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The extracellular matrix is rapidly emerging as a
prominent contributor to various fundamental processes of
tumorigenesis. In particular, decorin, a member of the small
leucine-rich proteoglycan gene family, is assuming a central
role as a potent soluble tumor repressor. Decorin binds and
antagonizes various receptor tyrosine kinases and inhibits
downstream oncogenic signaling in several solid tumors.
Among other functions, decorin evokes cell cycle arrest,
apoptosis, and antimetastatic, and antiangiogenic programs.
Recent work has revealed a paradigmatic shift in our
understanding of the molecular mechanisms underlying its
tumoricidal properties. Decorin adversely compromises the
genetic signature of the tumor microenvironment and
induces endothelial cell autophagy downstream of VEGFR2.
Moreover, decorin selectively evokes destruction of tumor cell
mitochondria downstream of Met through mitophagy. Acting
as a partial agonist, decorin signals via proautophagic
receptors and triggers procatabolic processes that parallel the
classical tumoricidal properties of this multifaceted
proteoglycan.

Introduction

Solid malignancies are complex entities that arise from intricate
associations among a heterogeneous population of cells derived
from several epigenetically and transcriptionally distinct lineages.1,2

The impressive assortment of recruited mesenchymal and inflam-
matory cells within the elaborate network of the extracellular
matrix (ECM) is emerging as a critical entity defining chemothera-
peutic responsiveness and clinical outcomes.3 The ECM acts as a
bidirectional signaling hub, linking the local microenvironment
with the tumor cells.4 This communicative epicenter provides
instructional cues in the form of solid-phase ligands5 and/or solu-
ble signals that are capable of modulating multiple aspects of
tumorigenesis and angiogenesis.6-9

The diverse regulatory properties exerted by the multifunc-
tional nature of ECM molecules are embodied and exemplified
by the small leucine-rich proteoglycan (SLRP) gene family.10,11

Decorin, the prototypical SLRP of this 18-member strong clan,
is composed of a singular N-terminal glycosaminoglycan chain
of dermatan or chondroitin sulfate, 12 leucine-rich tandem
repeats, and a C-terminal Ear domain.12 Decorin was named for
its function as an avid collagen-binding partner for fibrillogene-
sis,6,13 and regulates various biomechanical properties of colla-
gen-containing tissue, including tendons and skin.14-17

Subsequent paradigm-shifting work demonstrated a strong affin-
ity of decorin for various receptor tyrosine kinases (RTKs) that
resulted in potent and sustained oncostasis and angiostasis.
Moreover, decorin binds and sequesters numerous growth fac-
tors,18 multiple matrix constituents,19 and indirectly suppresses
downstream signaling.19 Collectively, these studies revealed that
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decorin functions as a soluble tumor repressor that counteracts
tumorigenic and angiogenic growth, and the protein has aptly
been designated “a guardian from the matrix."19

Decorin is currently emerging as a multifaceted and multifunc-
tional signaling molecule with roles beyond the tumor stroma.
Pertinent examples include inflammatory responses,8,20,21 delayed
hypersensitivity,22 wound healing,23,24 keratinocyte function,25

hepatic healing,26 asthma,27 diabetic nephropathies,28 myogene-
sis,29 shaping hematopoietic stem cell niches,30 convergent exten-
sion,31 and renal diseases.32,33 We are currently in the midst of a
SLRP renaissance in which decorin is challenging established can-
cer biology precepts for tumorigenic and angiogenic suppression
by matrix constituents.34

In this review, we will evaluate the consequences of autophagic
and mitophagic processes that occur downstream of proautophagic
RTKs and impinge upon the tumor microenvironment and the
tumor proper. Importantly, autophagic and mitophagic processes
evoked by decorin are above the operative threshold for ambient
homeostatic function, thus controlled or limited autophagy may
result in revitalization of cellular processes. The balance between
excessive and insufficient autophagy is crucial as either may result
in a pathological state. We will critically assess these novel avenues
and their unique interfaces with the well-established tumoricidal
properties of this versatile proteoglycan and discuss potential thera-
peutic interventions for decorin bioactivity.

Localization of Decorin Within the Tumor
and the Tumor Stroma

Understanding the biological effects of decorin on the tumor
first requires a discussion of its expression patterns and localiza-
tion within the tumor compartments. The degree of decorin
expression in various types and grades of tumors has recently
been reported and reveals several apparent discrepancies. Clini-
cally, loss of decorin within the tumor microenvironment serves
as a poor prognosticator of invasive breast cancer.12,35 Moreover,
by querying the Human Protein Atlas, Bozoky et al.36 demon-
strated a marked reduction in decorin levels within the stroma of
many solid tumors, including bladder, breast, cervical, colon,
kidney, ovary, pancreas, prostate, rectal, skin, stomach, and testis.
Additionally, decorin expression is significantly reduced in the
stroma of low- and high-grade bladder carcinomas, but is high in
the submucosa and deep tumor stroma.37 Decorin expression is
also decreased in multiple myeloma and monoclonal gammop-
athy of undetermined significance.38,39

However, other studies report an increase in the amount of
stromal decorin in cancer, primarily within colon40-42 and
breast43,44 carcinomas. Given the breadth of the decorin interac-
tome with multiple matrix constituents,19 a role for decorin in
orchestrating higher-order matrix assemblies and coordinating a
desmoplastic reaction emerges. Formation of these collagen-rich
structures (comprised of collagen II and IV microfibrils) and the
propensity for sequestering potent antitumorigenic (e.g., decorin)
and antiangiogenic factors (e.g., decorin and matrilin-145) into
large complexes favor tumor suppression.7,19 We believe that

profuse amounts of decorin within the stromal compartments of
these tumor types would negatively regulate the juxtapositioned
RTKs expressed by the growing neoplasm in a paracrine fashion.

Moreover, and pertinent for tumor parenchyma, multiple
studies demonstrate a complete loss of decorin expression by the
tumor cells.19,46 Deficiencies of decorin have been found in mul-
tiple tumors including prostate carcinomas,47 urothelial malig-
nancies,48 and hepatic carcinomas.49 Interestingly, an unbiased
deep transcriptome sequencing approach revealed that decorin
expression is markedly decreased in hepatocellular carcinomas.50

In the case of urothelial carcinomas, decorin mRNA expression is
highly reduced in superficial51 and infiltrating tumors.52 Certain
neoplasms have an avid proclivity for hypermethylation of the
decorin promoter, thereby effectively silencing expression for
unchecked tumor progression.19

Further evidence for the oncostatic role of decorin as a tumor
repressor stems from strong genetic models in which decorin was
unconditionally ablated.53 Under conditions of a high-fat (i.e.,
Western) diet, decorin (Dcn)-null mice develop spontaneous
intestinal tumors.54 Moreover, compound knockout mice for
Dcn and Tp53 accede to aggressive lymphomas,55 whereas re-
introduction of decorin via adenoviral delivery or systemic
administration significantly counters tumorigenic and angiogenic
growth in a variety of solid tumors.46,56–60 Collectively, these
data provide firm support for a tumor repressive role of decorin
in a physiologically relevant setting.

Decorin Promotes a Proautophagic Signaling
Program in the Tumor Microenvironment

Intravital imaging of exogenously delivered near infrared-
labeled decorin via tail vein injection demonstrated avid and
exclusive targeting of orthotopic tumor xenografts.61,62 Impor-
tantly, decorin is not targeted to or retained by any other organ
system and is subsequently secreted via the urine.61 Systemic
delivery of decorin after establishment of triple-negative breast
carcinoma orthotopic xenografts permitted high-resolution and
simultaneous transcriptomic profiling of the host stromal com-
partment of mouse origin and the tumor parenchyma of human
origin.59 Unexpectedly, decorin evoked significant transcrip-
tomic changes within the host-provided tumor microenviron-
ment without significantly modulating the mRNA profile of the
human breast carcinoma63 Collectively, these changes reprog-
rammed the tumor stroma in a manner that disfavored tumori-
genic growth and metastases.19,59

Of the multitude of genes that are differentially expressed upon
chronic decorin treatment, a small subset of targets have emerged
that include a poorly-studied imprinted tumor suppressor known
as Peg3.63-65 The induction of a tumor suppressor gene is clearly
congruent with the antitumorigenic activity of decorin19 Further-
more, PEG3 is epigenetically silenced (via promoter hypermethyla-
tion of the active allele) in multiple gynecologic and neural
tumors.66,67 Our interest in pursuing Peg3 stemmed from its pre-
viously described role in the suppression of Wnt/b-catenin signal-
ing in a non-canonical manner,68 which mirrored the bioactivity
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of decorin in a cervical carcinoma model.61 Our interest intensi-
fied when we found that Peg3 colocalized with subcellular struc-
tures highly reminiscent of autophagosomes upon decorin
stimulation of macrovascular and microvascular endothelial cells
used as a surrogate for the tumor stroma.69 Further investigation
using the specific autophagic markers Beclin 1 and LC, confirmed
that these Peg3-positive structures were autophagosomes (Fig. 1A,
B).70 Intriguingly, Peg3 is required for the decorin-induced tran-
scriptional activation and accumulation of Beclin 1 and LC3;
moreover, Peg3 is required for maintenance of basal Beclin 1 levels
in endothelial cells.70,71

Mechanistically, decorin induces Peg3-dependent autophagy
downstream of VEGFR2,71 the primary RTK for endothelial cell
homeostasis. In contrast to the aforementioned function of
decorin as a pan-RTK inhibitor, decorin acts as a partial
VEGFR2 agonist for autophagic initiation (Fig. 1A).71 Decorin
binds the VEGFR2 ectodomain (IgG domains 3–5) that partially
overlaps with the binding site of VEGFA (IgG domains 1–3). By
doing so, it activates the proautophagic AMPKa/Vps34 signaling
arm72,73 and concurrently represses the antiautophagic PI3K/
Akt/mTOR/p70S6K pathway (Fig. 1A).74,75 Collectively, the
net cellular output of these concerted signaling events promotes
the formation of a Peg3–Beclin 1–LC3 ternary complex,

induction of proautophagic gene targets, and concomitant dis-
ruption of the inhibitory Bcl-2–Beclin 1 complex.75,76 Decorin
rapidly promotes activation of the catalytic core of the central
energy sensor, AMPKa, at Thr172 in a VEGFR2-dependent
manner within a nutrient-rich setting.75

In theory, it is possible that decorin mediates activation of
AMPKa by recruiting ULK1 (also known as ATG1) and pro-
moting the formation of AMPKa–ULK1 heterodimers for the
initiation of autophagy,77,78 with further and protracted antago-
nism of mTORC1 components (such as Raptor, Rheb, and
GbL).77 Notably, recent studies have elaborated an inhibitory
function for EGFR and Akt signaling through phosphorylation
and consequent inactivation of Beclin 1 (BSCN1) that is condu-
cive to autophagic suppression and chemoresistance.73,79 As
many RTKs share the core signaling machinery, it is possible that
decorin abrogates phosphorylated Beclin 1 downstream of
VEGFR2, thereby permitting autophagic activation and down-
stream supramolecular complex assembly.75

Successful autophagy relies on positive flux, lysosomal fusion,
and the successful formation of autophagolysosomes.80,81

Decorin may positively regulate transcription factor EB (TFEB),
a crucial sensory node between autophagy and lysosomal forma-
tion.82 Intriguingly, TFEB is held inactive and sequestered

Figure 1. (A) Schematic representation of the downstream signaling events following binding of decorin to VEGFR2 and Peg-3–dependent endothelial
cell autophagy. Please refer to the text for details. (B) Confocal laser microscopy of human umbilical vein endothelial cells (HUVECs) after treatment for
6 hours with vehicle or 200 nm human recombinant decorin. Please note the formation of autophagosomes, as identified by immunostaining for LC3
(green) or beclin 1 (red). The bottom row of panels demonstrates colocalization of autophagic markers (yellow), thereby confirming the identify of these
subcellular structures. Nuclei are stained blue with DAPI. All images were taken with the same exposure, gain, and intensity. Scale bar D 5 mm.
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within the cytosol (at the lysosomal membrane) by inhibitory
mTOR/LYNUS signaling.83,84 As decorin inactivates mTOR
downstream of VEGFR2, in the presence of decorin TFEB may
become dephosphorylated (either passively or actively) and trans-
locate into the nucleoplasm for the activation of proautophagic
targets (e.g., BECN1 and CLEAR network genes such as
PPARGC1A),82 potentially in a Peg3-dependent manner.

One of the key tenets of decorin bioactivity is the suppression
of rampant neovascularization.85 Notably, biglycan, the closest
member of the SLRP gene family, has opposite effects to decorin
in both inflammation86-88 and angiogenesis,89,90 demonstrating
specific bioactivities for individual SLRPs. As endothelial cells
play a critical role in vascularization of an oxygen- and nutrient-
starved solid tumor, we propose that increased autophagy may
represent a novel mechanism by which decorin triggers a halt in
migration, proliferation, and capillary morphogenesis,69 and,
ultimately, in angiogenesis—all key properties orchestrated by
positive VEGFA signaling. This may be achieved by the con-
certed activation of VEGFR2/ULK1/AMPKa/Peg3/TFEB sig-
naling for the repression of endothelial cell-derived VEGFA and/
or by rendering endothelial cells refractory to the aberrant angio-
genic stimuli derived from the growing tumor cells.

In conclusion, endothelial cell autophagy heralds a paradig-
matic shift in the role of decorin in tumorigenic and angiogenic
suppression via RTKs. Indeed, autophagic induction in a tissue-
specific manner may be a conserved mechanism of action for
matrix-derived signals.34,91 Furthermore, these findings alter the
established model of nutrient-dependent autophagic induction
in favor of soluble signaling cues, present within the stroma, for
the activation of the autophagic machinery.

Growth Suppression Via Pan-Rtk Inhibition
in the Tumor

In the classic model, decorin exerts its ascribed tumoricidal
properties by directly engaging a multitude of RTKs within the
target-rich environment that constitutes the tumor paren-
chyma.19,92–95 Mechanistically, monomeric decorin96 binds
RTKs with high affinity and evokes receptor dimerization, tran-
sient autophosphorylation, caveolin-1–mediated internaliza-
tion,97 and eventual lysosomal degradation.19,97 Solid tumors
that are dependent upon RTK signaling are severely suppressed
following the introduction of decorin.35,46,56 In contrast to the
response to naturally occurring receptor agonists, upon decorin
exposure the unstructured intracellular tail of EGFR and Met
acquires a unique phosphorylation signature,19 perhaps as a result
of altered conformational states of the receptor ectodomain and
transmembrane region98 upon decorin binding. In contrast with
active signaling agents, this phosphorylation pattern instructs cell
cycle arrest, apoptosis, angiostasis, and protracted oncogene sup-
pression (Fig. 2, left panel).19

A prime example is EGFR, in which decorin initiates a rapid
phosphorylation that activates the MAPK signaling system.58

This counterintuitively results in apoptosis and cell cycle arrest
concomitant with the cleavage and subsequent activation of

caspase-3 and induction of p21WAF1(p21), (Fig. 2, left panel),
despite the fact that total cell surface EGFR levels are diminished
by 50%.58 A second example is the recently discovered Met
receptor, which undergoes a strong Tyr phosphorylation signal
on a phosphotyrosine array following decorin treatment;99 this
transient activation results in recruitment of c-Cbl and receptor
downregulation. The transient nature of decorin-evoked receptor
phosphorylation and the downstream transduction mechanisms
represents a key tenet in cell signaling in which the duration, fre-
quency, and strength of the signal combinatorially dictate cellular
behaviors.100 The oscillatory nature of the downstream signaling
molecules (receptors, MAKP, PI3K/Akt/mTOR) framed within
this conceptual scaffold may prove crucial for decorin-transduced
signals and biological outcomes.

EGFR and Met are not the only RTKs responsible for decorin
bioactivities. Several members of the EGFR family, such as the
ErbB2/ErbB4 heterodimers, are also targeted by decorin6,
although recent evidence now suggests direct ErbB4 antago-
nism.101 Many other RTKs have been identified, including IGF-
IR, IR-A, and their ligands,62,102,103 PDGFRa49 and associated
PDGFA ligand,104 and VEGFR2.69,105,106 Notably, IGF-IR rep-
resents the only known exception where the receptor is not inter-
nalized and tagged for destruction by decorin binding;62 instead,
decorin suppresses the IRS-1/Akt/ERK/p70S6K pathway, blocks
migration, and prevents IGF-I–dependent localization of IGF-IR
into caveosomes.37

Suppression of Proliferative, Survival,
and Migratory Signaling Pathways

Downstream of the robust binding events and receptor inter-
nalization and degradation, soluble decorin evokes potent and
prolonged attenuation of several signaling pathways responsible
for tumor cell proliferation, survival, and angiogenesis. Attenua-
tion of Met results in the non-canonical and selective degradation
of b-catenin and Myc61,85 with concurrent induction of p21.61

In the case of hepatocyte growth factor (HGF)/Met, this particu-
lar signaling system results in the direct stabilization and nuclear
accumulation of b-catenin and transcriptional activation of
b-catenin targets. Seemingly, this pathway functions indepen-
dently of Wnt signaling via direct phosphorylation and inhibi-
tion of GSK-3b.107 In contrast, binding of decorin to Met
disrupts this signaling cascade61 in what appears to be a GSK-
3b¡independent manner, resulting in prompt 26S-proteasomal
degradation and suppression of b-catenin (CTNNB1) expression
(Fig. 2, left panel). Furthermore, Myc is also destabilized by
increased phosphorylation on Thr58, a known phospho-acceptor
site that designates Myc for degradation via the proteasome with
concurrent suppression of MYC mRNA61 (Fig. 2, left panel).
The increase in phosphorylated Myc at this position may be a
result of derepressed GSK-3b downstream of attenuated Met sig-
naling.61 However, the nuclear-localized priming kinase DYRK1
that is adept for phospho-transfer at Ser62 of Myc might work in
concert with the GSK-3b-mediated phosphorylation of Myc at
Thr58108 that occurs downstream of decorin/Met binding.
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Interestingly, decorin evokes strong nuclear translocation and
subsequent degradation of Myc, concomitant with p21 accumu-
lation.61 Additionally, transcriptional induction of p21 (also
known as CDKN1A) may be linked to inactivation and destruc-
tion of the Met/b-catenin/Myc signaling axis as AP4, a gene tar-
get of Myc,109 actively represses CDKN1A expression (Fig 2, left
panel).

Broad clinical implications of decorin-mediated suppression
of the Met/b-catenin axis have recently emerged from high-
throughput transcriptomic screening.110 Basal mammary carci-
nomas driven by Wnt/b-catenin and HGF/Met signaling have a
unique genetic fingerprint known as the “Wnt-Met” signature, in
which aberrant b-catenin activity drives self-renewal programs
and Met suppresses differentiation commitments.110 It is plausi-
ble that clinical cases expressing the Wnt-Met signature would
greatly benefit from receiving decorin, or related SLRPs, as an
adjuvant protein-based therapy. The expected results of such
treatment would include a reduction in the capacity for tumor
self-renewal and the induction of a more differentiated tumor
phenotype with decreased metastatic capacity. Personalized geno-
mics combined with an understanding of matrix-derived tumor

repressors may represent an important therapeutic option in the
future. Indeed, molecular therapies targeting this system greatly
alleviate tumor burden and increase overall survival. Moreover, a
similar genetic signature was found for synergistic cooperativity
between Myc and Her2/Neu (ErbB2) for stem-like breast cancer
cell phenotypes without the requisite epithelial-to-mesenchymal
transition discussed elsewhere.3,111,112 Therefore, decorin may
suppress stem-like progenitors that would otherwise permit
enhanced malignant states.

Intriguingly, as part of the newly described “Wnt-Met” signa-
ture, Wnt/b-catenin signaling actively drives expression of
CXCL12, a critical chemokine for tumor migration and metasta-
sis.110 Moreover, HGF acting via the Akt/Rac1/PKCz arm
evokes CXCR4 expression in breast carcinoma.113 Based on these
findings, perturbation of the HGF/Met and Wnt/b-catenin axis
by decorin may significantly nullify the CXCR4/CXCL12 che-
motactic system and thereby provide a molecular basis for the
observed antimetastatic role of this multifunctional proteoglycan.
Alternatively, the antimetastatic properties of decorin may be
linked to the tumor suppressive function of MMP8 via antago-
nism of miR-21 and induction of MMP8.114

Figure 2. Schematic representations delineating the classic growth inhibitory functions (left panel) and novel promitophagic activities (right panel) of
decorin in a tumor cell. Please refer to the text for a full mechanistic description.
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Suppression of Angiogenic Signaling Pathways

The cellular and molecular mechanisms responsible for gov-
erning and orchestrating tumor neovascularization are becoming
more clearly defined. Moreover, several endogenous cues, chiefly
soluble and matrix-derived in nature,115-118 that potently
impede rampant tumor angiogenesis are being discovered. The
literature surrounding the role of decorin in mediating angio-
genic responses reflects the inherent intricacies of this vital
developmental process. Perhaps the most striking example of
complexity in decorin-mediated angiogenesis stems from studies
on the normally developing cornea, in where dichotomous roles
have been found;119,120 however, literature on the role of
decorin in mediating tumor angiogenesis favors an antiangio-
genic role.12,19,106,121 Furthermore, the observation that angio-
sarcomas exhibit a total lack of stromal decorin whereas
hemangiomas have abundant decorin expression122 implies an
inverse relationship between vascularized tumor malignancy and
decorin expression.

Mechanistically, decorin directly suppresses the HGF/
Met signaling axis that ultimately inhibits VEGFA-mediated
angiogenesis.85,123 Under normoxic conditions, decorin
transcriptionally silences a potent combination of proangio-
genic transcription factors, including hypoxia inducible fac-
tor-1a (HIF-1a/, b-catenin, and Myc, downstream of
engaging Met (Fig. 2, left panel).85 Moreover, decorin non-
canonically promotes the degradation of HIF-1a protein in
a manner dependent on Von-Hipple Lindau tumor suppres-
sor protein (pVHL).85 Within the extracellular milieu,
decorin attenuates the liberation of matrix-bound VEGFA
by inhibiting the expression and activity of MMP-2 and
MMP-9, which depend on competent b-catenin for suffi-
cient transactivation (Fig. 2, left panel). Decorin also pro-
motes the induction and secretion of well-known
antiangiogenic effectors such as TSP-1 and TIMP3.85

Intriguingly, decorin promotes rapid secretion of TSP-1 by
inhibiting the RhoA/ROCK1 signaling cascade124 for early
tempering of the initial angiogenicity of the tumor environ-
ment. Importantly, decorin significantly abrogates the
HGF/Met signaling axis in vivo in the well-established
matrigel plug assay, providing firm mechanistic evidence for
decorin-mediated angiostasis. In essence, decorin subverts
HGF signaling through Met and thus reduces vasculariza-
tion and vessel density of the malignancy.19,85

The implications of attenuating HIF-1a and triggering the
rapid release of TSP-1 under normoxic conditions open vari-
ous possibilities of reprogramming the tumor parenchyma and
tumor stroma that favor continued tumorigenic growth. It is
plausible that decorin disrupts early vascularization events by
quelling the angioplasticity of the stroma and repressing
potent proangiogenic factors within the tumor proper. Collec-
tively, inhibition of several key EGFR- and Met-mediated
pathways including migration, proliferation, survival, and
angiogenesis underlies many of the antioncogenic properties of
soluble decorin.

New Antioncogenic Properties: Tumor
Cell Mitophagy

Fulfilling its role as “a guardian from the matrix,” decorin
antagonizes tumorigenic progression indirectly by evoking
endothelial autophagy and directly by circumventing the
angiogenicity of the tumor proper via growth inhibition, sup-
pression of proangiogenic promoters, and secretion of antian-
giogenic factors. A novel mechanism that underlies and
potentially unifies the classic tumoricidal effects evoked by
decorin has been recently delineated.125 Functionally akin
with VEGFR2 (see above), decorin is a partial agonist of Met
for the induction of tumor cell mitochondrial autophagy
(mitophagy) (Fig. 2, right panel). At the core of this novel reg-
ulatory paradigm is a poorly understood decorin-inducible
tumor suppressor gene known as mitostatin.126,127 Mitostatin
(a mitochondrial protein with oncostatic activity, also known
as tricoplein),128 embodies all known characteristics of a con-
ventional tumor suppressor while residing at the mitochon-
dria,127 possibly at specialized interfaces between the
mitochondria and endoplasmic reticulum.128

Downstream of Met signaling, decorin elicits rapid post-tran-
scriptional regulation of mitostatin mRNA through PGC-1a125,
a master regulator of mitochondrial biogenesis.129 The prompt
stabilization of mitostatin mRNA is coordinated by its direct
binding to the C-terminal RNA-recognition motif (RRM) of
PGC-1a, which is dependent on arginine methylation of PGC-
1a by PRMT1.125 Methylation of RNA binding proteins is com-
monly required for interactions between this polybasic domain
and mRNA target binding.130 Interruption of the RRM of PGC-
1a ablates the induction and accumulation of mitostatin pro-
tein.125 Therefore, we have delineated an operative and mecha-
nistic role for PGC-1a, a crucial factor for BRAF-mediated
oncogenesis,131,132 in stabilizing and permitting induction of a
decorin-evoked tumor suppressor gene for mitophagic induction
(Fig. 2, right panel).

Silencing of mitostatin abrogates the ability of breast carci-
noma cells to undergo canonical or decorin-evoked mitophagy,
as measured by oxidative phosphorylation (OXPHOS) complex
turnover, voltage-dependent anion channel (VDAC) activity,
and mtDNA depletion125 (Fig. 2, right panel). An antitumori-
genic consequence of mitophagic induction is demonstrated by
the inability of decorin to suppress tumor-derived VEGFA in the
absence of mitostatin125 (Fig. 2, right panel). Therefore, mitoph-
agy and decorin-evoked angiostasis may be functionally linked
through mitostatin.

Mitophagy is initially evoked following the depolarization of
mitochondria.133 Loss of mitochondrial membrane potential is
recognized by Parkin, an E3-ubiquitin ligase that is implicated
in recessive forms of neurodegenerative disease, such as
Parkinson’s disease.133 This signal permits discrimination of
healthy from failing mitochondria.134 As a very early harbinger
of mitophagic induction, decorin triggers depolarization of the
mitochondrial membrane analogous to that induced by the pro-
tonophore FCCP.125 Interestingly, cytosolic calcium fluxes are
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reported for mitophagy, concomitant with depolarization.134 As
soluble decorin promotes oscillations of cytosolic calcium in an
EGFR-dependent manner,135,136 this release may precede and
play a role in depolarizing the mitochondria. Furthermore,
mitostatin may play a role in coordinating calcium release and
subsequent mitochondrial depolarization, as it clusters with
mitochondrial-associated membranes and interacts with mitofu-
sion-2.128

Mitostatin may interact with, or even function as, an intra-
cellular mitochondrial receptor for Parkin recruitment (Fig. 2,
right panel). This scenario appears plausible as Parkin pro-
motes mitophagy133,137 and respiratory chain turnover in
vivo,138 mimicking the effects of decorin/mitostatin signaling.
Parkin interacts with PINK1, a master mitophagic kinase that
senses mitochondrial distress (e.g., loss of membrane potential)
and permits activation of Parkin and downstream ubiquitina-
tion of target proteins for mitophagic progression.139,140 As
both Parkin 141 and mitostatin128 interact with mitofusion-2,
a quaternary complex may exist among PINK1, Parkin, mitos-
tatin, and mitofusion-2 for mitophagic initiation in response
to traditional stimuli (e.g., FCCP, CCCP, nutrient depriva-
tion) or decorin.

Currently, no crystal structure of mitostatin exists126; how-
ever, an in silico analysis of the primary structure revealed an
internal domain that shares homology with the DnaJ family of
molecular chaperones. Intriguingly, selective destruction of mito-
chondrial proteins, primarily those associated with the outer
mitochondrial membrane, promotes selective respiratory chain
component turnover and mitophagy in a PINK1/Parkin-depen-
dent manner.134 It appears that mitophagy depends on an associ-
ation between p62 (also known as sequestosome) and VDAC.137

Decorin promotes loss of VDAC in a mitostatin-dependent man-
ner.125 Further, long-lived pools of p62/sequestosome promote
mammary tumorigenesis via abnormal ErbB2, Akt, and b-cate-
nin activation,142 whereas mitochondrial turnover promotes deg-
radation of p62/sequestosome.143 As such, mitostatin may elicit
mitophagy in a PINK1/Parkin-dependent fashion, resulting in
the turnover of downstream targets involved in this process (e.g.,
via p62/sequestosome). Tantalizingly, given that mitostatin may
function as a molecular chaperone, additional decorin targets
including Myc, b-catenin, and HIF-1a may be targeted for deg-
radation via mitostatin during the course of mitophagic signaling
and progression.

Therefore, the induction of mitophagy within the tumor by
soluble decorin via mitostatin may account for the molecular
outcomes and biological manifestations of decorin, such as
inhibition of tumorigenic growth and rampant tumor
angiogenesis.

Conclusions and Perspectives

Our increased understanding of the biofunctionality of
decorin parallels our evolving and expanding comprehension of
the fundamental mechanisms underlying molecular and cellular
oncology. Originally characterized as a collagen binding factor
and key regulator of fibrillogenesis, decorin has recently emerged
as the frontrunner for a novel class of soluble and matrix-derived
tumor repressors that potently antagonizes RTK signaling.7 The
decorin interactome encompasses a broad and diverse repertoire
of binding partners that effectively quell the tumor microenvi-
ronment and antagonize tumor angiogenesis and metastasis by
multiple mechanisms.19 Original studies investigating decorin as
a potent tumoricidal molecule focused on the multitude of inter-
actions between decorin and RTK-enriched tumor cells and
downstream antioncogenic and antiangiogenic effects. However,
a paradigmatic shift has recently emerged with the demonstration
that decorin affects the transcriptomic profile of the tumor
microenvironment without significantly perturbing the genetic
signature of the tumor itself.59 This discovery heralded a new
interest in decorin biology to understand the mechanisms opera-
tive within the stroma and how these signals interface with the
known effects of decorin on the biology of the tumor proper. As
such, a new regulatory mechanism has emerged that posits
decorin as a procatabolic agent that activates the conserved auto-
phagic machinery.34 Acting as a partial agonist, decorin engages a
new class of proautophagic signaling receptors—VEGFR2 for
endothelial cell autophagy and Met for tumor cell mitophagy—
that are activated following decorin binding. Importantly, induc-
tion of autophagy and mitophagy may be required for the under-
lying antitumorigenic effects of decorin on a variety of tumors,
including cell cycle arrest, apoptosis, angiogenesis, and metasta-
sis. Such a model connects the secreted extracellular matrix com-
ponent20,144 with complex intracellular metabolic and
bioenergetic systems.

Therefore decorin, related SLRPs, and matrix components
may be of great clinical interest as advanced chemotherapeutic
modalities that could be genetically matched with the patient’s
individual cancer. Matrix-derived therapies may prove to be valu-
able armaments in the continued war against cancer.
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