
Targeting bromodomain and
extra-terminal proteins to inhibit
neuroblastoma tumorigenesis
through regulating MYCN

Xiyao Shi1,2, Ying Wang3, Longhui Zhang1,2, Wenjie Zhao1,2,
Xiangpeng Dai1,2*, Yong-Guang Yang1,2,4* and
Xiaoling Zhang1,2*
1Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital,
Jilin University, Changchun, China, 2National-Local Joint Engineering Laboratory of Animal Models for
Human Disease, First Hospital, Jilin University, Changchun, China, 3Department of Laboratory
Medicine, First Hospital, Jilin University, Changchun, China, 4International Center of Future Science,
Jilin University, Changchun, China

Bromodomain and extra-terminal domain (BET) family proteins play important

roles in regulating the expression of multiple proto-oncogenes by recognizing

acetylation of histones and non-histone proteins including transcription factors,

which subsequently promote tumor cell proliferation, survival, metastasis and

immune escape. Therefore, BET family proteins are considered attractive

therapeutic targets in various cancers. Currently, blocking of the BET

proteins is a widely used therapeutic strategy for MYCN amplified high-risk

neuroblastoma. Here, we summarized and reviewed the recent research

progresses for the critical function of BET proteins, as an epigenetic reader,

on tumorigenesis and the therapeutic potential of the BET/BRD4 inhibitors on

MYCN amplified neuroblastoma. We also discussed the combined therapeutic

strategies for BET inhibitor-resistant neuroblastoma.
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Introduction

Epigenetics are the hereditary changes in gene function without alterations in the

DNA sequence, which eventually leads to phenotypic changes (Jeong et al., 2014; Mondal

et al., 2022). Studies have shown that epigenetic regulation of oncogenes plays an

important role in the expression of these genes and subsequent occurrence and

development of human cancer (Hillyar et al., 2020). Furthermore, epigenetic

modifications also regulate the tumor immune monitoring such as activation of

T cells, generation and recognition of tumor antigens (Sun et al., 2022). Histone

acetylation is one of the major epigenetic modifications. Histone acetyltransferases

(HATs) is the main “writer” of histone acetylation, and histone deacetylases (HDAC)

is the main “erasers” to remove acetyl groups from histone and non-histone proteins. The

bromodomain and extra-terminal domain (BET) family proteins act as the “readers” of
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histone acetylation. Dysregulation of BET family proteins which

caused a high acetylation levels promotes transcription of

multiple oncogenes and participates in the occurrence and

development of inflammation and cancers (Anand et al., 2013;

Huang et al., 2017; Otto et al., 2019). Given the critical function of

BET proteins in regulating oncogenes expression and cell

proliferation, they are now considered attractive therapeutic

targets in many cancer types (Chung et al., 2011). Currently,

studies have shown that BET protein inhibitors exhibit

significant anti-tumor effects in vitro and in vivo. A plenty of

BET family protein inhibitors, such as RVX-208, I-BET 762,

OTX 015, CPI0610, and TEN-010, are developed and now in the

clinical trials (Herait et al., 2014; Fu et al., 2015). However, the

emerged drug resistance limited the wide application of BET

inhibitors and it was reported that the BET proteins abundance

confer resistance to the BET inhibitor in multiple cancer types

(Dai et al., 2017; Zhang et al., 2017).

Neuroblastoma (NB) is the most common extracranial solid

tumor in children. Amplification of MYCN is the important

driver of high-risk neuroblastoma. Therefore, MYCN is

considered a remarkable target for drug development in the

treatment of MYCN amplified neuroblastoma (Huang and

Weiss, 2013). BRD4, the well-studied member of the BET

family proteins, plays an important role in MYCN expression

via binding to acetylated histones at the super enhancer sites to

regulate the transcription of MYCN and c-Myc (Henssen et al.,

2016; Taniguchi, 2016). JQ1, the first developed BET inhibitor,

could efficiently suppress the expression of MYCN in

neuroblastoma by inhibiting the binding of BRD4 with acetyl

lysine of histone (Delmore et al., 2011). Importantly, the BET

inhibitors, such as JQ1, I-BET726 and OTX015 exhibited

efficient anti-tumor effect in NB by markedly inhibiting the

growth of neuroblastoma cells and prolonging the survival

time of tumor-bearing mice. Therefore, BET proteins are the

potential therapeutic targets to combat MYCN amplified

neuroblastoma by inhibiting the expression of MYCN and

other related oncogenes.

Here, the critical function of BET proteins as epigenetic

reader in cancer development and the research progress to

target BET protein in neuroblastoma was complicated

summarized and discussed.

The basic role of bromodomain and extra-
terminal protein as an epigenetic reader

Histone acetylation is a reversible biological process

controlled by the acetylation “writer” histone

acetyltransferases (HATs) that transfer the acetyl groups on

histone tails and the “eraser” histone deacetylases (HDAC)

that remove the acetyl groups from histone (Ito et al., 2011;

Noguchi-Yachide, 2016). The BET family proteins are subfamily

of bromodomain protein superfamily. The N-terminal of human

BET family proteins contains two conserved bromodomains

(BD1 and BD2) which can recognize acetylated histones and

regulate gene transcription and the C-terminal contains an extra-

terminal (ET) domain. Bromodomain includes four α spiral slices
(αZ, αA, αB, and αC) and two rings (ZA and BC) (Vollmuth and

Geyer, 2010; Tang et al., 2021). Together with α-helixes, the ring
region form a hydrophobic cavity core to recognize acetyl-lysine

(Shi and Vakoc, 2014; French, 2016). The BET family proteins

consist of BRD2, BRD3, BRD4, and BRDT (Law et al., 2018;

Carlson et al., 2019). BRD4 is the well-studied member of the

BET family due to its overexpression or fusion with other genes

in caner development and drug resistance. BRD4 can bind to

acetyl lysine on super enhancers and promoter of histones and

transcription factors, leading to BRD4 localization in

chromosomes where they recruit other regulatory complexes

to affect gene expression (Kulikowski et al., 2021). The

regulatory complexes include the core positive transcription

elongation factor b (P-TEFb) and Mediator (Shi and Vakoc,

2014; Mochizuki et al., 2021). P-TEFb, which is constituted

CDK9 and cyclinT1, is an important transcription factor in

the process of gene expression. The interaction with

BRD4 dissociates P-TEFb from the 7SK/HEXIM complex and

activates P-TEFb kinases (Jang et al., 2005; Yang et al., 2005).

FIGURE 1
Targeting BET proteins inhibits NB growth through MYCN.
Targeting BET proteins by different BET protein inhibitors such as
JQ1, i-BET726 and OTX015 is therapeutic strategies which are
widely tested in multiple cancer types including MYCN
amplified NB. BET inhibitor treatment could induce cell cycle
inhibition, apoptosis and differentiation by regulating the MYCN
target genes.
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Subsequently, CDK9 phosphorylates C-terminal Ser2 of Pol II

and forms a stable transcription elongation complex, which

ultimately promotes the expression of many target oncogenes

of BET family, such as MYC and Bcl2 (Zhu et al., 2016; Hogg

et al., 2017; Yin et al., 2020). Moreover, enhancer RNAs (eRNA)

such as PSA eRNA could affect the P-TEFb activation in different

cancer types through CYCLIN T1/CDK9 complex

(Schaukowitch et al., 2014; Zhao et al., 2016). BRD4 bromine

domain not only binds acetylated histones, but also interacts with

acetylated transcription factors (TFs) (Cheung et al., 2017). Roe

et al. demonstrated that after TF was acetylated by p300,

BRD4 could be recruited and located at a specific location to

promote the transcription of TF (Roe et al., 2015). In addition,

the ET domain of BRD4 is responsible for additional protein-

protein interactions, making BETs become the function core to

promote the formation of polymerized structure composed of

recruited TFs and coactivators (Wang et al., 2021).

Bromodomain and extra-terminal
proteins are therapeutic targets in cancer

The therapeutic agents targeting chromatin “writers” and

“erasers” have been successfully developed. For example, HDAC

inhibitors showed positive effect on tumor cell inhibition, but

their clinical application is limited due to side toxic effect. Given

that many downstream targets of BET proteins are pro-

oncogenes, therefore, dysregulation of BET is closely

correlated with cancer development and BET proteins have

become novel drug targets. In 2010, the small molecule BET

inhibitor JQ1 (Filippakopoulos et al., 2010) and I-BET

(GSK525762A) was developed (Nicodeme et al., 2010). They

have high affinity to the bromodomain of BET family members

and could competitively bind to acetylated peptides, thus block

the interaction of BET protein with chromatin. The BET

inhibitor I-BET726 developed by GSK has high affinity and

selectivity to BRD2, BRD3 and BRD4 (Gosmini et al., 2014).

In 2012, the I-BET762 was approved for phase I clinical trials. In

2013, Picaud et al. found that PFI-1 inhibitors were acetyl lysine

mimics and could replace acetyl lysine to bind to BRD2 and

BRD4, thereby inhibiting the recruitment of BET protein to

chromatin, down-regulating the expression of MYC and Aurora

B kinases (Alqahtani et al., 2019). It was reported that RVX-208

can bind to BET proteins, especially BRD4, and regulate ApoA-I

expression which playing a therapeutic role in atherosclerosis

(Vertessy et al., 2013). The BET inhibitor OTX015 is a selective

inhibitor for BRD2, BRD3, and BRD4 by inhibiting their binding

to AcH4. In mature B-cell lymphoid tumors, OTX015 showed

positive inhibitory effect by regulating MYC and E2F1 genes

expression and NF-κB/JAK signaling pathways (Boi et al., 2015).

ABBV-075 is a novel BET inhibitor exhibited significant

inhibitory effect on tumor growth in Kasumi-1 cells xenograft

mice model (McDaniel et al., 2017) and prostate cancer which

provides a new option for therapeutic treatment of CRPC

patients (Faivre et al., 2017).

Interestingly, it has been reported that BD1 and

BD2 domains can also regulate different gene sets by

specifically recognizing acetylated lysine residues (Westermann

et al., 2008; Gilan et al., 2020; Fu et al., 2021). For example, BRD4-

BD2 could recruit transcription factor TWIST and BRD4-BD1 is

responsible for the binding to chromatin (Shi et al., 2014). BRDT-

BD1, but not BRDT-BD2, is necessary for spermatogenesis

(Shang et al., 2007). BRD4-BD1 covalent inhibitors, such as

Olinone, ZL0580, MS436, inhibit the transcription of BET

target genes to retard the proliferation of tumor cells (Tang

et al., 2021). However, the ABBV-744, an efficient BRD4-BD2

domain inhibitor, inhibits AR-dependent transcription of genes

in prostate cancer xenograft model (Faivre et al., 2020).

Aberrant c-Myc expression is frequently found in

inflammation and cancer (Leal et al., 2017; White et al., 2019)

and MYC is thus considered a promising therapeutic target but it

is also an “undruggable” target. Mechanismly, BET inhibitors

exert their anti-tumor effect mainly through the inhibition of

MYC, a downstream gene of BRD4, in many cancer types. In

myeloma cell line MM1.S, JQ1 treatment results in

downregulation of MYC expression and inhibition of cell

proliferation (French, 2016). JQ1 and OTX015 treatment

reduced c-MYC expression and led to cell growth inhibition,

cell cycle arrest and apoptosis in acute leukemia cells and patient-

derived leukemic cells (Coude et al., 2015). In addition, BET

inhibitors are also effective in inhibiting medulloblastoma

(Henssen et al., 2013) and hepatocellular carcinoma (Li et al.,

2016) by downregulating MYC expression.

However, BET inhibitor could inhibit tumorigenesis in an

MYC independent manner. NUT midline carcinoma (NMC) is

caused by translocation-derived fusion proteins BRD4-NUT or

BRD3-NUT. JQ1 treatment can detach BRD4 and BRD4-NUT

from chromatin (Filippakopoulos et al., 2010; French, 2016). In

addition, I-BET151, OTX015 and JQ1 inhibit the interaction

between BRD4 and the acetylated NF-κB subunit RelA at lysine

310 site, which subsequently reduced the transcriptional

activation of NF-κB (Wu et al., 2013; Alqahtani et al., 2019).

After androgen ablation, androgen receptor (AR) signal is the

main driver for the development of castration-resistant prostate

cancer (CRPC), JQ1 treatment inhibited the interaction between

BRD4 and AR and subsequently hindered AR-mediated gene

transcription (Asangani et al., 2014; Sahai et al., 2016).

Furthermore, JQ1 showed markedly inhibitory effect on lung

adenocarcinoma through downregulating FOSL1 and its targets

(Lockwood et al., 2012). Moreover, JQ1 also demonstrated anti-

tumor effects via inhibiting the expression of Forkhead box

protein M1 (FoxM1) in ovarian cancer (Zhang et al., 2016)

and aurora A kinase in triple-negative breast cancer (Sahni

et al., 2016), respectively. Importantly, Donati et al.

complicated summarized and discussed the key BRD4 target

genes in normal and tumor cells such as embryonic cells, somatic
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cells, neuron cells, cardiac cells and cancer cells. The genes are

related to osteogenesis, abiogenesis, myogenesis, NF-kB signaling

pathway, estrogen and androgen receptor target genes including

TNFα, IL8, GREB1, TFF1, PSA, HOXB13, CAMKK2, CCND1,

MAPK8/10, and FOSL1 (Donati et al., 2018). Therefore,

exploring more BRD4 downstream targets will help to

understand the underlying mechanisms of the oncogenic

function of BRD4 and other BET family members.

Altogether, BET inhibitors play important roles in cancer

treatment by downregulating the expression of various BET

target oncogenes (Table 1).

The critical role of MYCN in
neuroblastoma

Neuroblastoma (NB), the most common extracranial solid

tumor in children and newborns, originates from neural crest

progenitors especially the adrenal glands (Brodeur, 2003; Zafar

et al., 2021). The 5-years survival rate of patients with high-risk

neuroblastoma are less than 50% (London et al., 2005). MYC-

family transcription factors, including c-Myc, N-Myc and L-Myc,

regulate cell proliferation and survival in multiple cancer types

(Albihn et al., 2010). Among them, MYCN amplification

accounts for 20% of primary neuroblastoma and it is closely

associated with advanced NB and resistance to treatment

(Hansford et al., 2004; Westermann et al., 2008). Moreover,

MYCN amplification occurs in 40%–50% of high-risk NB

(Bell et al., 2010). However, the amplification of other MYC

family members such as MYCL and MYC is infrequently

observed in NB patients. Furthermore, the expression of MYC

is inversely correlated withMYCN expression (Breit and Schwab,

1989). Importantly, in mice embryos, Myc is ubiquitously

expressed through the developmental stages but MYCN

strictly expressed in the hematopoietic stem cells and cells of

developing nervous system (Zimmerman et al., 1986; Trumpp

et al., 2001). The restricted expression profile ofMYCNmight be

mirrored the human NB which arise from the undifferentiated

neural crest cells. Transgenic mouse model indicated that

dysregulation of MYCN expression in neural crest was

sufficient to induce tumorigenesis (Weiss et al., 1997).

Therefore, MYCN has been considered a strong predictor of

poor prognosis and mortality and an attractive target for

therapeutic intervention in high-risk neuroblastoma

(Westermark et al., 2011).

Mechanismly, as a transcription factor, MYCN can regulate

the expression of many target genes, thereby regulating the basic

processes of cell proliferation, protein generation, apoptosis and

differentiation (Eilers and Eisenman, 2008). For example, in

MYCN-amplified neuroblastoma, MYCN can bind to the

promoter of telomerase catalytic subunit TERT, up-regulate

and activate the expression of TERT which is a key function

of amplified MYCN (Nikiforov et al., 2002; Pugh et al., 2013).

Importantly, MYCN can also inhibit the expression of many cell

adhesion related genes and cell cycle negative regulators

(Westermark et al., 2011). Studies have shown that

TABLE 1 BET inhibitors are used in multiple cancer types.

BET inhibitor Cancer type Target(s) Mechanism References

JQ1 MM BRD2/3/4 Downregulation of MYC French, (2016)

Medulloblastoma BRD2/3/4 Downregulation of MYC Henssen et al. (2013)

Hepatocellular carcinoma BRD2/3/4 Downregulation of MYC Li et al. (2016)

NMC BRD4 Evict BRD4 and BRD4-NUT from chromatin French (2016), Filippakopoulos et al. (2010)

CRPC BRD2/3/4 Inhibit AR to activate its targeted genes Asangani et al., 2014

Sahai et al. (2016)

Lung adenocarcinomas BRD2/3/4 Downregulation of FOSL1 Lockwood et al. (2012)

Ovarian cancer BRD2/3/4 Disruption of FoxM1 pathway Zhang et al. (2016)

Triple-negative Breast
Cancers

BRD2/3/4 Suppression of Aurora Kinase Sahni et al. (2016)

RVX-208 Atherosclerosis BRD4 ApoA-I Vertessy et al. (2013)

ABBV-075 Prostate cancer BRD4 inhibition of c-Myc expression McDaniel et al. (2017)

Olinone, ZL0580,
MS436

oligodendroglioma, HIV BRD4-BD1 MYC, BCL2 Tang et al. (2021)

ABBV-744 Prostate cancer BRD4-BD2 AR-dependent transcription of genes Faivre et al. (2020)

JQ1/I-BET 762/
OTX015

Neuroblastoma BRD2/3/4 Downregulation of the expression of MYCN
and Bcl-2

Puissant et al. (2013), Wyce et al. (2013), Henssen
et al. (2016)

OTX015 Primary acute leukemia BRD2/3/4 Downregulation of MYC, Upregulation of
HEXIM1

Coude et al. (2015)

MM, multiple myeloma; NMC, NUT, midline carcinoma; CRPC, Castration-resistant prostate cancer.
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downregulation of MYCN by RNA interference led to cell cycle

arrest and induction of apoptosis (Westermark et al., 2011). In

addition, blocking the upstream signaling pathway that can

regulate MYCN expression and protein stability and targeting

the key downstream targets of MYCNmay be another method to

attenuate the effect of MYCN (Bell et al., 2010; Gustafson and

Weiss, 2010). For example, inhibiting PI3K or mTOR can reduce

the protein level of MYCN due to that PI3K/Akt/mTOR can

maintain the stability of MYCN (Segerstrom et al., 2011).

Therefore, MYCN plays an important role in promoting the

development of NB by activating or upregulating the multiple

downstream genes.

Targeting bromodomain and extra-
terminal protein to inhibit neuroblastoma
through regulating MYCN

Pan-cancer genome studies have shown that the mutation

rate of genes in childhood cancer is significantly lower than that

in adult cancer. Few recurrent mutations are detected in pediatric

neuroblastoma which suggests that epigenetic disorders might

play an important role in the development of childhood cancer

(Iniguez et al., 2018). The result of chromatin

immunoprecipitation (ChIP) indicated that BRD4 is enriched

in MYCN promoter and enhancer regions to facilitate the

expression of MYCN. Therefore, blocking the BET proteins by

molecule inhibitors could be an efficiently therapeutic strategy to

inhibit MYCN function. Currently, three BET small molecule

inhibitors, JQ1, I-BET726, and OTX015, have been examined

and showed significant inhibitory effect on the growth of

neuroblastoma, which provides important support for the

clinical application of BET inhibitors in the treatment of

neuroblastoma patients. JQ1 treatment blocked the

enrichment of BRD4 on the MYCN promoter region, then

downregulated the transcription activity of MYCN and the

expression of MYCN target genes. Furthermore, the

transcription activity of MDM2 was also reduced upon

MYCN inhibition which subsequently increased p53

expression that eventually led to apoptosis (Chen et al., 2010;

Mazar et al., 2020). Moreover, JQ1 could induce cell cycle arrest

in MYCN-amplified neuroblastoma in vitro and block tumor

growth in vivo by inhibiting MYCN expression (Puissant et al.,

2013). Lee et al. demonstrated that JQ1 treatment significantly

increased the expression of key differentiation markers in the

NB cell lines, indicating that the therapeutic effect of JQ1 could

be achieved by promoting the differentiation of neuroblastoma

(Lee et al., 2015). I-BET726, a novel BET small molecule

inhibitor, binds to the hydrophobic cavity of BET family

proteins to block the interaction of BRD4 and acetylated

histone which downregulates MYCN and BCL2 expression to

retard NB cell growth, promote differentiation and apoptosis

(Galderisi et al., 1999; Jiang et al., 2011; Wyce et al., 2013).

Henssen et al. found that MYCN-amplified neuroblastoma cell

lines were more sensitive to OTX015 treatment than those

MYCN non-amplification NB cells in their MYCN-driven

neuroblastoma xenograft model (Henssen et al., 2016).

Altogether, targeting BET proteins such as BRD4 by small

molecule inhibitors of BET proteins is potent therapeutic strategy

to efficiently inhibit the high-risk NB by downregulating MYCN

expression (Liu et al., 2016) (Figure 1).

Potential molecular mechanisms of
resistance to bromodomain and extra-
terminal inhibitor in neuroblastoma

It was well known that, resistance to chemotherapy are

frequently found in multiple cancer types and chemotherapy

strategies. Therefore, the drug resistance of NB tumor cells to

BET inhibitors is also occurred which hampers the clinical

application of the BET inhibitors on NB patients (Felgenhauer

et al., 2018; Iniguez et al., 2018). For example, the abnormal

activation of ERK1/2 signal in JQ1 resistant neuroblastoma cells

attenuated the antitumor role of BET inhibitor by stabilizing

MYCN protein (Liu et al., 2021). Furthermore, the PI3K pathway

activation is another resistance mechanism to BET inhibitors in

NB cells (Iniguez et al., 2018). Anastasia Wyce et al. found the

expression level of BCL2 might affect the sensitivity of NB cells to

BET inhibitor GSK1324726A (Wyce et al., 2013). Moreover, the

activation of NOTCH1 and the expression of GNAS,MDM2, and

NF2 might be the predictors of resistance to BET inhibitors

(Puissant et al., 2013). Although the gene expression signatures

related with sensitivity to BET inhibitors in NB cells have been

examined, but further investigation for their effect in clinical

trials are still needed (Stathis and Bertoni, 2018).

Combined therapeutic strategies applied
in neuroblastoma therapy

The emerging resistance to BET inhibitors affects the

therapeutic effects on cancer patients and the activation of key

oncogenes or inactivation of tumor suppressors are important

mechanisms of BET inhibitor resistance. Therefore, it is

important to explore the new therapeutic strategies by

combining BET inhibitors with other drugs or methods.

However, although the combination for BET and MEK

inhibition showed markedly synergistic effect on tumor cells

growth and apoptosis in multiple NB cell lines, but their

synergistic effect on tumor growth in vivo is limited (Healy

et al., 2020). In 2016, Shahbazi et al. found that JQ1 could

play a synergistic role with HDAC inhibitor panobinostat to

significantly decrease the expression of MYCN by reducing the

transcription of LIN28B in their in vivo and in vitro models

(Shahbazi et al., 2016). Moreover, the combined application of
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BRD4 inhibitor I-BET151 and AURKA inhibitor alisertib

significantly inhibited the neuroblastoma cells growth and

dramatically prolonged the survival time of neuroblastoma

xenograft mice (Felgenhauer et al., 2018). Furthermore, PI3K

inhibitors could overcome the resistance of NGP cell to

JQ1 which indicated that PI3K inhibitors and BET inhibitors

have a strong synergistic effect (Iniguez et al., 2018).

Interestingly, the proteasome inhibitor carfilzomib showed a

synergistic anti-tumor effect with BET inhibitor OTX015.

Since OTX015 is currently in phase II clinical trials and

carfilzomib is an approved anti-tumor drug, the combination

of OTX015 and carfilzomib is likely to be the first targeted

therapy in the clinical trials for patients with TERT-

rearrangement neuroblastoma (Chen et al., 2021). Moreover,

JQ1 and CDK inhibitor dinaciclib showed synergistic effect on

the induction of cytotoxicity inMYCN amplified NB cells but the

combination of AZD5153 and dinaciclib reduced the tumor size

inmice models in vivo through increasing the tumor necrosis and

lymphocyte infiltration (Wood et al., 2021). Specifically,

JQ1 synergized with CDK2 inhibitor Milciclib which has been

used in clinical trials to induce apoptosis and inhibit MYCN

amplified NB cell growth by downregulating the MYC target

genes (Bolin et al., 2018). Although the retinoic acids (RAs) were

applied in the high-risk NB differentiation therapy but the

effectiveness is limited, low dose of JQ1 and RA could

synergistically inhibit NB cells proliferation and induce

differentiation which indicated BET inhibitor and RA might

be a combination therapy in combating NB (Alleboina et al.,

2021). Importantly, p53 inactivation is frequently observed in the

NB tumors after relapse, therefore, the combination of

MDM2 inhibitor CGM097 and BET inhibitor

OTX015 exhibited a synergistic inhibition of NB cell growth

by activating p53 and decreasing expression of MYC family

proteins (Maser et al., 2020) (Figure 2).

Except the BET inhibitors which recognize and bind to BET

proteins to block the interaction of BRD4 with acetylated histone,

the selective BET inhibitors which specifically bind to BD domain

of BRD4 are also developed (Shi et al., 2014). In 2020, Slavish

et al. demonstrated that SJ432, a BD2 Selective inhibitors, could

reduce the MYC protein level in neuroblastoma cell line.

Furthermore, the NB mouse models treated with

SJ432 showed a smaller tumor volume and longer survival

time than those mice treated with JQ1 (Slavish et al., 2020).

Therefore, the exploration of combined therapeutic strategy

and novel selective inhibitors for BET proteins will help to

efficiently combat the neuroblastoma in a more precise manner.

Discussion

In this review, the basic function of BET protein in regulating

gene expression as epigenetic “reader” and the therapeutic effect

of BET inhibitors on cancer development is complicated

discussed. More importantly, we also emphasized the critical

FIGURE 2
Combination of BET proteins inhibitors and other drugs achieved better therapeutic effect on NB growth. Resistance to BET proteins inhibitors
hampered their clinical application. Combination of BET protein inhibitors with other small molecular inhibitors exhibited synergistic inhibition effect
on NB tumors by targeting both MYCN and other genes upregulated or activated in resistance NB tumors.
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role of BET inhibitors in combating neuroblastoma through

regulating MYCN.

It is well known that patients with high-risk NB have a less

than 50% 5-years survival rate (Kang et al., 2006). The

amplification of various oncogenes favorable NB

development are commonly observed in high-risk NB

patients. Notably, the amplification of MYCN is found in

20% of high-risk NB patients and amplification of MYCN is

considered the best genetic marker and therapeutic target for

high-risk NB (Weiss et al., 1997; Valentijn et al., 2012).

However, MYCN is thought to be a “undruggable” target

which make it impossible to directly target MYCN proteins.

Therefore, inhibiting MYCN expression by blocking MYCN

transcription regulators such as the epigenetic reader proteins

is an important therapeutic strategy. BET proteins, the

epigenetic readers, contain two bromodomains which can

recognize acetylated histones and regulate gene

transcription (French, 2016). BRD4 plays an important role

inMYCN expression. BRD4 can bind to acetylated histones at

the super enhancer sites and regulate the transcription of

MYCN and c-Myc (Henssen et al., 2016). The three BET

inhibitors, JQ1, I-BET726 and OTX015 exhibited efficiently

antitumor effect in NB in the in vitro cells and in vivo

xenograft models. However, the results of phase I clinical

trials of BET inhibitors in human cancer patients did not show

ideal therapeutic benefits. Moreover, the expression level of

targeted genes might be an important factor to induce drug

resistance. It was reported that the triple-negative breast

cancer (TNBC) cell lines with higher expression level of

MYCN are more sensitive to BET inhibitor (Schafer et al.,

2020). Furthermore, Alexandre et al. conducted a high-

throughput, cell-based screening of different NB cancer cell

lines, and they found the MYCN amplification was a strong

predictor of sensitivity to JQ1 treatment (Puissant et al., 2013)

which indicated a marked correlation between the MYCN

amplification status and the sensitivity to BET inhibitor.

Given that the side effects and drug resistance might be an

important obstacle for the clinical utilization of BET

inhibitors (Bechter and Schoffski, 2020). The combination

of BET inhibitors with other targeted and epigenetic therapies

might be an alternative therapeutic strategy to conquer the

side effect of single administration of BET inhibitor or drug

resistance. The combination of BET inhibition with PI3K/

AKT/PTEN pathway inhibition can overcome the drug

resistance caused by single usage of the two drugs

(Alqahtani et al., 2019). In addition, BRD4 can be inhibited

together with other epigenetic regulators, such as HDAC, to

achieve the best anti-cancer effect (Mohammad et al., 2019). It

should be noted that the overlapping toxicity should be

carefully considered during the application of combination

therapy. Recent study showed that combined BET and MEK

inhibition showed synergistic effect in inhibiting multiple

NB cells growth and survival in vitro but the antitumor

activity in vivo was limited which is possibly caused by the

expression level of MYCN and other oncogenes such as NF1

(Healy et al., 2020). More importantly, the Proteolysis

Targeting Chimeric (PROTAC) technology was developed

to promote BRD4 for proteasome mediated degradation

which show different mechanisms from the BET protein

inhibitors. Winter et al. created a bifunctional

JQ1 molecule fused with thalidomide, called dBET which

can specifically target BET protein for E3 ligase mediated

degradation, resulting in a higher level of apoptosis in primary

AML cells than those treated with JQ1 alone (Winter et al.,

2015). Importantly, Li et al. found the PROTAC ARV-825

exhibited profound anti-tumor activity in NB cell lines and

NB xenograft mice models by inhibiting the expression of

MYCN or c-Myc (Li et al., 2020). Furthermore, BET degraders

caused more marked cytotoxic effect on multiple cancer types

by degrading the BET proteins than the BET protein inhibitors

(Lu et al., 2015; Raina et al., 2016; Winter et al., 2017).

Whether the BET degraders could more efficiently inhibit

the NB development than BET protein inhibitors or are

valuable in combating drug resistance in NB need further

in deep investigation.

In summary, BET proteins are the important upstream

regulators of MYCN and inhibiting BET proteins by the BET

inhibitors alone or combined with other therapeutic strategies

might be efficient methods to inhibit NB development by

attenuating the expression of MYCN. In addition, exploring

the new inhibitors of BET family proteins and the novel

combined therapeutic strategies have made valuable

contributions to the treatment of NB patients.
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