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ABSTRACT: Insertion/deletion variants (indels) alter pro-
tein sequence and length, yet are highly prevalent in
healthy populations, presenting a challenge to bioinfor-
matics classifiers. Commonly used features—DNA and
protein sequence conservation, indel length, and occur-
rence in repeat regions—are useful for inference of pro-
tein damage. However, these features can cause false pos-
itives when predicting the impact of indels on disease.
Existing methods for indel classification suffer from low
specificities, severely limiting clinical utility. Here, we fur-
ther develop our variant effect scoring tool (VEST) to
include the classification of in-frame and frameshift in-
dels (VEST-indel) as pathogenic or benign. We apply 24
features, including a new “PubMed” feature, to estimate a
gene’s importance in human disease. When compared with
four existing indel classifiers, our method achieves a dras-
tically reduced false-positive rate, improving specificity by
as much as 90%. This approach of estimating gene impor-
tance might be generally applicable to missense and other
bioinformatics pathogenicity predictors, which often fail
to achieve high specificity. Finally, we tested all possible
meta-predictors that can be obtained from combining the
four different indel classifiers using Boolean conjunctions
and disjunctions, and derived a meta-predictor with im-
proved performance over any individual method.
Hum Mutat 37:28–35, 2016. Published 2015 Wiley Periodicals,
Inc.∗
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Introduction
The average human exome contains over four hundred natu-

rally occurring microinsertion/deletion variants (referred to as in-
dels throughout) [Consortium, 2010]. In-frame indels account for
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�50% of these variants, and result from the insertion/deletion of an
integer number of codons, and ultimately amino acids. Frameshifts
account for the other �50% of indels, and result from contiguous
nucleotide insertions/deletions of a length not divisible by three.
This fractional change in the number of codons shifts the trans-
lational reading frame, resulting in an entirely new downstream
sequence thereby shifting the position at which the first stop codon
is encountered. Thus, frameshift indels translate to protein that is
very distinct from the native protein, particularly if the indel occurs
early in the transcript sequence. Both in-frame and frameshift indels
alter protein sequence and length.

Because they drastically alter protein primary structure, but
are also highly prevalent in healthy populations, indels present a
unique classification challenge. Clearly, the principles governing
pathogenicity are not identical to those governing changes in protein
function and stability; otherwise, most indels would be pathogenic.
The challenge then arises because protein sequence, structure, func-
tion, and stability are typically considered when assessing a variant
of unknown impact on disease liability [Steward et al., 2003]. These
protein-based criteria could lead to a high false positive rate, and
therefore low specificity, because the fraction of indels that appre-
ciably impact health might be overestimated.

The increased utilization of high-throughput genomic sequenc-
ing technologies and hopes for their clinical application, coupled
with the high prevalence of indels, has led to a demand for bioinfor-
matic predictors of indel pathogenicity. Most computational meth-
ods for assessing genetic variation initially focused on missense vari-
ants; more recently, several groups have extended these methods to
handle indels [Choi et al., 2012; Hu and Ng, 2012; Hu and Ng, 2013;
Zhao et al., 2013; Folkman et al., 2015]. Most of these methods uti-
lize supervised machine learning classifiers and are trained on two
classes of indel: pathogenic from disease mutation databases and
benign from either population variation databases or tolerated in-
terspecies variations derived from genomic alignments. DDIG-in is
based on a support vector machine, and the authors of this method
reported a sensitivity of 0.86 and specificity of 0.72 for frameshift
indels [Zhao et al., 2013], and a sensitivity of 0.89 for in-frame indels
[Folkman et al., 2015]; the authors did not report prediction speci-
ficity for in-frame indels. PROVEAN uses an unsupervised approach
that compares the reference protein sequence with a sequence that
incorporates a variant of interest [Choi et al., 2012]. The authors
of PROVEAN reported high sensitivities of 0.93 and 0.96 for in-
frame insertions and deletions, respectively, and a specificity of 0.80
for in-frame insertions and 0.68 for in-frame deletions; PROVEAN
does not assess frameshift indels. SIFT-indel, based on a J48 Deci-
sion Tree [Hall et al., 2009], achieved good balanced accuracies for
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in-frame (sensitivity = 0.81; specificity = 0.82) [Hu and Ng, 2013]
and frameshift indels (sensitivity = 0.90; specificity = 0.78) [Hu and
Ng, 2012]. However, the neutral dataset used in those studies com-
prised indels derived from cross-species comparisons. As the authors
state, SIFT-indel was trained to predict impact on gene function,
irrespective of impact on disease. Indeed, when the method was
applied to variants from human variation databases, the majority of
the indels were predicted to be deleterious; thus, specificities would
be below 50% for predicting indel pathogenicity. The CADD classi-
fier utilized a unique approach, in which a support vector machine
was trained to discriminate fixed (or nearly fixed) derived alleles
in humans from a set of simulated variants [Kircher et al., 2014].
The CADD classifier was developed to predict deleterious variants
rather than variant pathogenicity or impact on protein function,
but with the stated assumption that these quantities are all related.
The authors of CADD reported classifier performance on missense
variants and indels together, but not on indels separately [Kircher
et al., 2014].

We present a novel method for assessing the impact of indels with
an emphasis on discriminating between benign and disease-causing
indels. This new approach expands the functionality of our Variant
Effect Scoring Tool (VEST), which was initially designed to assess
the impact of missense variants; we refer to the new functionality as
VEST-indel, throughout. In addition to more conventional protein
sequence and functional considerations, VEST-indel includes a fea-
ture based on PubMed search results for the gene of interest, which
is a measure of known relevance to human health. Utilizing one
dataset for cross-validation and a second, non-overlapping dataset
for testing, we report high sensitivity and specificity for both in-
frame and frameshift indels. We provide direct comparison between
VEST-indel and existing indel prediction methods by constructing
an additional benchmark dataset of neutral and disease-causing in-
dels on which none of the methods had been trained, and show
that VEST-indel achieves improved performance. Next, we exhaus-
tively test Boolean combinations of all tested classifiers and identify
a meta-predictor that further improves performance relative to any
of the methods individually. Finally, we used Tajima’s D statistic
[Tajima, 1989] to detect signatures of positive, balanced, or relaxed
selection for variants that resulted in false positive predictions. The
presence of these selective pressures could suggest a context depen-
dence in which indels defined as neutral could also be considered
pathogenic, in turn justifying false positive predictions.

Materials and Methods

Data Collection

A curated set of in-frame and frameshift indels (microdeletions
and microinsertions) of �20 base-pairs in length, annotated as be-
ing pathogenic from publications in the biomedical literature, was
downloaded from Human Gene Mutation Database [Stenson et al.,
2014] (2014v.3). Only high-confidence annotations with the “DM”
designation were included. A second curated set of in-frame and
frameshift indels was downloaded from the NCBI ClinVar database
on August 7, 2014. Only entries annotated as “likely pathogenic”
(Clinical Significance 4) or “pathogenic” (Clinical Significance 5)
and not annotated as a somatic mutation were included. Any en-
try from ClinVar that was also present in HGMD was removed
from the ClinVar set. Annotated in-frame and frameshift variants
were downloaded from the Exome Variant Server using (ESP6500SI-
V2-SSA137) [Fu et al., 2013] and from the 1000 Genomes Project
Phase 3 (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/) [Clarke

et al., 2012]. To increase the likelihood that variants from the Ex-
ome Variant Server and 1000 Genomes Project were benign common
polymorphisms, and to retain sufficient variants for our training set,
we only used variants with a minor allele frequency (MAF) �0.01
and occurring in either African individuals or those of African an-
cestry. In ESP600, these were identified as “African-American” and
in 1000G as the AFR superpopulation comprising YRI (Yoruba in
Ibadan, Nigeria), LWK (luhya in Webuye, Kenya), GWD (Gambian
in Western Divisions in the Gambia), MSL (Mende in Sierra Leone),
ESN (Esan in Nigeria), ASW (Americans of African ancestry in SW
USA), and ACG (African Caribbeans in Barbados). The other pop-
ulations represented in ESP6500 and 1000G are believed to have ex-
perienced severe bottlenecks in recent history, and hence individuals
from these populations may harbor potentially pathogenic variants
at higher MAF than individuals of African ancestry [Lohmueller
et al., 2008; MacArthur and Tyler-Smith, 2010; Ng et al., 2008; Hu
and Ng, 2012]. A curated set of putatively benign in-frame and
frameshift indels, derived from pairwise genome alignments of hu-
man and cow, dog, horse, chimpanzee, rhesus macaque, and rat,
was generously provided to us by Pauline Ng and Jing Hu. This set
had been previously used to train their SIFT-indel classifier [Hu and
Ng, 2012; Hu and Ng, 2013]. Additional background information
about these data sets, including probability densities for indel length
and MAF, are shown in Supp. Figure S1.

The number of variants used for this study, grouped by source and
ontology, were: 2,523 in-frame deletions, 565 in-frame insertions,
17,606 frameshift deletions, and 8,265 frameshift insertions from
HGMD 2014.3; 43 in-frame deletions, 14 in-frame insertions, 344
frameshift deletions, and 134 frameshift insertions from HGMD
2014.4; 1,991 in-frame deletions, 404 in-frame insertions, 774
frameshift deletions, and 618 frameshift insertions from ESP6500;
86 in-frame deletions, 70 in-frame insertions, 37 frameshift dele-
tions, and 23 frameshift insertions from 1000 Genomes, Phase 1; 304
in-frame deletions, 261 in-frame insertions, 229 frameshift dele-
tions, and 134 frameshift insertions from 1000 Genomes, Phase
3; 16 in-frame deletions, five in-frame insertions, 32 frameshift
deletions, and 74 frameshift insertions from ClinVar; 4,686 in-
frame deletions, 3,406 in-frame insertions, 706 frameshift deletions,
and 628 frameshift insertions from the above-mentioned genome
alignments.

Feature Selection

The Random Forest Feature Importance Z-score [Breiman, 2001]
was used to rank a set of 49 candidate features from [Wong et al.,
2011] and five additional features (Supp. Table S1), using PARF
software (http://code.google.com/p/parf), with 100 trees and default
parameters. To avoid overfitting, an independent feature-selection
set was used (500 pathogenic and 500 benign examples for each of the
in-frame and the frameshift classifiers). We used a greedy algorithm
to identify a good, minimum set of features. Briefly, beginning with
the top-ranked feature, a Random Forest was trained using only
that feature and 10-fold cross-validation was used to estimate the
classifier’s area under the receiving operator characteristic (ROC)
curve (AUC). We successively added the next top-ranked feature
until all candidate features were included. For the in-frame classifier,
the maximum AUC was achieved with 23 features and for the out-
of-frame classifier, the maximum AUC was achieved with 16 features
(Supp. Table S2). These features were used for the remainder of the
work described here. The selected features include measures of gene
importance, the damaging effect of the variant on protein activity,
evolutionary conservation and protein local environment (Supp.
Table S3).
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Table 1. Datasets Used in Development of the VEST-Indel Method

Feature Null Multi-method
selection Training Testing distribution benchmark

In-frame
Pathogenic 500a 2,475a 39b N/A 57f

Benign 500c 1,877c 8,105d 346e 156e

Frameshift
Pathogenic 500a 24,478a 184b N/A 478f

Benign 500c 1,350c 1,340d 537e 60e

Superscript letters indicate the source of the examples for each type of insertion/deletion
variant and each stage of VEST-indel development (feature selection, classifier training,
classifier validation, empirical null).
aHGMD.
bClinVar.
cESP6500.
dInter-species benigns from SIFT-indel.
e1000G Phase 3.
fHGMD2014.
There is no overlap between examples in any of the columns. N/A, not applicable
because only benign examples were used to develop the empirical null distribution.

Classifier Training Protocol

Random Forest classifiers were trained to classify in-frame and
frameshift variants (using PARF software with 100 trees and default
parameters). For in-frame classifier training, 2,475 pathogenic and
1,877 benign examples were available, whereas 24,478 pathogenic
and 1,350 benign examples were available for frameshift classifier
training (Table 1). To handle class imbalance, the in-frame classifier
was trained on a randomly selected set of 1,877 pathogenic exam-
ples and all 1,877 benign examples. Ten frameshift classifiers were
trained on a randomly selected set of 1,350 pathogenic examples and
all 1,350 benign examples (repeated 10 times, sampling without re-
placement). All ten classifiers were used to score frameshift variants,
by computing 10 scores for each variant and averaging them.

Modeling the Analytical Null Distribution

We developed an analytical null score distribution based on
Random Forest classifier scores of putative benign variants (1000
Genomes Project Phase 3, MAF�0.01, African ancestry). The scored
variants (537 for in-frame insertion/deletions, 346 for frameshift
insertion/deletions) did not overlap the examples used for Ran-
dom Forest feature selection, training or the independent test set.
An empirical cumulative distribution of scores was calculated and
modeled as a Generalized Pareto Distribution (GPD) [Pickands III,
1975; Knijnenburg et al., 2009].

F (z) =

⎧⎨
⎩

1 –
(

kz
a

) 1
k , k! = 0

1 – e– z
a , k = 0

(1)

where k and a are the GPD shape and scale parameters, respectively
(in-frame k = 0, a = –8.48, frameshift k = 0, a = –9.04) and z is the
score (0 � z � 1).

Analytical Null Distribution for Missense Variants

We developed an analytical null distribution by modeling a GPD
based on an empirical null distribution of VEST missense Random
Forest classifier scores (Eq (1), k = 0, a = –5.26). The missense Ran-
dom Forest [Carter et al., 2013] was trained on 47,724 pathogenic
missense mutations from HGMD v2012.2 and 45,818 putatively
benign missense variants from ESP6500 accessed 07/2012. The em-
pirical null scores were generated from 28,509 variants from the

1000 Genomes Project with AF � 1%, none of which overlapped
with training data.

Combined Prioritization of Indel and Missense Variants

For each In-frame, frameshift, or missense variant, a VEST score
was computed using homology-restricted 10-fold cross-validation
with the appropriate Random Forest (Performance Assessment).
Then, a P value was calculated using the analytical null (Eq. (1)) for
its respective type. To assess whether VEST could correctly prioritize
a pathogenic variant over a benign variant, irrespective of whether
the variant was in-frame, frameshift or missense, we ranked the
combined set of variants according to p-value, and computed area
under the ROC curve [Fawcett, 2004].

To compare VEST results with CADD, which also provides com-
bined prioritization, we scored the same variants using the CADD
Webserver (Materials and Methods). Variants were ranked accord-
ing to their scaled C-scores and area under the ROC curve was
computed.

Performance Assessment

Homology-restricted cross-validation

The in-frame indel Random Forest and each of the 10 frameshift
Random Forests were assessed for sensitivity, specificity and bal-
anced accuracy, using a rigorous ten-fold cross-validation protocol.
The same protocol was applied to the missense Random Forest
to assess combined prioritization of all three mutation types. To
avoid overestimating our performance, we ensured that any ex-
amples from genes whose protein products had �35% sequence
identity were included in the same fold. BlastP with default pa-
rameters [Altschul et al., 1997] was used for pairwise alignment of
protein sequences and sequence identity calculations [Altschul et al.,
1997]. Evidence suggests that homology-restricted cross-validation
is important to avoid overly optimistic estimates of pathogenicity
classifier performance [Capriotti and Altman, 2011].

VEST-indel independent test set

An independent set of examples, having no overlap with feature
selection, training, or empirical null sets, was constructed. We
removed any test set examples whose protein products had �35%
sequence identity with any training examples [Altschul et al.,
1997]. Pathogenic in-frame and frameshift mutations were taken
from ClinVar [Landrum et al., 2013] and benign in-frame and
frameshift variants were taken from the interspecies set (Data
Collection). All data were “cleaned” so as to ensure that there was
no overlap between these examples and the other three data sets.
The VEST-indel independent test set is included in Additional File 1
(http://karchinlab.org/vest_indel_additional_files/Additional_File_
1.xlsx).

Comparison of Insertion/Deletion Variant Pathogenicity
Predictors

Four previously published methods were selected for compari-
son with VEST-indel. Three of the methods (SIFT-indel, DDIG-in,
CADD) [Hu and Ng, 2012; Hu and Ng, 2013; Zhao et al., 2013;
Folkman et al., 2015] handle both in-frame and frameshift inser-
tion/deletions and the fourth method PROVEAN [Choi et al., 2012]
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Table 2. Training and Validation Sets Used by Current Prediction Methods

Non-overlapping multi-method
Training set (as published) Test set (as published) benchmark set

Pathogenic Benign Pathogenic Benign Pathogenic Benign

In-frame
PROVEAN Uniprot Uniprot HGMD 2011 1000G P1 HGMD2014.4 1000G P3 AA
DDIG-in HGMD 2012 1000G P1 Uniprot Uniprot HGMD2014.4 1000G P3 AA
SIFT-indel HGMD 2010 Interspecies Uniprot Uniprot HGMD2014.4 1000G P3 AA
CADD Simulated Fixed Polymorphisms ClinVar ESP6500 HGMD2014.4 1000G P3 AA
VEST-indel HGMD 2014.3 ESP6500 AA ClinVar Interspecies HGMD2014.4 1000G P3 AA
Frameshift
PROVEAN N/A N/A N/A N/A N/A N/A
DDIG-in HGMD 2012 1000G P1 HGMD 2012 Interspecies HGMD2014.4 1000G P3 AA
SIFT-indel HGMD 2010 Interspecies N/A N/A HGMD2014.4 1000G P3 AA
CADD Simulated Fixed Polymorphisms ClinVar ESP6500 HGMD2014.4 1000G P3 AA
VEST-indel HGMD 2014.3 ESP6500 AA ClinVar Interspecies HGMD2014.4 1000G P3 AA

1000G P1 and 1000G P3 are variants from 1000 Genomes Phase 1 and 3, respectively. Interspecies benign variants derived from pairwise genome alignments of human and cow,
dog, horse, chimp, rhesus macaque, and rat. Uniprot variants were obtained from the UniProtKB/Swiss-Prot “Human Polymorphisms and Disease Mutations” dataset (Release
2011_09), annotated as deleterious, neutral, or unknown based on keywords from the provided Uniprot descriptions. AA, African or African American Ancestry and N/A, not
applicable.

handles only in-frame variants. According to their publications, each
of these methods used a customized dataset for classifier training and
validation. Data sources included the UniProtKB, HGMD versions
from 2010, 2011, 2012 and 2014, the ESP6500, the 1000G project,
an interspecies collection of putatively benign variants developed by
the SIFT-indel team, a set of variants fixed in recent evolution and
a simulated set of variants developed by the CADD team [Boutet
et al., 2007; Consortium, 2010; Hu and Ng, 2012; Fu et al., 2013;
Hu and Ng, 2013; Stenson et al., 2014] (Table 2). To our knowl-
edge, SIFT-indel, DDIG-in, PROVEAN and CADD are the four
most widely used methods in the field. All provide an easy-to-use
Web interface that can handle batch submissions: PROVEAN URL
is http://provean.jcvi.org/genome_submit_2.php?species=human,
SIFT-indel URL is http://sift.bii.a-star.edu.sg/www/SIFT_indels2.
html, DDig-In URL is http://sparks-lab.org/ddig/, and CADD URL
is http://cadd.gs.washington.edu/. The Web interfaces ensured that
we applied each of these methods in the manner intended by their
respective authors.

Multi-method benchmark set

To perform an unbiased comparison of VEST-indel and the
four other methods, we identified a set of 553 pathogenic and 357
benign examples, which did not overlap with any examples used
to train, fit parameters, select features, or validate performance
by any of the four methods. This multi-method benchmark set
comprised pathogenic examples (61 in-frame and 491 frameshift)
from the most recent version of HGMD (2014v.4), excluding any
examples present in earlier versions of HGMD that had been
used to train DDIG-in, SIFT-indel, or VEST-indel (PROVEAN
and CADD were not trained on HGMD). Benign examples (224
in-frame and 118 frameshift) were taken from 1000G Phase 3
(MAF � 0.10, African Ancestry). Any examples present in 1000G
Phase 1 or ESP6500, which were used to train or validate any of
PROVEAN, DDIG-in, CADD or VEST-indel were omitted. Only
examples for which every method returned a prediction result
were included. The final multi-method benchmark set comprised
59 benign frameshift insertion/deletion and 163 benign in-frame
insertion/deletion variants (MAF � 0.1 from 1000G AFR super-
population), as well as 474 pathogenic frameshift and 53 pathogenic
in-frame variants from HGMD v.2014.4 (Additional File 2

http://karchinlab.org/vest_indel_additional_files/Additional_File_
2.xlsx).

Performance assessment

SIFT-indel and DDIG-in provide a categorical classification for
each example (damaging/neutral or disease/neutral) and a con-
fidence measure. PROVEAN, CADD, and VEST-indel provide a
numerical score for each example (–40 to 12.5, 1 to 99, and 0 to
1). To compare methods, PROVEAN scores were assigned to cat-
egories of damaging (<–2.5) or neutral (�–2.5) (as recommended
by the authors) and VEST-indel scores were assigned to categories
of pathogenic (�0.5) or benign (<0.5), which represents a majority
vote of decision trees in the Random Forest classifier. CADD scaled
“C-scores” were assigned to categories of deleterious (<15) or not
deleterious (�15) (as recommended on their Webserver). Sensitiv-
ity (TP/(TP + FN)), specificity (TN/(TN + FP)) and balanced accu-
racy ((sensitivity + specificity)/2) were calculated for each method,
where TP = the number correctly classified as pathogenic (or dam-
aging or disease) examples, FN = the number of incorrectly classified
pathogenic examples, TN = the number of correctly classified benign
(or neutral) examples, and FP = the number of incorrectly classified
benign examples.

Meta-Predictors that Combine Classifications of Multiple
Methods

In these Boolean expressions, each method is represented by a
variable Xi, which is set to TRUE when the method classifies an
example as pathogenic and FALSE when the method classifies an ex-
ample as benign. For combinations of two methods, candidate meta-
predictors were (X1 and X2) and (X1 or X2). For combinations
of three methods, candidate meta-predictors (X1 and X2 and X3),
(X1 or X2 or X3),(X1 or X2 or X3), ((X1 and X2) or X3), ((X1 or
X2) and X3), ((X1 and X3) or X2),((X1 or X3) and X2), ((X2 and
X3) or X1), ((X2 or X3) and X1). For combinations of four meth-
ods, there are 64 possible combinations (Supp. Table S4). We used
a brute-force approach and limited the number of methods in the
meta-predictor to a maximum of four to avoid a combinatorial ex-
plosion. All possible four-way combinations of the five methods
were explored.
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Selective Pressures on Genes and False Positive
Classifications

A standard method for identifying genes under selection is
Tajima’s D statistic [Tajima, 1989], and for each gene harboring,
a variant in the multi-method benchmark set, we computed this
statistic based on its longest annotated RefSeq transcript [Pruitt
et al., 2007]. If RefSeq transcripts were not available for the gene,
the longest annotated Ensembl transcript [Cunningham et al., 2015]
was used. These calculations were performed using SNPs in 1000
Genomes Phase 3 AFR samples and the PopGenome package in R
[Pfeifer et al., 2014]. Each gene was assessed for the presence of
statistically significant positive or balancing selection (P < 0.05).
The PopGenome package estimates P values by simulation using
Hudson’s coalescent model [Hudson, 2002].

Availability

VEST-indel is freely available for non-commercial use via a
batch Web service at http://cravat.us. Choose the analysis program
“VEST”. Results for small-size submissions (<100) are returned on
average in less than five minutes. Very large submissions are sup-
ported, and results for a submission of �1,000,000 mutations are
returned on average in less than 24 hr.

Results
In protein-coding exons, in-frame indels generally have a less se-

vere impact than frameshifts [Ng et al., 2008]. Since the biological
effect of in-frame and frameshift indels is different, we chose to
develop two distinct Random Forest classifiers to handle these two
distinct variant types. We assessed the performance of the classi-
fiers in three phases: (1) we estimated their sensitivity and speci-
ficity with stringent, homology-restricted 10-fold cross-validation
(pathogenic class from HGMDv2014.3 [Stenson et al., 2014], be-
nign from ESP6500 African Ancestry [Fu et al., 2013]) (Table 2);
(2) we re-estimated sensitivity and specificity on an independent
test set of variants (pathogenic class from ClinVar [Landrum et al.,
2013], benign Interspecies alignments [Hu and Ng, 2012; Hu and
Ng, 2013]) (Table 2) that had not been used in classifier training
and had been filtered for homology overlap with the cross-validation
set; (3) we re-estimated sensitivity and specificity on a second in-
dependent test set of variants (pathogenic class from new entries
in HGMDv2014.4, benign from 1000 Genomes Phase III African
Ancestry [Consortium, 2010] that did not overlap with any training
data used by previously published methods (multi-method bench-
mark set). These experiments are detailed in Materials and Methods.

In our cross-validation experiments, VEST-indel achieved a sen-
sitivity and specificity of 0.90 for in-frame indels (Table 3). Cross-
validation performance for frameshift indels was slightly lower, with
a sensitivity of 0.83, specificity of 0.88, and balanced accuracy of
0.85. During the testing phase, VEST-indel maintained good per-
formance for classifying in-frame indels, with a balanced accuracy
of 0.82, and sensitivity and specificity of 0.80 and 0.85, respec-
tively (Table 3). Frameshift prediction improved slightly from the
cross-validation to testing phase. For testing, frameshift classifica-
tion resulted in a balanced accuracy of 0.87, with a sensitivity of 0.89
and specificity of 0.86.

Table 4 compares VEST-indel performance with that previously
reported for other methods. The VEST-indel specificity of 0.90
for classifying in-frame indels was higher than that achieved by
SIFT-indel (0.82) or PROVEAN (0.80 for insertions and 0.68 for

Table 3. VEST-Indel Performance Metrics

Sensitivity Specificity
Balanced
accuracy

In-frame cross validation 0.90 0.90 0.90
In-frame testing 0.80 0.85 0.82
Frameshift cross validation 0.83 0.88 0.85
Frameshift testing 0.89 0.86 0.87

Training utilized 10-fold cross validation and pathogenic variants from Human Gene
Mutation Database 2014.3 and benign examples from Exome Sequencing Project (mi-
nor allele frequency in African Ancestry � 0.01). The test set consisted of pathogenic
examples from ClinVar and benign examples derived from pairwise genome alignments
of human and cow, dog, horse, chimp, rhesus macaque, and rat.

Table 4. Comparing Performance with Previously Published Re-
sults and Testing all Methods with the New Multi-Method Bench-
mark Dataset

Previously published Multi-method
benchmark

Sensitivity Specificity Sensitivity Specificity
Balanced
Accuracy

In-frame
VEST-indel 0.90a 0.90a 0.81 0.96 0.88
SIFT-indel 0.81 0.82 0.86 0.76 0.81
DDIG-in 0.89 N/A 0.78 0.91 0.84
PROVEAN 0.93/0.96 0.80/0.68 0.95 0.80 0.88
CADD N/A N/A 0.74 0.88 0.81
Frameshift
VEST-indel 0.83a 0.88a 0.85 0.95 0.90
SIFT-indel 0.90 0.78 0.94 0.25 0.59
DDIG-in 0.86 0.72 0.75 0.80 0.77
CADD N/A N/A 0.98 0.05 0.52

Previously published sensitivity and specificity based on author’s cross-validation ex-
periments. PROVEAN does not use cross validation so the reported numbers are from
validation set experiments done separately for insertion and deletion variants. N/A,
not applicable. Published results for the DDIG-in in-frame classifier do not include
specificity; their self-reporting consists of an accuracy (not balanced accuracy) of 0.84
and precision of 0.81. The authors of CADD did not report the performance achieved
with indels separately.
aResults from Table 1 included here for comparison. Multi-method benchmark set con-
sisted of pathogenic examples from Human Gene Mutation Database 2014.4 and benign
examples 1000 Genomes Phase 3 (minor allele frequency in African Ancestry � 0.1).

deletions); the authors of the DDIG-in method did not provide a
specificity for in-frame classification. The specificity of 0.88 achieved
by VEST-indel for classifying frameshift indels was 0.10 higher than
that achieved by SIFT-indel and 0.16 higher than that reported
for DDIG-in (Table 3); PROVEAN does not classify frameshift in-
dels. The higher specificity achieved by VEST-indel results from
a relatively low false positive rate, indicating improved ability to
discriminate neutral indels from those that are pathogenic.

Four of the compared methods attained reasonably high sensi-
tivities, demonstrating the ability to identify truly pathogenic vari-
ants (Table 4). PROVEAN had the highest sensitivity for classifying
in-frame variants, which was higher that realized by VEST-indel
(0.90), DDIG-in (0.89), or SIFT-indel (0.81). Conversely, the SIFT-
indel sensitivity of 0.90 was highest among compared methods for
classifying frameshift indels, with DDIG-in at 0.86 and VEST-indel
at 0.83. The authors of the CADD method do not report sensitiv-
ity or specificity statistics for either in-frame or frameshift indels
[Kircher et al., 2014].

Although the above-cited comparison of previously published
results provides some indication of relative performance, the five
methods compared in Table 4 utilized different datasets for cross-
validation and testing (see Table 2). The datasets being differ-
ent, to some extent, limits the insights that can be gleaned from
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comparison. In addition to using the same dataset to benchmark
all methods, direct and fair comparison requires that no training
examples from any of the methods be present in the benchmark
dataset. We constructed a multi-method benchmark set, comprising
indels not present in any method’s training set, by using mutations
recently added to HGMD and variants from the latest release of the
1000 Genomes project (Phase 3; Table 2). These indels were new to
all of the methods, and were intended to reduce overly optimistic
estimates of performance.

Table 4 compares performance achieved by the five methods
for classifying neutral and disease-causing indels from the multi-
method benchmark set. VEST-indel shows superior specificity for
classifying both in-frame (0.96) and frameshift (0.95) indels. These
high specificities further validate the ability of VEST-indel to ac-
curately reject neutral variants as disease causing. All methods had
reasonably high balanced accuracies for in-frame indel classification,
with VEST-indel and PROVEAN yielding the highest balanced ac-
curacy of 0.88. Of note, VEST-indel and PROVEAN achieved nearly
identical balanced accuracies with approximately equal trade-offs in
sensitivity and specificity (Table 3). For frameshift variants, VEST-
indel outperformed the other methods, having a balanced accu-
racy of 0.90, compared with 0.77 for DDIG-in, 0.59 for SIFT-indel,
and 0.52 for CADD. In the case of DDIG-in, VEST-indel showed
substantially improved sensitivity and specificity (Table 4). The dra-
matic gain in performance achieved by VEST-indel, relative to SIFT-
indel and CADD, resulted from a marked gain in specificity (0.95 vs.
0.25 for SIFT, and 0.05 for CADD); this is consistent with previous
reports for SIFT-indel, which maintains good specificity when pre-
dicting protein-damaging indels, but suffers low specificity when
predicting pathogenicity [Hu and Ng, 2012; Hu and Ng, 2013].

Although they are often confounded, bioinformatics prediction
of protein-damaging variation is not necessarily the same as predic-
tion of pathogenic/disease-causing variation [Capriotti et al., 2012].
A variant that reduces protein stability, function, or even results in
complete loss of protein production is certainly protein damaging,
but implications for health and disease will also depend on the im-
portance of that particular protein in complex networks of interact-
ing molecules [Capriotti et al., 2012]. Thus, although all disease-
causing variants are likely to be protein damaging, all protein-
damaging variants are not invariably disease causing. A good set
of predictive features should capture both protein damage and gene
importance. VEST-indel uses 23 features for in-frame classifica-
tion and 16 features for frameshift classification; these features were
top-ranked by a Random Forest Z-score feature selection method
and a greedy algorithm that maximized Random Forest ROC AUC
(see Materials and Methods). Features include measures of DNA
sequence conservation, DNA natural variation, gene-level anno-
tations, transcript-level annotations, computational predictions of
protein local structure, protein local regional sequence composition
and protein-level annotations from UniProtKB (Supp. Table S1).
Some of these features are similar to those adopted by previously
published methods, whereas others have not been previously ap-
plied to indel classification. In the first category, we include DNA
sequence conservation scores, indel length, indel location within the
transcript, predicted highly flexible or disordered regions in protein
structure, predicted solvent accessibility in protein structure, and
occurrence of the indel within a repetitive (low-information) se-
quence. In the second category, we include a hidden-Markov model-
based score [Karchin et al., 2005] of an alanine substitution, several
properties of amino-acid residue sequence in a 15-residue window
around the position where the indel begins, the density of sin-
gle nucleotide polymorphisms in the coding exon where the indel

begins, and the number of results returned from a PubMed search
of the HUGO-approved gene name harboring the indel. A feature
matrix that compares features used in VEST-indel to those used by
SIFT-indel, DDIG-in, PROVEAN, and CADD is provided (Supp.
Table S4).

Among all VEST-indel features, the PubMed feature was con-
sistently the most informative, for both frameshift and in-frame
variants. For this feature, the algorithm searches the title and ab-
stract of every publication indexed by PubMed, and returns the
number of publications mentioning the HUGO gene name (no
aliases) in which the mutation occurs [Schuler et al., 1996; Wheeler
et al., 2007]. Thus, genes that have been subject to relatively greater
attention in the biomedical literature will be scored as more relevant
to human health. This result is consistent with previous reports that
literature mining is a useful proxy for the importance of a given gene
to human health [Schuler et al., 1996; Karchin et al., 2005; Wheeler
et al., 2007; Masica and Karchin, 2011; Capriotti et al., 2012; Clarke
et al., 2012]. Insertion/deletion variants in less important genes may
knock-down or knock-out protein activity but may not necessarily
cause disease [Ng et al., 2008].

Not all variants in genes important for human health are neces-
sarily pathogenic, and over reliance on gene-level disease relevance
might ultimately decrease performance. Therefore, we compared
the five tested methods on a difficult set of variants, limited to genes
that contained at least one pathogenic and one benign variant (141
pathogenic and 78 benign in-frame variants in 57 genes, and 561
pathogenic and 88 benign frameshift variants in 86 genes). Using
the scores from the cross-validation experiments (Table 3), we re-
computed sensitivity and specificity for VEST-indel for these vari-
ants only, and also scored them using the DDIG, SIFT, PROVEAN,
and CADD Webservers (Supp. Table S5). VEST-indel had the high-
est balanced accuracy of the five methods on this difficult set (0.78
in-frame, 0.67 frameshift).

Although VEST-indel, SIFT-indel, DDIG-in, PROVEAN, and
CADD share some similarities with respect to training sets and
features, we considered that they might be different enough to pro-
vide independent information about an indel of interest. There-
fore, they could be combined into a meta-predictor to yield
improved performance. This approach has had some success in
predicting the pathogenicity of missense variants [Gonzalez-Perez
and Lopez-Bigas, 2011; Frousios et al., 2013; Martelotto et al.,
2014]. Using the multi-method benchmark set, we assessed the
classification performance resulting from each pair, trio, or quartet
of methods combined using Boolean conjunctions and disjunc-
tions. See Supp. Tables S6 and S7 for a complete list of the tested
combinations.

For in-frame classification, the combination of ((VEST-indel
AND PROVEAN) OR (CADD AND DDIG-in)) yielded a substan-
tially improved sensitivity (0.93) while retaining good specificity
(0.97), when compared to VEST-indel alone (sensitivity = 0.81,
specificity = 0.96), and indeed any of the methods alone (Supp.
Table S6). This result indicates that these methods are highly com-
plementary when combined in the described fashion. Conversely,
for frameshift classification, the combination of ((VEST-indel AND
(SIFT-indel OR DDIG-in)) had roughly equivalent sensitivity (0.83)
and specificity (0.97) to VEST-indel alone (sensitivity = 0.85, speci-
ficity = 0.95). This results because the most specific method (VEST-
indel) is combined using the AND operation (i.e., sensitivity could
not possibly increase, nor could specificity decrease).

The strategy of classifying a variant as pathogenic if any of the clas-
sifiers predicted it to be pathogenic (i.e., combining classifiers with
a Boolean OR) did not yield good results. For the in-frame classifier,
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the combination (VEST-indel OR SIFT-indel OR PROVEAN OR
CADD) had a sensitivity of 1 but a specificity of 0.56, with balanced
accuracy of 0.78. Combining four classifiers or three classifiers with
the OR operator consistently yielded good sensitivity but a substan-
tial decrease in specificity. This result is, to some extent, expected
because combining classifiers with the OR operation increases the
possibility of accepting a variant as pathogenic. Conversely, requir-
ing that all classifiers agree (i.e., combining classifiers with a Boolean
AND) reduces the probability of a pathogenic classification. Indeed,
all meta-predictors that used only AND operators had high speci-
ficity, but low sensitivity. For example, the (VEST-indel AND SIFT-
indel AND CADD AND DDIG-in) meta-predictor had a specificity
of 1.00 and sensitivity of 0.46. Taken together, these results highlight
the benefit of developing meta-predictors that combine Boolean
conjunctions and disjunctions, rather than considering only a sin-
gle type of Boolean operation.

The benign examples in the multi-method benchmark set were
taken from the 1000 Genomes Phase 3 samples, limited to indi-
viduals in the AFR (African) super-population [Consortium, 2010]
and having MAF � 0.1. Whereas common variants are generally
considered to be non-pathogenic [Tennessen et al., 2010], datasets
of common variants may be contaminated by pathogenic variants if
they occur in genes that are not under purifying selection [Hu and
Ng, 2012]. We assessed the possibility that the multi-method bench-
mark set might include common pathogenic variants. If this were
the case, a false positive call from one of the methods might represent
the correct identification of a truly pathogenic variant. Genes not
subject to purifying selection might alternatively be under positive,
balancing, or relaxed (neutral) selection [Hu and Ng, 2012]. For
each of VEST-indel, SIFT-indel, DDIG-in, PROVEAN, and CADD
we assessed the relationship between variants under selective pres-
sure and those called as false positives, using Fisher’s exact test (two-
tailed, α = 0.05). None of the benign variants were under balancing
selection, defined as a statistically significant (nominal P < 0.05)
positive Tajima’s D statistic [Tajima, 1989]. Thirteen frameshift and
56 in-frame variants were under positive selection, defined as a sta-
tistically significant (nominal P < 0.05) negative Tajima’s D statistic.
With the exception of a borderline P value for DDIG-in in-frame
variant classification (P = 0.051), there were no statistically signifi-
cant relationships between positively selected variants and variants
that were called as false positives. For frameshift variants, P = 1.0
for VEST-indel, P = 0.26 for SIFT-indel, P = 0.18 for DDIG-in, and
P = 0.40 for CADD. For in-frame variants, P = 0.25 for VEST-indel,
P = 0.56 for SIFT-indel, P = 0.13 for PROVEAN, and P = 0.79 for
CADD.

VEST-indel P values for in-frame and frameshift indels are com-
parable to VEST P values for missense variants and as a result,
multiple variant types can be jointly prioritized. We assessed joint
prioritization performance by combining variants from the VEST-
indel in-frame and frameshift training sets (Table 1) and variants
from the VEST missense training set [Carter et al., 2013] (2,475
pathogenic and 1,877 benign in-frame indels; 24,478 pathogenic
and 1,350 benign frameshift indels; 38,221 pathogenic and 38,221
benign missense variants). We also assessed performance in a bal-
anced set, in which we randomly selected 1,350 pathogenic and
1,350 benign variants of each type for the combined set. VEST
P values and scaled CADD scores were used to compute ROC area
under the curve (AUC) as described in Materials and Methods. For
the combined set, VEST and CADD achieved a similar ROC area
under the curve (AUC) of 0.90 and 0.88, respectively. For the bal-
anced set, VEST classification resulted in an AUC of 0.91 and CADD
classification resulted in an AUC of 0.74.

Discussion
In this study, we sought to develop a method for predicting indel

pathogenicity. This functionality is distinct from existing classifiers
that were developed to predict indel impact on protein structure or
function. Although clinical utility appears to be a common goal for
much of bioinformatics methods development, indel pathogenic-
ity prediction presents the challenge of distinguishing variants that
affect protein structure and function from those that adversely af-
fect health [Consortium, 2010]. Given the enrichment for protein
sequence and annotation features available for algorithmic develop-
ment [Boutet et al., 2007; Pollard et al., 2010], the difficulty discrim-
inating neutral and disease-causing indels might be unsurprising.
Our newly developed classifier, VEST-indel, partially addresses pre-
vious methodological limitations, and achieves high balanced accu-
racy even when tasked with sorting disease-associated indels from
those present in the general population. In particular, VEST-indel
realized substantial gains in specificity relative to existing meth-
ods, highlighting reductions in falsely classifying neutral variants as
pathogenic. To realize these performance gains, VEST-indel heavily
utilized a new feature that captures the known relevance of a gene
to human health. This new “PubMed” feature leverages decades
of community-wide biomedical research. Thus, the algorithm uses
features that ultimately estimate indel impact on protein, and the
PubMed feature additionally estimates the biological context of the
protein. Given that poor specificity also limits the utility of meth-
ods aimed at assessing the pathogenicity of missense variants [Chan
et al., 2007; Hicks et al., 2011; Thusberg et al., 2011; Shihab et al.,
2013], the approach presented here might prove beneficial for vari-
ant classification in general.

The in-frame meta-predictor ((VEST-indel OR DDIG-in) AND
(PROVEAN)) achieved excellent sensitivity (0.93) and specificity
(0.94) when applied to our multi-method benchmark dataset. This
complementarity results because the two high-specificity classifiers
are combined using the OR operation, which is then combined
with the high-sensitivity classifier PROVEAN, using the AND oper-
ation (see individual classifier performance, Table 4). The Boolean
OR operation increases the possibility of pathogenic classification;
importantly, pathogenic classification from VEST-indel and DDIG-
in is complementary rather than entirely overlapping, hence the
increased sensitivity relative to either method alone. As expected,
however, the specificity of the (VEST-indel OR DDIG-in) classi-
fier decreased (see Table S6). Next, even though the highly sensitive
PROVEAN is slightly more prone to false positives, the specificity
of the meta-predictor cannot decrease owing to the unanimity re-
quired by the AND operation; on the contrary, the complemen-
tarity of true-negative calls among these three classifiers restores a
high specificity. We are deliberate in this explanation because meta-
predictor derivation relying on a single Boolean operation type is
limiting and can result in significant trade-offs in sensitivity and
specificity. As our results show, taking advantage of the comple-
mentarity that can result from combining Boolean conjunctions
and disjunctions can be beneficial when maximizing balanced ac-
curacy is desired.

Our new VEST-indel method can be used in combination with
VEST scoring of missense variants to yield a jointly prioritized list of
both variant types. This analysis requires a single batch submission
to the CRAVAT server [Douville et al., 2013]. To our knowledge,
the only other automated method available for such joint ranking
is CADD. For data sets in which the number of missense variants
far exceeds the number of indels, VEST and CADD have similar
performance. However, when variant types (indels and missense)
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and classes (pathogenic vs. benign) are evenly distributed, VEST
significantly outperforms CADD.
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