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Simple Summary: Host immunity has established its role in deciding the course of cancer evolution.
As cellular and molecular components in the tumor microenvironment peripherally appear to be at a
constant interplay, favoring either tumor control or progression, it is vital to decrypt the immunity
elements, which demonstrate the potential to be harnessed towards cancer elimination. Head and
neck cancer has been characterized as densely immune infiltrated but at the same time a highly
immunosuppressive malignancy due to a negative equilibrium between active and dysfunctional
immune cell populations. B-cells constitute the cornerstone of humoral immunity; however, their
role in cancer has been vastly overlooked in comparison to other immune subtypes and reports from
multiple studies fail to show agreement on their prognostic impact. This review focuses on the role
of B-cells on head and neck cancer with the aim to highlight their effect on anti-cancer immunity, as
well as their possible impact on immunotherapy outcomes.

Abstract: Head and neck cancer comprises a heterogenous, highly immune infiltrated malignancy,
defined by a predominantly immunosuppressive tumor microenvironment (TME). In recent years,
PD-1/PD-L1 immune checkpoint inhibitors have become the standard of care treatment, either as
monotherapy or in combination with chemotherapy agents, thus revolutionizing the therapeutic
landscape of recurrent/metastatic disease. As a result, preclinical research is increasingly focusing on
TME composition and pathophysiology, aiming to comprehensively characterize the specific elements
and interactions affecting anti-tumor immunity, as well as to unveil novel predictive biomarkers of
immunotherapy outcomes. While T lymphocytic populations have been vastly explored regarding
their effect on cancer development, B-cells constitute a far less investigated, yet possibly equally
important, aspect of cancer immunity. B-cell presence, either as single cells or as part of tertiary lym-
phoid structures within the TME, has been associated with several anti-tumor defense mechanisms,
such as antigen presentation, antibody production and participation in antibody-dependent cellular
cytotoxicity, and has demonstrated prognostic significance for multiple types of malignancies. How-
ever, immunoregulatory B-cell phenotypes have also been identified both peripherally and within
malignant tissue, bearing inhibitory effects on numerous immune response processes. Consequently,
B-cells and their subsets demonstrate the potential to become valuable cancer biomarkers and acquire
a leading role in future therapeutic strategies.

Keywords: B-cells; head and neck cancer; plasma cells; regulatory B-cells; cancer-associated antigens

1. Introduction

The constantly fluctuating interactions between host immunity and cancer cells have
been well established as a key component of disease control or progression, as well as a field
for the development of novel anti-cancer therapeutics. The concept of immunoediting is
based on these interactions and their pro or anti-neoplastic effects during its three proposed
temporal phases of elimination, equilibrium and escape [1]. A large part of our existing
knowledge is derived from studies focusing on the tumor microenvironment (TME), where
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different subsets of tumor-infiltrating or stromal immune cells and extracellular matrix
molecules exhibit either pro-tumorigenic or anti-tumor qualities [2]. In certain cases, these
qualities have been proven to be treatment-specific, thus rendering immunity elements into
invaluable predictive biomarkers in the clinical setting and establishing the importance
of tumor immune classification in addition to classical pathology assessment in directing
the disease’s natural course. The mechanism of immunotherapy agents currently used
for numerous malignancies depends on reinstating the activity of immune cells, predom-
inantly T-cells, against cancer cells by blocking inhibitory pathways, with programmed
cell death-1 (PD-1)/PD-L1 axis being their most prominent target. While the effect of
T-cells on disease outcome has been well defined, with cytotoxic CD8+ T cell infiltration
correlating with favorable outcomes in multiple studies and CD4+ subsets sustaining
effective anti-tumor immunity [3–5], the role of B-cells is yet to be fully understood. B-cells
comprise the foundation of humoral immunity, and in combination with the function
of their counterpart T-cells, which rely mainly on cellular immunity, they present with
critical implications in both innate and adaptive anti-cancer immune response [6–8]. In
addition to the primary function of antibody secretion by plasma cells, which evokes
antibody-dependent cellular cytotoxicity and phagocytosis, B-cells partake in a series of
immune functions, including antigen-presentation and cytokine secretion within the TME,
reinforcing antigen-specific immune response [9]. Reports on various malignancies, includ-
ing lung, ovarian, hepatocellular, melanoma, cervical, colorectal, prostate and head and
neck cancer, have demonstrated B-cell tumor infiltration as a positive prognosticator for
survival [10–17]. B-cells have been reported to account for one-fourth of all infiltrating cells
in some malignancies [18], and most importantly, to exhibit surface expression of PD-1,
PD-L1, CTLA-4 and B-7 molecules at various levels, suggesting that their activity could
also be modified by currently approved immunotherapy agents [19–23].

Checkpoint inhibitor-based immunotherapy targeting the programmed cell death
1 (PD-1) pathway has acquired a leading role in the management of recurrent or metastatic
(R/M) Head and Neck Squamous Cell Carcinoma (HNSCC) [24]. The response rate to
immunotherapy (RR) varies, as for single-agent treatment it is limited to 13–18% of patients
in the total population (19% and 23% for the CPS ≥ 20, CPS ≥ 1 subgroups, respectively),
and in combination with chemotherapy, RR can reach 36% in the total population (43% and
36% for the CPS ≥ 20, CPS ≥ 1 subgroups, respectively) [25,26], while autoimmune ad-
verse events can become life-threatening without proper management. Thus, when feasible,
surgical excision, followed by radiation therapy in cases of relapse, remains the foundation
of treatment for this cancer [27]. In addition, a subset of immunotherapy-treated HNSCC
patients has been described to paradoxically develop devastatingly rapid tumor growth
following treatment initiation, an event defined as hyper-progression [28]. Given that both
anticipated benefit and catastrophic immune reactions from immunotherapy are tightly
linked to cellular and molecular immune composition within the TME, it becomes clear
that deciphering the leverage of immune cells and their interactions on immunotherapy
outcome could guide clinicians towards deciding on an individualized, optimal treatment
plan for each patient. HNSCC TME presents with certain unique features in compari-
son with other malignancies. The distinct anatomical location of HNSCC, favoring rich
lymphatic vasculature development, and the hypoxic conditions identified within these
tumors, in addition to their main risk factors, including HPV positivity, smoking and
alcohol consumption, lead to the formation of an “immune inflamed” yet simultaneously
immunosuppressive TME [29–31]. In this setting, immune cell subtypes, among T-cells,
tumor-associated macrophages and neutrophils, have been widely characterized for their
immune-stimulatory (CD3+, CD8+, M1 macrophages, NK cells) or anti-inflammatory
function (CD4+/Foxp3+ T cells, myeloid-derived suppressor cells, M2 macrophages, N2
neutrophils) with respective positive or negative effects on HNSCC outcomes [32–34],
while B-cells have only recently attracted researchers’ interest with inconclusive results
regarding their prognostic role, so far [35].
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The present review focuses on the effect of B-cells and their subpopulations in head and
neck cancer in respect to their association with disease outcome and the future perspectives
for their incorporation in therapeutic decisions.

2. B Cells in Anti-Tumor Immunity
2.1. Prognostic Value of Tertiary Lymphoid Structures

B-cells are primarily found in tumors either as cell aggregates in the invasive margin
or as components of tertiary lymphoid structures (TLS), and in some cases, as scarce intra-
tumoral cells. Malignant tissues are the source for the production of both tumor-specific
(TSA) and tumor-associated antigens (TAA), with the former being selectively expressed
on cancer cells as the result of newly acquired somatic mutations, as opposed to the latter,
which can also be found in normal tissue [36]. T-cell priming and B-cell proliferation and
clonal expansion occur within secondary lymphoid organs (SLO), following the uptake and
presentation of tumor antigens by dendritic cells. Resembling the structural and functional
characteristics of SLO, tertiary lymphoid structures (TLS) constitute well-organized ectopic
lymphocytic aggregates formed under chronic inflammatory conditions within the TME,
which perpetually induce local immune responses [37]. B-cells are found in germinal-
center-like formations in TLS and participate in the reactivity against neighboring cancer
cells after differentiation into memory B-cells and antibody-producing plasma cells. The
prognostic significance, as well as the association of TLS presence with clinicopathologic
characteristics, varies immensely among different cancer types [38]. Results from studies
in gastric cancer have depicted the positive impact of TLS on survival [39,40], while TLS
have also been linked to advanced disease in the same tumor type [41]. TLS were deemed
a favorable prognosticator in a study on triple-negative breast cancer [42], while in another
report, they were associated with higher tumor grades [43]. In ovarian cancer, TLS presence,
as was defined by colocalization of CD20+ B-cells with CD8+ cytotoxic T-cells, has been
associated with improved survival outcome, an effect that was not replicated by CD8+
T-cell presence alone [44]. Additionally, a 12-chemokine signature (CCL2, 3, 4, 5, 8, 18, 19,
21, CXCL9, 10, 11, 13) associated with TLS formation has been correlated with improved
prognosis in melanoma, colorectal and breast cancer [45–47]. Similarly, multiple reports
have demonstrated the positive prognostic value of TLS in NSCLC, where these formations
were hypothesized to sustain durable anti-tumor immune response and even facilitate
adaptive immunity activation independently of SLOs [48–51]. Finally, TLS have also been
suggested to reduce the risk of early recurrence in hepatocellular carcinoma [52]. TLS have
also been found to have positive prognostic significance in HNSCC, as was reported by Li
and colleagues. In this study, multiplex immunofluorescence and immunohistochemistry
assays were employed for the characterization of TLS in HNSCC TME, and 26.8% of the
cohort population exhibited TLS presence. TLS positive cases showed association with
prolonged overall and recurrence-free survival (RFS) as opposed to TLS negative cases
(p = 0.005, HR:3.784; 95% CI 1.498–9.562 and p = 0.014, HR:3.296; 95% CI 1.279–8.490 for OS
and RFS, respectively), independently of other known prognosticators, while TLS presence
in combination with CD8+ T-cell and CD57+ NK cell density was found to have the highest
predictive accuracy. TCGA data analysis confirmed that higher expression of TLS-related
gene signatures was also associated with improved OS, and remarkably, TLS were iden-
tified at a high percentage in peritumoral dysplastic tissue areas suggesting a possible
implication in the early stages of HNSCC carcinogenesis [53]. Increased BCL-6+/CD21+
intratumoral germinal center formations have also been described in stage I NSCLC in
comparison with higher disease stages supporting the above findings in HNSCC [54].
Given that TLS have been established as an essential component of anti-tumor immunity,
significant research efforts have been made towards deciphering their potential ability to
predict response to immunomodulatory cancer therapies. Petitprez et al. indicated that
highly B-cell-infiltrated TLS in the TME of soft-tissue sarcomas correlated with improved
PFS and enhanced response rate to PD-1 blockade treatment [55]. Moreover, transcriptomic
analysis performed by Helmink et al. showed that B-cells, as well as TLS, in the TME of
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metastatic renal cell carcinoma and advanced stage melanoma are associated with response
to immune checkpoint blockade (ICB) treatment [56]. Finally, Cabrita et al. discovered a
distinct TLS-associated gene signature predictive of survival outcomes in an ICB treated
melanoma cohort. In the same study, increased B-cell presence in TLS correlated with high
levels of TCF7+ naïve and memory T-cells in contrast to dysfunctional T-cell phenotypes,
which dominated the TME in the absence of TLS [57]. The above findings underscore the
need to investigate TLS as potential predictive biomarkers of response to immunotherapy
in other malignancies as well, including HNSCC.

2.2. Prognostic Role of B-Cells Outside TLS

In a meta-analysis on the prognostic role of tumor-infiltrating CD20+ B-cells (TIL-B)
and plasma cells across 19 different malignancies, including HNSCC, TIL-Bs and plasma
cells, demonstrated an overall positive prognostic impact, in agreement with CD3+ and
CD8+ cell density and contributed to the improved prognostic effect of increased T-cell
presence. The analysis also showed either a positive or neutral prognostic effect of TIL-Bs
in ovarian, breast, gastric, hepatocellular, soft tissue sarcoma, esophageal and biliary tract
cancer while in NSCLC, colorectal, melanoma pancreatic and HNSCC, evidence of TIL-B
prognostic significance were contradicting [58]. Griss et al. characterized plasmablast-like
cells in the TME of human melanoma tissue as an inflammation-sustaining subgroup, vital
for the recruitment of CD8+ cytotoxic T-cells, as well as the enhancement of response to
anti-PD-1 blockade agents [59]. Genomic characterization of immune cell elements among
multiple malignancies revealed a positive correlation of a 60-gene B-cell signature with
OS in NSCLC. The same study illustrated increased BCR diversity, independently of gene
segment expression, as a positive survival prognosticator in melanoma, while the opposite
effect was observed in renal cell carcinoma [60]. De Falco et al. also identified increased lev-
els of plasmablasts in peripheral blood samples of metastatic, non-progressive melanoma,
NSCLC and renal cells carcinoma patients. Further investigation of this patient subgroup
revealed the presence of persistent B-cell clones undergoing progressive class switching,
suggesting a selective anti-tumor antibody response against specific neo-epitopes [61]. The
research focused on the prognostic effect of B-cells in HNSCC has also delivered inconclu-
sive results, suggesting intra-patient, as well intra-tumoral, immune heterogeneity. HNSCC
demonstrates increased B-cell infiltration, and specific phenotypes have been identified
within TME. Flow cytometry analysis of B-cell surface expression markers, performed
on HNSCC tumor tissue, isolated PBMCs and healthy oral mucosa samples, revealed
significantly higher levels of CD86+ activated and CD86+/CD21- antigen-presenting B-cell
phenotypes in tumor samples compared with PBMCs and non-cancerous mucosa, while
memory B-cells characterized by IgD−/CD27+ phenotype were increased in HNSCC pa-
tients’ tumor tissue and peripheral blood as opposed to healthy donors. In the same study,
by Lechner et al., CD27+/CD38hi/CD20− plasmablast were also higher in tumor samples
and HNSCC PBMCs than in healthy mucosa, while CD27+/CD38hi/CD138hi/CD20−
plasma cells showed a differential localization in tumor tissue rather than PBMCs [17].
Pretscher and colleagues demonstrated the association of increased peritumoral CD20+ B-
cell presence in HNSCC metastatic lymph nodes with prolonged disease-free survival [62],
a finding that was confirmed by an additional study by Suárez-Sánchez et al., where
CD20+ primary-tumor-infiltrating B-cells were associated with improved disease-specific
survival [63]. The positive prognostic impact of CD20+ B-cells has also been indicated in
an analysis of TCGA quantitative proteomics and transcriptomics data where high levels of
expression of MS4A1, the gene encoding for CD20, were correlated with increased overall
survival as opposed to CD20 protein expression, which failed to demonstrate statistical sig-
nificance [64]. CD20+ B-cell density has also been associated with lower T-stage in HNSCC,
suggesting a potential role of B-cells taming cancer progression in earlier disease stages [65],
although other studies found no correlation of B-cell density with stage, indicating the need
for investigation of this hypothesis in larger patient cohorts [17]. The importance of B-cells
in preventing cancer development has been illustrated in a long-term follow-up study on
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the effects of B-cell depletion after anti-CD20 (Rituximab) treatment, where a lack of B-cells
was linked to the development of secondary malignancies [66]. Nonetheless, different
reports have described a pro-tumorigenic effect of B-cells on HNSCC. B-cell depletion
by anti-CD20 mAb treatment resulted in augmented responsiveness to chemotherapy in
murine squamous carcinomas, which was attributed to increased CD8+ recruitment under
the influence of macrophage-secreted CCR5 [67]. In contrast, the response to PD-1 blockade
has been reported to be unaffected by B-cell depletion [68]. De Visser et al. proposed a
mechanism by which B-cells might participate in tumorigenesis in premalignant, chronic
inflammatory tissue samples from HPV16+ mice. The authors concluded that activated
B-cells can acquire the role of the distal orchestrator of innate immunity by immunoglob-
ulin production, which influences tissue-resident immune cell functions and results in
the formation of immune complexes [69]. A subsequent study by Andreu and colleagues
reported similar findings, supporting the hypothesis of B-cells’ implication in de novo
carcinogenesis [70]. Accordingly, in castration-resistant prostate cancer, tumor-infiltrating
B-cells have been suggested to drive tumor progression via lymphotoxin production [71].

2.3. Direct Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity

Antigen presentation has been described as yet another important physiologic func-
tion of B-cells, as they exhibit the ability to drive T-cell expansion and memory formation
after initial priming by dendritic cells, as well as to participate in antigen cross-presentation
to other APCs [72,73]. Bruno et al. demonstrated that activated tumor-infiltrating B-cells in
NSCLC demonstrate the capacity to present antigens to CD4+ T-cells and transform them
into a highly activated phenotype [74]. Furthermore, B-cells have been found to engage
in direct cytotoxicity and are essential for antibody-dependent cell-mediated cytotoxicity
(ADCC). Hagn et al. described the CD40 ligation-dependent B-cell differentiation into
granzyme B-producing cells under the influence of IL-21, suggesting that B-cells undertake
a cytotoxic role in the absence of adequate antigen-specific T-cell activation, as occurs
in early tumorigenesis [75]. An additional mechanism of B-cell direct cytotoxicity has
been proposed by Tao et al.; the authors reported that B-cells expressing FasL prompted
the death of Fas+ tumor cells employing Fas/FasL pathway in a murine breast cancer
model [76]. ADCC is based on the interaction of antibodies—primarily of the IgG, IgA
and IgE classes—coating target cells, with Fc receptors found on the surface of effec-
tor cells—mainly NK cells, but also monocytes, neutrophils, eosinophils and dendritic
cells. This interaction, which results in the phagocytosis-independent death of target cells,
has become the cornerstone for the development of anti-cancer targeted therapies using
artificially synthesized monoclonal antibody agents [77] and at the same time constitutes
an important physiologic mechanism of B-cell anti-tumor activity. Gilbert et al. identified
the production of tumor-antigen-specific IgG antibodies by mature B-cells isolated from
peripheral blood of melanoma patients. B-cell cultures from melanoma patients had the
ability to produce antibodies targeting cancer cells, in contrast to healthy controls, leading
to disease control by ADCC [78].

3. HPV-Specific B-Cell Implications

Infection with a high-risk HPV variant, mainly HPV 16 and 18, is etiologically linked
with 38,000 newly diagnosed HNSCC cases worldwide, with the highest prevalence ob-
served in developed countries, most prominently in North America and Europe [79].
HPV-related HNSCC is regarded as a distinct disease, demonstrating favorable prognosis
most commonly attributed to its characteristic molecular oncogenic patterns and immune
landscape [80]. Importantly, HPV infection has been described to drive the production of
specific TAAs, which stimulate a robust anti-tumor response, as well as TME architecture
and composition. Regarding B-cell infiltration, a differentially expressed gene signature
characterizing B-cells has been identified for HPV-related HNSCC, while T-cell immune
signature showed no difference in respect to infection status [81]. Russel and colleagues
identified increased CD20+ B-cell presence in HPV+ as opposed to HPV- cases, although
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increased CD20+ presence was not significantly correlated with survival in that cohort [82].
Nonetheless, results from two independent research groups indicate that the improved
prognosis of HPV-related disease might be linked to higher B-cell infiltration in addition to
their cross-reaction with T-cells. In the first study, Hladíková et al. reported higher B-cell
density among HPV+ tumors and described a positive prognostic association of increased
CD20+ B-cell density, as well as of CD20+/CD8+ cell-to-cell interaction in the HPV-related
subgroup [83]. Additional findings from the comparative transcriptomic analysis of im-
mune cell composition between HPV positive and negative tumors showed that high
infiltration with memory B-cells, which are chemotactically attracted to the TME following
CXCL13 production by CD4+ T-cells, correlated with improved outcomes in HPV-related
tumors [84]. Recently, Wieland and colleagues reported that antibody-producing cells lo-
cated in the TME of HPV-related tumors give rise to HPV antigen-specific antibodies, with
E2 viral protein being their most common target. Moreover, they characterized an activated
HPV-antigen-specific memory B-cell phenotype within the TME, consistent with chronic
HPV infection and identified the presence of multiple antibody-secreting, activated and ger-
minal center B-cells organized in clusters mainly in tumor-stroma [85]. Kim et al. reported
the association of B-cell gene expression with the prolonged OS using RNA-sequencing
analysis on HPV+ HNSCC. In the same study, exposure of an HPV+ murine model to
PD-1 inhibition and radiotherapy led to increased proliferation of B-cells, plasma cells and
antigen-specific B-cells, as well as to the expansion of B-cell germinal center formation [86].
Exploring the potentially distinct effect of B-cell phenotypic variation and localization
within the TME among HPV-related and HPV-negative tumors, Ruffin et al. revealed that
the former are characterized by naïve and germinal center B-cells, while the latter are
predominantly infiltrated by memory B-cell subpopulations and plasma cells. Furthermore,
within the HPV-positive group, the presence of TLS enriched with germinal center B-cells
correlated with improved OS and importantly, extensive infiltration with this specific B-cell
phenotype was associated with longer PFS irrespective of TLS formation [87]. In concor-
dance with the theory that distinct phenotypic subpopulations, rather than overall B-cell
presence in TLS facilitate anti-tumor response, a recent study on cutaneous melanoma
metastasis concluded that AID+ B-cells undergoing somatic hypermutation correlated
with improved OS, as opposed to mature CD21+ B-cells, which conferred worse survival
outcome [88].

4. Immunity Impeding B-Cell Phenotypes
4.1. Regulatory B-Cells

Regulatory B-cells (Bregs), a heterogenous population of B-cells characterized by the
expression of a variety of surface markers, have also been investigated regarding their activity
and cell-to-cell interactions within the TME [89]. Bregs were first identified and investigated
in autoimmune disease [90], chronic inflammatory and allergic conditions [91–93] and solid
organ transplantation as IL-10-producing cells with various phenotypes, which promote
Treg development and mitigate effector CD4+ and CD8+ T-cell activity [94]. While Bregs
primarily drive immunosuppression, discordant results from multiple studies indicate that
their effect on cancer evolution demonstrates a dual nature, tipping the scale either towards
disease control or progression depending on their various phenotypes (Table 1). Over a
decade ago, Bregs were identified as the potential mediators of squamous carcinogenesis
under the influence of TNF-a in murine models [95]. Additionally, a distinct IL-10-producing
B-cell sub-phenotype named “B1” has been shown to drive macrophage polarization
towards the immunosuppressive M2 phenotype in vitro [96], while CD1dhiCD5+ Bregs
have been implicated in the downregulation of T-cell-mediated inflammation in mice [93].
Moreover, in healthy individuals, CD19+CD24hiCD38hi Bregs have been shown to re-
strain autoimmunity by inhibiting TH1 and TH17 T-cell differentiation and promoting the
development of Tregs [97]. Another subset of tumor-infiltrating Bregs characterized by
CD19+CD38+CD1d+IgM+CD147+ phenotype has been reported to demonstrate granzyme
B expression after IL-21 activation and subsequently contribute to T-cell suppression via
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TCR degradation and overexpression of regulatory molecules (IL-10, CD25, IDO) [98].
Furthermore, B7-H1High CD81High CD86High CD62LLow IgMInt Bregs expressing Stat3 have
been implicated in enabling metastatic tumor growth following TGFβ-dependent differen-
tiation of CD4+ T-cells into Tregs [99]. Importantly, results from a study on a 4T1 murine
breast cancer model showed that CD20+ B-cell depletion by anti-CD20 mAb infusion
provoked preferential enrichment with CD20LowCD137Low regulatory B-cells leading
to tumor progression and metastasis, thus demonstrating the essential role of B-cells in
disease control [100].

Table 1. Breg phenotypes in cancer.

Breg Phenotype Location Tumor Type Function/Effect

CD19+CD38+CD1d+IgM+CD147+ Tumor tissue Multiple solid tumors T-cell inhibition/exhaustion
[98]

Stat3, B7-H1High CD81High
CD86High CD62LLowIgMInt Tumor tissue 4T1 breast cancer

murine model

CD4+ Treg
expansion/metastatic tumor

growth [99]

CD20LowCD137Low Tumor tissue 4T1 breast cancer
murine model

Tumor
progression/metastasis [100]

CD5(hi)CD24
(−/+)CD27(hi/+)CD38(dim) Tumor tissue HCC T-cell exhaustion through

PD-1/PD-L1 pathway [101]

LAP/TGF-β1, CD80, CD86, PD-L1 Tumor Tissue EMT-6 breast cancer
murine model

Immunosuppression, tumor
progression [102]

CD20+CD27−, IgMhi and IgDhi PBMCs Melanoma

T-cell suppression through
PD-1/PD-L1, association with

advanced stage and
metastasis [103]

CD39+CD73+, ADOhi Tumor tissue, PBMCs HNSCC Effector B-cell
suppression [104]

CD19+IL-10+ Tumor tissue HNSCC Promotion of CD4+ Treg
differentiation [105]

CD24hiCD38hi Tumor draining LNs HNSCC Absence of LN tumor
infiltration/Low grade [106]

PBMC: peripheral blood mononuclear cells; HCC: hepatocellular carcinoma; GC: gastric cancer, LN: lymph node.

Furthermore, findings on the function and protein expression of certain Breg pheno-
types have illustrated them as eligible targets for ICB therapy. In hepatocellular carcinoma,
a distinct phenotype of CD5(hi)CD24(−/+)CD27(hi/+)CD38(dim) Bregs displaying high
levels of PD-1 expression has been observed to exert pro-tumorigenic effects and T-cell
suppression through IL-10 production after activation of the PD-1/L1 pathway [101]. More-
over, in a study on systemic lupus erythematosus CD19+CD24hiCD38hi Bregs have been
shown to impede Th1 differentiation following IL-10 production, an effect that was over-
come by the addition of CD80 and CD86 mAbs, which are known ligands for the CTLA-4
immunoregulatory molecule [107]. The same phenotype was investigated by Wang et al.
in gastric carcinoma, where it was found to promote immunosuppression by the reduction
of IFN-γ and TNF-α secretion by CD4+Th cells and was associated with CD4+FoxP3+
Treg density [108]. An additional study on EMT-6 mammary tumor implanted in mice
revealed that B-cells acquire a regulatory phenotype (LAP/TGF-β1, CD80, CD86, PD-L1)
after cell-to-cell interaction with cancer cells and their immunosuppressive dynamic can
be counteracted by mAbs against TGF-β and PD-L1, leading to tumor shrinkage [102].
In metastatic melanoma, PD-L1+-circulating B-cells were associated with the advanced
disease stage and have increased presence in metastatic rather than primary sites. This sub-
population presented a naïve-like phenotype (CD20+CD27-), high IgM and IgD production
compared with total B-cells and most importantly, suppressed T-cell activity through PD-L1
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expression [103]. A similar Breg phenotype (PD-1-PD-L1+CD19+) has been described to be
acquired by B-cells under the influence of MDSCs in breast cancer TME [109]. Bregs have
also been investigated as potential therapeutic targets for various other agents in preclinical
studies, with the aim of overcoming their immunoinhibitory effects and reinstating efficient
anti-tumor immunity. The use of resveratrol in a 4T1 metastatic breast cancer murine model
achieved shrinkage of lung metastasis, a result that was attributed to Breg inhibition, and
consequently, TGF-β downregulation, through inactivation of Stat3 [110]. Similarly, in the
same tumor type, inactivation of 5-lipoxygenase/leukotriene/PPARa pathway by MK886
Breg inhibitor resulted in a significant reduction of tumor growth and elimination of its
metastatic potential [111]. The most important effector B-cell and Breg functions in the
TME are illustrated in Figure 1.
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Figure 1. Demonstration of major B-cell functions within the TME. Effector B-cells, plasmablast and plasma cells enhance
anti-tumor immunity by tumor-specific antibody production, ADCC, antigen presentation and T-cell activation (Left). Bregs,
on the other hand, promote immunosuppression by T-cell exhaustion, effector B-cell inhibition, Treg expansion and tumor
proliferation via inhibitory cytokine production. ADCC: antibody-dependent cell-mediated cytotoxicity; GZMB: granzyme
B; TCR: T-cell receptor; MHC: major histocompatibility complex; ADO: adenosine; Th1: T helper cell type 1/17; TGF-β:
Transforming growth factor-beta.

4.2. Regulatory B-Cells in HNSCC

In HNSCC, Breg function has also been shown to result in the abrogation of T-cell
anti-tumor activity; however, results on their prognostic effect remain contradicting.
CD24hi/CD38hi/CD19+ Bregs were found in higher density in comparison with CD19+
B-cells in HNSCC TME and this regulatory phenotype preferentially localized in tumor
tissue rather than in PBMCs isolated from the same cases [17]. Jeske and colleagues recently
reported the effects of an adenosine (ADO)-producing Breg subpopulation characterized
by CD39 and CD73 surface marker expression using human HNSCC tissue samples and
murine squamous carcinoma models. Cells of this specific phenotype were found to be
preferentially located within the TME in comparison with peripheral blood and promoted
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immunosuppression by inhibition of B effector cells’ function, mediated by the downregu-
lation of Bruton’s tyrosine kinase phosphorylation by ADO [104]. Additionally, Zhou et al.
described a CD19+IL-10+ Breg subpopulation in tongue squamous cell carcinoma, which
promoted the differentiation of CD4+ T-cells into Tregs and correlated with reduced OS, an
effect that was dependent on Treg density in multivariate analysis [105]. Opposite results
were reported in a study by Nourouzian et al., where atypical memory B-cells (CD27–IgM–
IgD–) and B-regs presenting a CD24hiCD38hi phenotype isolated from non-sentinel lymph
nodes (LNs) of HNSCC patients were associated with an absence of LN cancer infiltration
and lower histological grade, both known as good disease prognosticators [106]. Although
contradicting, the above results can be interpreted as the reflection of the prognostic
variability of Bregs depending on specific phenotypes and tissue localization.

5. Conclusions

HNSCC tumor biology and TME composition have been investigated in depth in an
effort to recognize the precise elements that decide the fate of tumor development, and
at the same time, to identify specific components susceptible to manipulation in favor of
successful treatment. With immunotherapy gaining the leading role in advanced HNSCC
treatment, tumor-infiltrating immune cells have been put under the spotlight in search of
the optimal balance for cancer obliteration. Current research evidence suggests that B-cells
constitute a pivotal player in anti-tumor immunity and exhibit the potential for modulation
towards disease control and/or elimination in multiple types of malignancies, including
HNSCC. Notably, as distinct B-cell phenotypes evoke either immunity-stimulating or
pro-tumorigenic effects, either directly or via interaction with other immune cells, it is
essential to acquire a comprehensive understanding of their mechanisms of action and
specify targets among B-cell-related markers that could contribute to treatment response,
depending on their activation or inhibition by therapeutic agents.
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