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Mechanisms of Virologic Control and Clinical 
Characteristics of HIV+ Elite/Viremic 
Controllers
Elena Gonzalo-Gil, Uchenna Ikediobi, and Richard E. Sutton*

Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine

Human immunodeficiency virus type 1 (HIV-1†) disease is pandemic, with approximately 36 million 
infected individuals world-wide. For the vast majority of these individuals, untreated HIV eventually 
causes CD4+ T cell depletion and profound immunodeficiency, resulting in morbidity and mortality. 
But for a remarkable few (0.2 to 0.5 percent), termed elite controllers (ECs), viral loads (VLs) remain 
suppressed to undetectable levels (< 50 copies/ml) and peripheral CD4+ T cell counts remain high (200 
to 1000/μl), all in the absence of antiretroviral therapy (ART). Viremic controllers (VCs) are a similar 
but larger subset of HIV-1 infected individuals who have the ability to suppress their VLs to low levels. 
These patients have been intensively studied over the last 10 years in order to determine how they are 
able to naturally control HIV in the absence of medications, and a variety of mechanisms have been 
proposed. Defective HIV does not explain the clinical status of most ECs/VCs; rather these individuals 
appear to somehow control HIV infection, through immune or other unknown mechanisms. Over 
time, many ECs and VCs eventually lose the ability to control HIV, leading to CD4+ T cell depletion 
and immunologic dysfunction in the absence of ART. Elucidating novel mechanisms of HIV control 
in this group of patients will be an important step in understanding HIV infection. This will extend 
our knowledge of HIV-host interaction and may pave the way for the development of new therapeutic 
approaches and advance the cure agenda.

Copyright © 2017 245

*To whom all correspondence should be addressed: Richard E. Sutton, Section of Infectious Diseases, Department of Internal 
Medicine, Yale University School of Medicine, New Haven, CT 06520,Tel (203) 737-3648, Fax (203) 737-6174, Email: richard.
sutton@yale.edu.

†Abbreviations: HIV-1, Human immunodeficiency virus-1; DC, dendritic cell; CD4, cluster of differentiation 4; CCR5, C-C Motif 
Chemokine Receptor 5; TH, T helper; MIP-1, macrophage inflammatory protein-1; RANTES, Chemokine (C-C motif) ligand 5; 
CXCR4, C-X-C chemokine receptor type 4; CV, cardiovascular; ART, antiretroviral therapy; env, envelope; dscDNA, double-
stranded cDNA; PIC, pre-integration complex; LTR, long terminal repeat; TRIM-5α, tripartite motif-containing protein-5 alpha; 
APOBEC, apolipoprotein B mRNA editing enzyme catalytic; EC, elite controller; VC, viremic controller; LTNP, long-term non-
progressor; LTNP 7, LTNP through 7 years of follow-up; LTNP 10, LTNP through 10 years of follow-up; NC, non-controller; VL, 
viral load; AIDS, acquired immune deficiency syndrome; HLA, human leukocyte antigen; TNF-α, tumor necrosis factor-alpha; IL-2, 
interleukin-2; IFN-γ, interferon-gamma; CDK, cyclin dependent kinase; CTLA-4, Cytotoxic T-Lymphocyte Antigen-4; NK, natural 
killer; ZNRD1, zinc ribbon domain; RNF39, ring finger protein 39; GWAS, Genome-wide association studies; SNP, single nucleotide 
polymorphisms; LPS, lipopolysaccharide; Mx2/McB, myxovirus resistance protein 2; NFAT, nuclear factor of activated T-cells; BST-2, 
bone marrow stromal antigen 2.

Keywords: HIV, Elite Controllers, Viremic controllers, Long-term non progressors 
 
Author contributions: EGG, RES, and UI wrote and edited the paper. Funding sources: NIH-NIDA DP1DA036463 (RES and EGG); 
NIH-NIAID T32AI007517 (UI).

INTRODUCTION 

Natural Progression of HIV Infection

Human immunodeficiency virus-1 (HIV-1) is trans-
mitted via hetero or homosexual contact, exchange of 
infected blood via transfusion and/or the sharing of nee-
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dles, breast-feeding from an infected mother to child, or 
trans-placentally from an infected mother to fetus [1,2]. 
After introduction by sexual contact, virus encounters 
Langerhans cells, antigen-presenting dendritic cells 
(DCs) that densely populate mucosal surfaces of the gut 
and vaginal tissue. And although these cells express low 
levels of cluster of differentiation 4 (CD4) and C-C Motif 
Chemokine Receptor 5 (CCR5) on the cell surface, they 
actively bind to HIV particles via these and other recep-
tors, and facilitate attachment and fusion of viral and host 
cell membranes [3,4]. Langerhans cells with bound, inter-
nalized virus migrate from the mucosal surface to infect 
neighboring T cells expressing CD4 and CCR5 receptors, 
before arriving at regional lymph nodes [5]. In addition, 
these cells are important for priming naive CD4+ T cells 
into HIV-specific T helper (TH) cells. Local viral replica-
tion then occurs, followed by initial detectable plasma vi-
remia, a process called primary infection [4]. Once within 
regional and draining lymph nodes, infected CD4+ T cells 
induce T cell activation and proliferation by stimulating 
HIV-specific CD8+ T cells [6] (Figure 1). The key effec-
tor functions of HIV-specific CD8+ T cells are three-fold 
and include (i) T cell receptor-based recognition of viral-
ly-infected cells and subsequent release of perforins and 
granzyme that are essential to cytotoxic function, (ii) pre-
vention of viral entry via release of competitively binding 
chemokines such as macrophage inflammatory protein-1 
(MIP-1)α, MIP-1β and Chemokine (C-C motif) ligand 5 
(RANTES), that serve as chemo-attractants for lympho-
cytes and monocytes [7,8] and (iii) inhibition of viral rep-

lication via production of cytokines and activation of the 
interferon (IFN) signaling pathway [9] (Figure 1). 

During HIV infection, chemokine ligands inhibit vi-
ral entry into cells, preventing viral replication and delay-
ing disease progression by competitively binding to the 
co-receptors, CCR5 and C-X-C chemokine receptor type 
4 (CXCR4), on CD4+ T cells and macrophages [10,11]. 
The polyfunctional HIV-specific and non-specific CD8+ 
T cell responses induce cytotoxic killing of HIV-infected 
cells [12] and establish a general antiviral state by en-
hancing innate immunity, making cells more resistant 
to virus replication. This, as well as gastrointestinal mi-
crobial translocation which occurs due to depletion of 
gut-associated lymphoid tissue secondary to early, mas-
sive HIV replication, creates a pro-inflammatory environ-
ment that drives chronic immune activation and leads to 
disease progression [13]. One consequence of this, with 
respect to long-term clinical outcomes in HIV-infected 
individuals, may be a greater propensity for the devel-
opment of cardiovascular (CV) and other inflammatory 
diseases [14]. Even in the presence of antiretroviral ther-
apy (ART) there are low levels of viremia; whether there 
remains active viral replication in blood and lymphoid 
tissue is controversial and subject to debate and contin-
ued study [15]. But presumably the presence of virus or 
viral gene products is at least in part responsible for the 
chronic inflammatory state, which may result in a myriad 
of untoward consequences, with adverse effects on the 
health of the infected individual. 

Figure 1. T cell immune responses after HIV-1 infection.
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HIV-1 Viral Life Cycle and Antiretroviral Therapy 
The viral life cycle begins when the envelope (env) 

glycoprotein gp120 binds to the cell surface receptor CD4 
and the membrane co-receptors CCR5 or CXCR4 [16,17] 
(Figure 2). After fusion of the viral and cellular mem-
branes, the viral particle enters into the cytosol and viral 
RNA is reverse transcribed into proviral double-stranded 
cDNA (dscDNA) [18]. Although it is not clear whether 
reverse transcription occurs within an intact viral cap-
sid core, some studies suggest that post-entry at least a 
partial capsid core structure is required for optimal re-
verse transcriptase activity [19,20]. After formation of a 
pre-integration complex (PIC), dscDNA is imported into 
the cell nucleus through an intact nuclear pore [21] and 
the genetic material either circularizes as one or two long 
terminal repeat (LTR)-containing circles (considered 
dead-end products) or becomes incorporated irreversibly 
into the host genome via the catalytic activity of viral in-
tegrase [22]. Transcription of integrated provirus yields 
viral mRNAs of different sizes, which are exported from 
the nucleus [23,24]. These mRNAs serve as templates for 
protein production and genome-length RNA is incorpo-
rated into nascent viral particles, likely cooperatively as-
sembled at the plasma membrane [25]. Finally the newly 
made viral particles bud from the plasma membrane and 
mature through the activity of the viral protease, which 
cleaves the Gag and Pol polyprotein, to produce fully in-
fectious particles [26]. 

In vitro approaches have identified a number of host 

genes that negatively regulate or interfere with virus 
replication. These potent HIV restriction factors include 
tripartite motif-containing protein 5 alpha (TRIM-5α) 
[27], multiple apolipoprotein B mRNA editing enzyme 
catalytic (APOBEC) family members [28], the nucleo-
tide hydrolase SAMHD1 [29], SERINC family members, 
myxovirus resistance protein (MXB), and tetherin [30-
32]. Each of these factors acts at distinct steps of the virus 
lifecycle to inhibit viral replication and yet none has been 
definitively implicated in viral control in humans [27,30]. 
On the other hand, many steps of the viral life cycle are 
targets for ART [33] (Figure 2), and one of the greatest 
success stories of the last two decades of modern medi-
cine is the widespread use of ART to treat HIV and trans-
form the infection, once considered a death sentence, into 
a chronic, very manageable disease. Despite this, ART is 
life-long and non-curative, and once therapy is stopped or 
drug resistance develops, viral rebound invariably occurs 
within weeks and CD4 counts then decline [34,35]. 

As discussed above, HIV-1 infects both activated 
and resting cells, allowing the viral genome to be perma-
nently integrated into the chromosome of a host T cell or 
tissue macrophage, cell types that can be very long-lived 
[36]. Latent, cellular reservoirs of virus are established 
very early during primary infection, even in the presence 
of ART, and their very long half-life and consequent slow 
decay constitutes the major barrier to eradication [37]. 
Thus, despite the extraordinary advances that have been 
made in ART over the last two decades, we still have 

Figure 2. HIV-1 viral cycle and FDA-approved therapies and targets (attachment and maturation inhibitors in late 
stage clinical trials).
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“controllers,” have more favorable outcomes compared 
to most HIV-infected individuals who do not have ability 
to achieve virologic suppression in the absence of ART, 
termed “non-controllers” (NC) [43]. Although clinical la-
tency in untreated non-controllers may persist for years, 
because of unrelenting high level viral replication for the 
vast majority of these patients there is an inexorable loss 
of CD4+ T cells and immune system decline, eventual-
ly resulting in acquired immune deficiency syndrome 
(AIDS) [47] (Figure 3).

Little is known regarding the precise mechanisms 
that allow robust control of HIV infection, especially 
in ECs/VCs. Further investigation into how controllers 
achieve such a high degree of virologic control may help 
facilitate efforts directed towards a “functional cure” for 
HIV, in which the virus is still present in latent reservoirs 
but never reaches high levels of replication, all in the ab-
sence of ART. 

Epidemiology and Clinical Definitions of Elite 
Controllers

As mentioned above the prevalence of the ECs phe-
notype has been estimated to be < 0.5 percent of the HIV 
positive patient population [48,49]. The prevalence esti-
mates for VCs have not been entirely elucidated, but are 
believed to be several-fold higher compared to ECs [43]. 
These prevalence estimates for ECs reflect data gathered 
from studied HIV-1+ cohorts within the U.S and Europe. 
Little is known regarding the prevalence of these control-
ler phenotypes in Sub-Saharan Africa and Asia. In gener-

much to learn regarding how to effectively control and 
eventually eradicate the virus. Identifying novel mech-
anisms for HIV control bears critical importance to HIV 
research and treatment, as it will extend our knowledge of 
the HIV-host interaction and potentially pave the way to 
new therapeutic approaches.

Elite Controllers, Viremic Controllers, and Long-
term Nonprogressors

Elite controllers (ECs) are a small subset of HIV-1 
infected individuals (on the order of 1 in 200 to 1 in 500 
or 0.2 to 0.5 percent) who have the ability to suppress 
viremia to undetectable levels (< 50 copies/ml), while 
maintaining elevated CD4 cell counts (200 to 1000/µl) in 
the absence of ART [38-42] (Figure 3). These ECs have 
been intensively investigated over the last several years in 
order to determine how they are able to naturally control 
HIV. A similar subset of HIV-infected individuals termed 
viremic controllers (VCs) achieve a lesser degree of vi-
rologic control (200 < VL < 2000 copies/ml), while also 
maintaining elevated CD4 cell counts (typically ≤ 500/
µl), in the absence of ART [43]. ECs and VCs are part of 
a significantly larger cohort of HIV-infected persons, de-
scribed as long-term non-progressors (LTNP). LTNP are 
characterized by their ability to maintain elevated CD4 
cell counts in the absence of ART [43]. 

These individuals can be identified early during the 
course of HIV infection and achieve a significantly low-
er VL set point after sero-conversion [4,44-46]. As a re-
sult, collectively, ECs, VCs and LTNP, hereafter termed 

Figure 3. Progression of disease after HIV-1 infection in HIV-1 progressors, EC and VC.
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having three or more VL determinations below the limit 
of assay detection (usually < 50 copies/ml), spanning 12 
months or more, in the absence of ART [43,50,51]. Oth-
er studies have required a high percentage of VL values 
below the limit of detection (> 90 percent) over 10 years 
to define an EC, although these metrics have not been 
widely employed [48]. VCs are similar, except that 200  
< VL < 2000, with an occasional higher or lower value. 

MECHANISMS OF CONTROL OF HIV-1 IN 
ELITE CONTROLLERS

Viral and Host Cell Intrinsic Factors
Some studies have suggested that the viral control is 

the result of infection with defective viral strains [52,53]. 
However, other studies have proposed that the majority 
of control is due to host factors. A summary of the viral 
proteins and host restriction factors implicated in control 
in VCs/ECs and their role in viral cycle is included in Ta-
ble 1 and Figure 4. Infection with highly attenuated HIV 
was observed in a group of recipients of blood products 
from a common infected donor. The transmitted virus 
contained a deletion in the viral accessory gene nef, and 

al, there are no consistent demographic patterns among 
controllers, with respect to gender or race predilection, or 
differences in modes of HIV transmission between con-
trollers and NCs [43].

As the sensitivity of VL assays improved over 
time, the definition of who is classified as an ECs has 
also changed. For example, an individual characterized 
as having an undetectable VL between 1995 and 2000 
(VL of < 500 copies/ml) may not be identified as an ECs 
today, as the VL assays in routine clinical use are now 
able to detect less than 20 copies/ml. This is a potential 
confounder of longitudinal analyses that evaluate clinical 
outcomes over prolonged periods of time that cross gen-
erations of VL assays.

Furthermore, fluctuations in HIV VL are observed 
naturally during the course of HIV infection and are usu-
ally due to concurrent illness or other co-morbidities, 
receipt of vaccinations, variability or reproducibility of 
the assay, or inconsistent ART compliance (of course the 
latter does not pertain to those off therapy) [43]. The abil-
ity to not only achieve undetectable VLs, but to sustain 
them is what differentiates an EC from an NC. There-
fore, widely accepted study definitions of an EC include 

Table 1. Viral proteins and host restriction factors implicated in control in HIV-1 VCs/ECs.

Viral protein/ Host factor Mechanism of action [ref]
nef •	 Downregulates surface levels of MHC-I and MHC-II

•	 Modulates TCR signaling by inducing/ blocking NFAT and 
IL-2 production in fresh/ activated T cells, respectively

•	 Prevents incorporation of SERINC-3 and SERINC-5 into HIV-
1 virions, enhancing infectivity of the virus

[32,138-140]

vpu •	 Downregulates CD4, and BST-2/tetherin [30,141,142]
vif •	 Binds to and blocks the antiviral activity of APOBEC3 

proteins, in conjunction with other host factors, inducing their 
proteasomal degradation

[143]

TRIM-5α •	 Binds to and multimerizes on the viral capsid, somehow 
inhibiting viral replication

•	 Initiates innate immune sensing of cytosolic viral capsid
•	 Counteracted by mutations in viral capsid

[27]

Mx2/MxB •	 Delays HIV-1 DNA nuclear import and integration by targeting 
viral capsid, exact mechanism of action uncertain

•	 Counteracted by mutations in viral capsid

[31,144]

APOBEC3 family members •	 Inhibits viral reverse transcription and integration 
•	 Induces lethal mutations in viral cDNA
•	 Counteracted by vif (see above)

[28]

Tetherin •	 Inhibits HIV-1 release by binding virus particles that bud 
through the cell membrane

•	 Counteracted by vpu (see above)

[30,145]

Serinc-3/5 •	 Inhibit HIV-1 particle infectivity
•	 Counteracted by nef (see above)

[32]

MHC: major histocompatibility complex; TCR: T Cell Receptor; NFAT: nuclear factor of activated T-cells; BST-2: bone marrow 
stromal antigen 2; APOBEC: apolipoprotein B mRNA editing enzyme 3 catalytic polypeptide; Mx2/McB: myxovirus resistance protein 
2; BST-2: bone marrow stromal antigen 2.
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data is strictly correlative. In some ECs, certain polymor-
phisms within the HIV genome were likely acquired early 
during the course of infection, rendering the virus some-
what devoid of genetic variability and thus yielding a 
relatively poorly replicating virus [53,65]. Many of these 
studies involved small numbers of ECs in whom repli-
cation competent viruses were not isolated, thus limiting 
the generalizability of the conclusions. Other work has 
isolated and analyzed the genomes of replication-compe-
tent virus from ECs and results have shown comparable 
degrees of genetic variation, replication, and evolution, 
compared to virus isolated from NC [52]. Thus, perhaps 
host factors play a more significant role in achieving and 
sustaining virologic control. Conistent with this idea, 
Buckheit et al., were able to isolate identical viruses from 
NC and one EC and another VC, consistent with host fac-
tors having a dominant role in the control of the HIV-1 
replication [66]. 

Cellular Immune Responses 
Studies have suggested that viral control is strong-

ly correlated with the cellular and humoral immune 
responses in man [67]. A tight association has been ob-
served between Gag-specific cytotoxic T lymphocyte 
responses and viral control [68,69], and most notably, 
HIV-1 specific-CD8+ T cell responses against viral struc-
tural proteins have been shown to correlate inversely to 
set point levels of viral RNA [69]. More recently, greater 
avidities of Gag-specific T cell and human leukocyte an-
tigen (HLA)-B-restricted responses were seen in vivo in 

all recipients maintained virologic suppression for years 
[54]. This result contributed to the belief that attenuat-
ed virus played a potentially major role in achieving the 
controller phenotype. Eventually, however, many of these 
infected individuals progressed to AIDS, thus minimizing 
the role of defective HIV in the controller phenotype [55]. 

Several reports have concluded that mutations within 
HIV accessory genes can lead to virus control and dis-
ease non-progression [56,57]. These studies support the 
idea of a relative attenuation of viral protein function in 
EC-derived HIV sequences. This includes a possible role 
of mutated HIV vif gene in reduced viral replication in 
ECs [58,59]. Additionally, the presence of a premature 
stop codon and a rare mutation in HIV nef and vif genes, 
respectively, was only observed in some EC patients [60]. 
Also, infection with attenuated forms of HIV-1, includ-
ing deletions in nef, contributed to the absence of disease 
progression in a subset of patients [61,62], and reduced 
nef function has been shown in some ECs compared to 
progressors [63]. Recently, a modestly reduced function 
of HIV gene vpu has been observed in a subgroup of ECs 
[64]. Most certainly, in chronically infected patients, 
even ECs, there is a wealth of genetic diversity in HIV 
sequences, both in plasma and archived as integrated pro-
virus, and how much that contributes to virologic control 
or viral load set point is highly variable and likely very 
patient-dependent.

Whether and to what extent that viral genetic diver-
sity contributes to the controller phenotype remains a 
mostly unanswered question, especially since the in vivo 

Figure 4. Host restriction factors and lentiviral proteins in HIV replication.
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has been associated with high levels of HIV-specific in-
terferon-gamma (IFN-γ) CD4+ T cells and lower levels 
of T-cell activation and HIV-neutralizing antibodies [82-
84]. However, HIV-specific CD4+ T cell responses have 
been suggested not play a direct role in controlling viral 
replication, at least in non-human primates infected with 
simian immunodeficiency virus [85].

CD4+ T Cell Phenotype and Susceptibility to HIV 
Infection

Whether CD4+ T cells from ECs are intrinsically 
more resistant to HIV infection has also been investigat-
ed; these results have been very controversial, dependent 
on the method of CD4+ T cell stimulation. Polyclonal, 
PHA-activated ECs, and LTNP CD4+ T cells were sus-
ceptible to HIV infection [52]. 

In contrast, CD3-activated CD4+ T cells from ECs 
were resistant to HIV infection in culture, independent of 
co-receptor usage [86,87]. This phenotype was associat-
ed with increased levels of the cyclin dependent kinase 
(CDK) inhibitor p21 [86,88]. Further investigation of the 
role of p21 in ECs suggests that it may indirectly block 
HIV reverse transcription by inhibiting CDK2-dependent 
phosphorylation [89]. A recent study demonstrated that a 
subset of ECs have CD4+ T cells that produce higher lev-
els of MIP chemokines, suggesting that these cells may 
be resistant to HIV infection by blocking R5-tropic HIV 
viral entry [90]. Conversely, HIV infection of CD3-acti-
vated CD4+ T cells from ECs and NCs was similar [91]. 
Non-activated CD4+ T cells from ECs were fully sus-
ceptible to HIV infection, similar to those of progressors. 
Higher levels of viral particle production, however, were 
observed in NCs compared with ECs [92,93]. Unstimu-

ECs than in NC [70], consistent with these HIV-specif-
ic CD4+ and CD8+ T cell immune responses occurring 
more frequently in ECs than NCs [71,72]. 

On the other hand, the absence of some of these 
HIV-specific CD4+ T cell responses has been shown to be 
a marker of disease progression [73]. CD8+ T cells from 
ECs have exhibited more polyfunctional capabilities in 
response to HIV antigens compared to NC, with great-
er degranulation and release of perforin and granzyme B 
[74-76]. Furthermore, CD8+ cells from HLA-B*57/5801 
ECs were more efficient at eliminating potentially in-
fected resting and activated CD4+ T cells compared to 
the same cells in progressors [77]. Higher frequency in 
memory CD8+ CD73+ cells, a subtype involved in the 
HIV-specific CD8+ T-cell responses, was observed in 
ECs compared to healthy controls and HIV+ patients, 
even for those on ART [78]. CD8+ T cells from ECs pro-
duced more CD107a, a marker of CD8+ T-cell degranula-
tion following stimulation in response to HIV, compared 
with NC on ART [79]. Also, CD8+ T cells from ECs and 
VCs released more inflammatory cytokines and chemo-
kines than NC. These soluble factors included tumor ne-
crosis factor-alpha (TNF-α) and MIP-1β, which facilitate 
cytotoxic T cell lysis of HIV-infected cells [79,80]. In-
hibiting the function of chemokine ligands in vitro led to 
loss of viral control and replication of HIV in susceptible 
T lymphocytes [81]. This may serve as one method by 
which ECs are able to achieve viral control. 

Other studies performed in CD4+ T cells isolated 
from ECs have been aimed at understanding how these 
individuals are able to control viral replication. CD4+ T 
cells from ECs have been shown to retain their ability to 
proliferate and produce interleukin-2 (IL-2) in response 
to HIV [80,82,83]. Moreover, control of HIV replication 

Table 2. Genetic alleles associated with HIV control.
Genes Author Journal, year [ref]
HLA-DRB1*13 Malhotra, U. et al

Chen, Y. et al
J Clin Invest, 2001 [146]
Hum Immunol, 1997 [147]

MICB, TNF, RDBP, BAT1-5, PSORSICI, HLA-C Limou, S. et al J Infect Dis., 2009 [148]

HLA-B57, HLA-C Fellay, J. et al
Trachtenberg, E. et al

Science, 2007 [105]
Genes Immun, 2009 [107]

HLA-B57, HLA-B27 Pereyra, F. et al Science, 2010 [51]

HLA-DRB1*13 and/or HLA-DRB1*06 Ferre, AL. et al J Virol, 2010 [149]

HCP5, HLA-C Han, Y. et al AIDS, 2008 [108]

HLA-B57 Tang, Y. et al
Migueles, SA. et al
Gao, X. et al
Kiepiela, P et al
Bailey, J.R. et al

AIDS, 2010 [109]
J virol, 2003 [104]
Nat Med, 2005 [150]
Nature, 2004 [102]
J Exp Med, 2006 [103]

HLA-A, HLA-B, CCR3 McLaren, P.J. et al PNAS, 2015 [151]
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lar HIV DNA, suggesting a block at genome integration, 
after nuclear entry [97].

Other groups have studied whether the cellular phe-
notypes observed in natural killer (NK) cells were asso-
ciated with ECs phenotype [98]. Undetectable viremia 
observed in ECs was shown to correlate with a higher 
percentage of activated NK cells [99]. Also, it has been 
suggested an increased NK activity in ECs who lacks 
HIV-1 specific CD8+ T cell responses [100]. Recently, 
the maintenance of CD4+ T cells in ECs has been asso-
ciated with the lack of expression of one of the natural 

lated CD4+ T cells from ECs exhibited reduced levels of 
viral integration, compared to those of NCs and HIV-neg-
ative controls [94]. 

On the other hand, ECs do not exhibit some of the 
immune changes that are observed in NCs. Cytotoxic 
T-Lymphocyte Antigen-4 (CTLA-4) is upregulated on 
HIV-specific CD4+ T cells during acute HIV infection, 
and also correlates with progression of disease. However, 
this phenotype has not been observed on CD4+ T cells 
from ECs [95,96]. Interestingly, ECs harbor lower levels 
of integrated HIV DNA, but higher levels of 2-LTR circu-

Table 3: Summary of retrospective cohort studies of clinical outcomes in ECs.

Study 
population

Sample size (N) Primary 
outcome

Study 
period

Relevant results Ref

HIV+ in 
the military 
healthcare 
system

Total (4,586)
•	 EC (25)
•	 VC (153)
•	 LTNP 10 (52)
•	 LTNP 7 (101)

Time to 
develop AIDS

1986-2006 1. Time to virologic suppression was 
early after infection (less than 1 year 
from the time of sero-conversion) in 
most ECs/VCs
2. ECs/VCs had fewer deaths and AIDS-
defining events, and longer time to AIDS 
and death compared to NC 
3. Individuals achieving LTNP status 
for 10 years had more favorable time 
to AIDS and death compared to LTNP 
reaching their status for 7 years

[43]

HIV 
research 
network

Total (34,000)
•	 EC (149)
•	 High/ low VL 

(12,847/ 12,044)
•	 NC (9,226)

All-cause 
hospitalization 
rates

2005-2011 1. ECs had higher rates of 
hospitalization rates due to CV disease 
and psychiatric illness, compared to NC 
under ART

2. ECs were more likely to be 
hospitalized than VCs (with both high 
and low VL) due to CV diseases 

[135]

US military 
HIV+ 
natural 
history

Total (1091)
•	 EC (33)
•	 VC (188)
•	 Progressors on 

ART (870)

Non-AIDS 2000-2013 1. Non-AIDS infection was the most 
common reason for hospitalizations in 
all groups, ECs, VCs and progressors 
on therapy
2. No differences in hospitalization rates 
associated with CV disease between 
groups, suggesting longer follow up of 
patients may be needed

[134]

HIV+ 
patients 
from a 
University 
Hospital

Total (574)
•	 EC (64)
•	 VC (76)
•	 NC (434)

Non-AIDS 
and AIDS 
events

1996-2011 1. Non-AIDS-defining malignancies 
were the most common reason for 
hospitalization, followed by CV and 
neuropsychiatric illnesses
2. The risk of non-AIDS events was 
comparable in ECs, VCs and NCs
3. Only controllers who retained 
spontaneous control during the entire 
follow-up period had a lower risk of non-
AIDS events

[152]

EC: elite controller; VC: viremic controller; LTNP: long-term non-progressor; LTNP 7: LTNP through 7 years of follow-up; LTNP 
10: LTNP through 10 years of follow-up; NC: non-controller; ART: antiretroviral therapy; CV: cardiovascular; VL: viral load; AIDS: 
acquired immune deficiency syndrome
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in EC and HIV suppressors compared with HIV-nega-
tive individuals, indicating an association between ccr5 
methylation status and HIV disease [116]. DNA demeth-
ylation of regions that regulate PD-1 gene expression in 
HIV-specific CD8+ T cells was also associated with HIV 
control, in both ECs and NC on ART [117].

CLINICAL OUTCOMES OF CONTROLLERS 
VS. NON-CONTROLLERS ON ART

The long-term clinical outcomes of ECs, as com-
pared to NCs, have been mainly focused on progres-
sion to AIDS and AIDS-related death [43]. More is now 
known about the non-AIDS related clinical outcomes of 
ECs and the role that chronic immune activation plays in 
their outcome. 

Several retrospective studies have tried to better un-
derstand the potential benefit of early ART in modifying 
both AIDS-related and non-AIDS related outcomes in 
controllers [118]. A summary of these studies examining 
clinical outcomes of ECs is provided below (Table 3). 

AIDS-associated Clinical Outcomes
CD4+ count is the most well-recognized and reliable 

clinical indicator of HIV disease progression. For many 
years CD4+ number was paramount in treatment guide-
lines regarding timing of ART initiation [119-121]. 

Although early, high HIV RNA levels have been as-
sociated with CD4 decline [120,122], it is subsequent or 
set point viral RNA levels that have a greater prognostic 
impact on disease progression [123]. ECs achieve lower 
early baseline and set point viral RNA levels compared to 
NCs, and therefore have lower rates of AIDS progression 
and associated mortality [44,45,120,122] (Figure 3).

In a retrospective study, Okulicz et al [43] showed 
that among most ECs/VCs, virologic suppression oc-
curred early after infection, and in most cases, during the 
first year from the time of known seroconversion. How-
ever, they did uncover differences between ECs and VCs, 
including more stable and higher CD4 counts in ECs than 
VCs. They also evaluated the time to AIDS and death 
among LTNP through 7 years of follow-up and 10 years of 
follow-up, depending on the duration of non-progression. 
Results showed that individuals achieving LTNP status 
for 10 years had more favorable time to AIDS and death 
compared to those achieving LTNP status earlier. Eventu-
ally, however, some VCs did progress to AIDS and death, 
reaffirming the notion that loss of virologic control and 
immune function occurs in some of these individuals. In 
fact, a study of more than four hundred ECs revealed that 
almost 30 percent of them lost viral control, resulting in 
reduced CD4 counts, underscoring the concept that many 
of these patients may eventually progress to AIDS [124]. 

cytotoxic receptors in NK cells [101].

Host Genetic Factors
Varied approaches have been taken to identify po-

tential host factors and genes involved in virologic con-
trol in both ECs and LTNPs (see Table 2). Several alleles 
within the HLA-B/C haplotype block have been associ-
ated with control, including HLA-B*5701, HLA-C, and 
HCP5 alleles [39,102-109]. Furthermore, the presence 
of the CCR5 delta 32 (∆32) allele (a 32 base-pair dele-
tion in CCR5 which renders the co-receptor cytosolic 
and non-functional) confers protection against serocon-
version, with homozygotes being completely resistant 
to infection by R5-tropic viral strains [110,111]. HIV+ 
individuals who are heterozygous for the ∆32 CCR5 gen-
otype have relatively normal levels of CD4 T cell sur-
face CCR5 expression but delayed disease progression 
[112]. Specific alleles of zinc ribbon domain containing 
(ZNRD1, a subunit of RNA polymerase I) and ring finger 
protein 39 (RNF39, a poorly characterized gene) were as-
sociated with progression [105]. 

Genome-wide association studies (GWAS) of 
HIV-infected cohorts evaluated associations between nat-
urally occurring single nucleotide polymorphisms (SNPs) 
and particular phenotypes of interest (Table 2). In exam-
ining thousands of ECs and NC, the International HIV 
Controllers Study identified over 300 SNPs located with-
in the chromosome 6 significantly associated with HIV 
control [51]. Specific amino acid sequences identified 
within the HLA-B peptide-binding groove were shown to 
have extremely low P values, lower than any other SNP 
found by GWAS, or any other HLA allele [113]. Imputed 
amino acids within the HLA-B peptide-binding groove, 
in addition to an independent HLA-C effect, explained 
the associations and the risk and protective alleles, sug-
gesting that very specific interactions between HLA and 
viral peptides contribute to viral control. In particular, 
B*57:01, B*27:05, B*14/Cw08:02, B*52 and A*25 al-
leles were protective, whereas B*35 and C*w07 con-
ferred risk. Importantly, however, only ~20 percent of 
the protective effect was explained by the identified SNPs 
[51], suggesting that other, unknown genes and mecha-
nisms are responsible for the observed control. 

Additionally, it has been reported that TRIM-5α ex-
pression contributes to viral control in EC patients ex-
pressing HLA-B*57 or HLA-B*27 alleles [114]. 

Investigators have also focused on the role of genetic 
and molecular factors, including those that regulate chro-
matin and DNA methylation, in viral control. Epigenetic 
modifications of the HIV promoter have been associated 
with control of HIV replication and transcription. ECs 
were shown to have higher levels of DNA methylation in 
the 5’-LTR compared with progressors [115]. Similarly, 
lower levels of ccr5 gene DNA methylation were seen 
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and HIV-specific CD4+ T cell responses in ECs may in-
deed play a significant role in reducing VL and delay-
ing disease progression. Also, ECs have SNPs within 
the HLA loci that are significantly associated with viral 
control and finely map to the peptide-binding groove of 
the class I molecule. Functional and biochemical stud-
ies, however, are required to confirm the role of these 
amino acid residues in virologic suppression. Addition-
al studies are necessary to pinpoint novel pathways and 
causal host genes responsible for virologic control, es-
pecially since the SNPs observed in the HLA loci can 
only explain ~20 percent of the EC phenotype. A better 
understanding of the mechanisms that underlie virolog-
ic control and the long-term clinical outcomes of ECs/
VCs may help inform the ‘HIV cure’ agenda and lead 
to a better quality of life, even for HIV+ progressors. 
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