should
be given to studies with active compounds extracted from
natural mixtures of phytochemicals. In addition, it would
be interesting to conduct computational in silico analyses
to determine compatible phytochemicals targeting the active
sites of regulatory proteins associated with CVDs, DM, and
RA to promote the development of safer and more effective
drugs.

Appendix

Search Strategy

To find appropriate literature, the following terms were used
in combination with Boolean operators (AND and OR).

Search #1 (Fruits). (apple OR apricot OR applesauce OR
avocado OR banana OR blackberries OR blueberries OR
cantaloupe OR cherries OR dates OR dried fruits OR figs
OR fruits OR fruit cocktail OR grapefruits OR grapes OR
honeydew OR melon OR kiwi OR mango OR oranges OR
papaya OR peaches OR pears OR pineapple OR plum OR
raspberries OR strawberries OR watermelon).

Search #2 (Vegetables). (amaranth OR Chinese spinach OR
artichoke OR artichoke hearts OR asparagus OR baby corn
OR bamboo shoots OR bean sprouts OR beets OR Brussels
sprouts OR Broccoli OR green cabbage OR Chinese cabbage
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OR bok choy cabbage OR Italian beans OR green beans OR
wax beans OR bean OR cabbage OR carrot OR cauliflower
OR celery OR cucumber OR chayote OR daikonOR eggplant
OR garlic OR ginger OR hearts of palm OR jicama OR
kohlrabiOR leeksORmushroomsORonionORokraORpea
pods OR peppers OR radish OR pepper OR black pepper OR
red chillsOR green chili OR rutabagaOR chicoryOR escarole
OR endive OR lettuce OR romaine OR arugula OR tomatoes
OR Swiss chard OR spinach OR watercress OR turnip OR
mustard OR collard OR sprouts OR radicchio OR peas OR
turnips OR vegetables OR yard-long beans).

Search #3 (Spices). (adobo seasoning OR allspice OR anise
seed OR apple pie spice OR bay leaf OR cardamom seed OR
cayenneOR chili peppersOR cinnamonOR clovesOR cumin
OR curry powder OR fennel seed OR fenugreek seed OR
five spice OR garam masala OR garlic OR ginger OR herb
seasoning OR mace OR mustard OR nutmeg OR onion OR
paprika OR peppercorns OR saffronOR sesameOR spice OR
star anise OR thyme leaf OR turmeric).

Search #4 (Phytochemicals). (antioxidants OR polyphenols
OR carotenoids OR anthocyanins OR alkaloids OR glyco-
sides OR saponins OR terpenes).

Search #5. (Search #1 OR Search #2 OR Search #3 OR Search
#4).

Search #6 (DegenerativeDiseases and Factors). Cardiovascular
diseases OR diabetes OR rheumatoid arthritis OR inflam-
mation OR proinflammatory markers OR inflammatory OR
oxidative stress OR reactive oxygen species.

Search #7. (Search #5) AND (Search #6).
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