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Deep learning of artificial neural networks has become the de facto standard approach to solving data
analysis problems in virtually all fields of science and engineering. Also in biology and medicine, deep
learning technologies are fundamentally transforming how we acquire, process, analyze, and interpret
data, with potentially far-reaching consequences for healthcare. In this mini-review, we take a bird’s-
eye view at the past, present, and future developments of deep learning, starting from science at large,
to biomedical imaging, and bioimage analysis in particular.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Ever since the introduction of digital scanning technologies in
biological imaging [1–3], there has been a growing need for power-
ful computationalmethods to enable automated quantitative image
analysis. Microscopy images potentially contain a wealth of infor-
mation about the morphological, structural, and dynamical charac-
teristics of tissues, cells, and molecules, which may go unnoticed
even to the expert human eye [4–6]. However, designing computer
algorithms to extract this information with high fidelity is a great
challenge, as has been well recognized since the mid-1960s, after
the first decade of serious attempts [7–9], and is still true today.

Automated bioimage analysis typically requires executing an
intricate series of operations, which may involve image restoration
[10–12] and registration [13–15], object detection [16–18], seg-
mentation [17,19,20], and tracking [21–23], as well as downstream
image or object classification [24–26], quantification [27–29], and
visualization [30–32]. As attested by the just cited reviews and
evaluations, a plethora of methods and tools have been developed
for this purpose in the first half a century of computational bioim-
age analysis, based on what may now be considered traditional
image processing and computer vision paradigms.

Recently, a major paradigm shift has occurred with the massive
adoption of deep learning technologies [33–35], which are now
rapidly replacing traditional data analysis approaches in virtually
all fields of science, including bioimage analysis. In a matter of just
a few years, the scientific literature on deep learning has grown
explosively, not only with research papers describing novel con-
cepts, algorithms, software platforms, and applications, but also
with an abundance of reviews and surveys exploring and com-
menting on the state of the art.

In this mini-review, we take stock and summarize the latest
developments and the challenges ahead, starting from science at
large, to biomedical imaging, and to bioimage analysis in particu-
lar. Rather than providing a technical introduction or an exhaustive
review, we briefly discuss major trends in the past, present, and
future of deep learning and their implications for bioimage analy-
sis. Along the way, we mainly cite other reviews and surveys for
further reading on specific subtopics.
2. Deep learning on the rise

Deep learning popularly refers to the use of artificial neural net-
works (ANNs) with multiple (ultimately many) layers of elemen-
tary computational cells (called ‘‘neurons” by analogy with
neuronal cells in biological neural networks) to progressively
extract higher-level representations of given input data in order
to perform data analysis tasks [33,35,36]. It is a form of machine
learning [34,37,38], a major branch of the field of artificial intelli-
gence (AI) [39–41], which is concerned with the science and engi-
neering of developing machines exhibiting characteristics
associated with human intelligence. While deep learning is now
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Fig. 1. Explosive growth of the scientific literature on deep learning and related
topics. The graph shows the number of publications per year in the past decade,
having the terms deep learning (DL), machine learning (ML), or artificial intelligence
(AI) in the title, according to Google Scholar (GS) and Web of Science (WOS) around
the time of submission of this article.
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taking the world by storm (Fig. 1), its road to success has been long
and arduous.

2.1. A brief history of deep learning

The idea of using ANNs for data analysis dates back to the dawn
of digital computing [42]. In the early 1940s, the first mathematical
model of a biological neuron was proposed, providing ‘‘a tool for
rigorous symbolic treatment of known nets and an easy method
of constructing hypothetical nets of required properties” [43]. In
order for the model to work, its parameters (weights) had to be
set correctly, which initially was done manually. In the late
1950s, the perceptron became the first model capable of learning
the weights from examples, illustrating ‘‘some of the fundamental
properties of intelligent systems” [44]. However, by the end of the
1960s, it was clear that such models have severe limitations [45],
and multilayer perceptrons are required for more complex tasks,
but it was not obvious how to train them.

After the ensuing first ‘‘AI winter”, from the late 1960s through-
out the 1970s and some time beyond, interest in ANNs resurged in
the mid-1980s with the (re)invention of the back-propagation
algorithm [46]. Important advances were made in the 1990s,
including the development of recurrent neural networks (RNNs)
such as the long short-term memory (LSTM) for modeling data
sequences [47], and successful applications of multilayer convolu-
tional neural networks (CNNs) in image analysis [48]. But by the
end of the millennium, due to unmet overinflated expectations cre-
ated by AI-exploiting ventures, and successes in other areas of
machine learning, interest in ANNs waned for the second time.

Until the mid-2000s it was generally believed that deep ANNs
are very hard to train. This perception started to change when it
was shown that a particular type of multilayer ANN called a deep
belief network (DBN), where each layer is a restricted Boltzmann
machine (RBM), can be efficiently trained by greedy layer-wise
unsupervised learning [49]. Soon after, based on the same princi-
ple, algorithms for training deep autoencoders (AEs) were pro-
posed [50], as well as other deep architectures [33]. By this time,
deep learning began to clearly outperform competing machine
learning technologies for various data analysis tasks. This became
most evident in the 2012 edition of the ImageNet challenge on
image classification, where a CNN called AlexNet won by a large
margin [51]. Since then, deep learning has gained ground at an
exponential rate, including in the biomedical domain, as covered
in later sections of this article.

2.2. Driving forces behind deep learning

In recent years, deep learning has been well recognized as a
breakthrough technology. So much so that in 2018, the Turing
Award, given annually since 1966 by the Association for Comput-
ing Machinery (ACM) and generally considered to be the ‘‘Nobel
Prize of Computing”, was awarded to three highly influential
researchers ‘‘for conceptual and engineering breakthroughs that
have made deep neural networks a critical component of comput-
ing”: Yoshua Bengio (University of Montreal), Geoffrey Hinton
(University of Toronto & Google), and Yann LeCun (New York
University & Facebook) [52].

Apart from groundbreaking research, two other factors have
played an important role in the relatively recent rapid rise of deep
learning [53]. Both relate directly to the very needs of deep learn-
ing algorithms to be successful. The first is the need for large data
sets to properly train the likewise large numbers of neural network
parameters. Compiling such data sets has been greatly facilitated
since the turn of the millennium by the increasing digitization of
the world, leading to the present era of ‘‘big data”. The second is
the need for large computing power to complete the required large
numbers of iterations in the training process within reasonable
time. More and more advanced computing power has become
affordable even for individual researchers in the form of general
purpose graphics processing units (GPUs).

Together, these advances have enabled the development of ever
deeper neural networks, reaching ever higher accuracies and beat-
ing the state of the art in an ever growing number of applications.
The widespread usage of deep learning has been further acceler-
ated by the development of open-access software libraries and
frameworks [54–57], greatly facilitating deep neural network
(DNN) design and training even for non-computer scientists. Tech
giants such as Google, Facebook, Apple, IBM, Intel, Microsoft, Ama-
zon, Baidu, and many others invest heavily in deep learning, capi-
talizing on its potential and contributing to a world that is
increasingly driven by DNNs, and it seems this is only the begin-
ning [58].
2.3. Widespread impact of deep learning

The extraordinary power of deep learning in addressing intract-
able challenges has led to a competitive race for leadership among
research groups, universities, companies, and even nations [59].
Every week, new papers appear, not seldom by researchers with-
out a solid background in computer science, commenting on the
impact of deep learning in their field, or claiming victory with
DNNs in yet another application domain, often simply by exploit-
ing existing software tools and network architectures. The past
few years have seen a flood of reviews and surveys on the subject,
in virtually all fields of science, often by authors or in journals the
seasoned computer scientist had never heard of. Apparently,
despite many remaining challenges requiring further research
(Section 5), a methodology has emerged that is relatively easy to
use and that everyone is eager to own.

By now, deep learning has become the go-to data analysis tech-
nology in domains as diverse as agriculture [60], bioinformatics
[61], biometrics [62], computational biology [63], consumer ana-
lytics [64], cyber security [65], dentistry [66], drug discovery
[67], education [68], face recognition [69], gaming [70], health
informatics [71], high-energy physics [72], hydrology [73], geno-
mics [74], linguistics [75], mobile multimedia [76], mobile net-
working [77], multimedia analytics [78], nanotechnology [79],
natural language processing [80], precision medicine [81], remote
sensing [82], renewable energy forecasting [83], robotics [84],
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smart manufacturing [85], speech generation [86], surveillance
[87], traffic control [88], video coding [89], and countless others
[90].
Fig. 2. Impact of deep learning on biomedical imaging. The graphs show the
number of peer-reviewed journal and selected conference proceedings publications
on deep learning in different biomedical application areas, categorized by imaging
modality (top, see text for abbreviations) and subject of study (bottom), ranked
from most to least popular. Numbers were estimated from the PubMed database of
the US National Library of Medicine, National Institutes of Health, around the time
of submission of this article, by searching for publications having relevant terms in
the title or abstract (Supplementary Data).
3. Deep learning in biomedical imaging

A domain we focus on more specifically in this article is
biomedical imaging (Fig. 2). Here we take biomedical imaging to
be the broad, multidisciplinary field concerned with the acquisi-
tion, processing, visualization, and interpretation of structural
and functional images of living organisms, whether for clinical or
for research purposes. Celebrating a long history of its own [91],
including multiple Nobel Prize winning revolutions [92], biomedi-
cal imaging has become a cornerstone of modern healthcare and
life sciences, to the extent that today ‘‘a world without imaging
is clearly not imaginable” [93]. For the sake of brevity in this
mini-review, we roughly divide the field into medical imaging,
pathological imaging, preclinical imaging, and biological imaging
in the life sciences, and summarize the impact of deep learning
on each.

3.1. Deep learning in medical imaging

In clinical practice, the screening, diagnosis, prognosis, and
treatment of disease in the human body, all rely increasingly on
advanced medical imaging technologies such as X-ray computed
tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), single-photon emission computed
tomography (SPECT), and ultrasound (US) imaging. Successful
application of imaging technologies involves not only high-
fidelity image acquisition but also reliable image interpretation
[94]. While medical imaging devices have improved substantially
in recent decades in terms of sensitivity, efficiency, and image
quality, for a long time image interpretation was done primarily
by humans. But even experts are known to suffer from subjectivity,
variability, and fatigue. These impediments can potentially be
overcome by computational methods, and deep learning in partic-
ular has emerged as a key enabling technology for this purpose, as
attested by many recent overview articles in the field [95–102].

The impact of deep learning has been reviewed more specifi-
cally in a wide range of medical imaging areas, including abdomi-
nal imaging [103], atherosclerosis imaging [104], structural and
functional brain imaging [105,106], in-vivo cancer imaging [107],
dermatological imaging [108], endoscopy [109], mammography
[110], musculoskeletal imaging [111], nuclear imaging [112], oph-
thalmology [113], pulmonary imaging [114], thoracic imaging
[115], as well as in radiotherapy [116], interventional radiology
[117], and radiology in general [118–120]. The massive body of
papers on deep learning in virtually all areas of medical imaging
has inspired many to write primers [121–123], guides [124–126],
white papers or roadmaps [127–129], and other commentaries
[130–132]. There is now growing evidence that deep learning
methods can perform on par with, if not better than, radiologists
in specific tasks [133], though the latter will continue to play a crit-
ical role in integrating such methods in clinical workflows [127].

3.2. Deep learning in pathological imaging

Disease diagnosis and prognosis cannot always be performed
solely using structural or functional in-vivo medical imaging, but
often also require complementary ex-vivo pathological imaging
of tissue, cell, and body fluid samples extracted from the body. Per-
haps even more than in medical imaging, visual image interpreta-
tion in pathology has traditionally been the task of human experts.
However, the increasing adoption of digital whole-slide imaging
(WSI) into routine clinical practice in recent years has created
unprecedented opportunities for computer-aided diagnosis (CAD)
in pathology [134–137]. Here, too, deep learning is being rapidly
and widely adopted for this purpose, as reported in many reviews
[138–145].

Pathological imaging plays a prominent role especially in cancer
diagnosis and prognosis, and the impact of deep learning has been
reviewed in various areas of oncological pathology, including in
histopathology [141], cytopathology [146], and hematopathology
[147]. Deep learning in pathology has been surveyed more specif-
ically for breast cancer [142,148], lung cancer [149,150], tumor
pathology in many other forms of cancer [151], and cancer progno-
sis [152], with many opinion articles commenting on challenges
and opportunities [153–157]. As in medical imaging, there is
mounting evidence for the potential of deep learning to provide
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fast and reliable image analysis at a performance level of a sea-
soned pathologist, or to serve as a synergistic tool for the latter
to improve accuracy and throughput [131].
3.3. Deep learning in preclinical imaging

Innovative clinical medical imaging technologies and proce-
dures are usually the fruit of preclinical imaging research with ani-
mal models representing humans in studying responses to
physiological and environmental changes. Modern small-animal
based anatomical, functional, and molecular imaging research
involves a wide range of well-established as well as more experi-
mental imaging modalities, including micro versions of clinical
scanners (mCT, mMRI, mPET, mSPECT, mUS), optical coherence tomog-
raphy (OCT), fluorescence molecular tomography (FMT), biolumi-
nescence imaging (BLI), photoacoustic (PA) and thermoacoustic
(TA) imaging, multispectral imaging (MSI), and others
[93,158,159]. The use of deep learning for automated analysis of
such imaging data is relatively uncharted territory, but recent
studies have reported first applications in translational molecular
imaging experiments [160–164].
3.4. Deep learning in biological imaging

Even more fundamental to our understanding of disease pro-
cesses and the homeostatic mechanisms maintaining life down
to the cellular and molecular levels, is biological microscopy imag-
ing, more succinctly also referred to as bioimaging. Revolutionary
scientific discoveries and technological innovations in the past dec-
ades have spurred the development of a vast array of advanced
light microscopy (LM), notably fluorescence microscopy (FM), as
well as electron microscopy (EM) and scanning probe microscopy
(SPM) imaging modalities that have proven key to much of the pro-
gress in modern biological research [165–170].

Of all biomedical imaging fields, bioimaging arguably faces the
biggest challenges in automating visual image interpretation tasks,
due to the lack of standard imaging protocols, the high variability
of experimental conditions, and the sheer volume of the data pro-
duced. Whereas (pre)clinical medical imaging systems typically
generate data sets of dozens of megabytes (MB), and digital pathol-
ogy scanners yield data sets of tens to hundreds of gigabytes (GB),
automated microscopes may easily produce on the order of ter-
abytes (TB) of image data in a single experiment [171–174]. Here,
the power of deep learning is increasingly leveraged not only to
improve image formation [175–179], but also subsequent image
analysis, discussed next.
4. Deep learning for bioimage analysis

First studies using ANNs for bioimage analysis date back to the
late 1980s [180], soon after the popularization of the back-
propagation algorithm. A review on future trends in microscopy
around that time already commented that for complex visual tasks
‘‘a good deal of faith is now placed in electronic neural networks”
[181]. Indeed, the use of ANNs caught on during the 1990s [182–
184] and 2000s [185–187], but as in biomedical imaging at large,
deep learning began to be massively adopted for bioimage analysis
only in recent years [188–194]. We briefly discuss some of the
common tasks in bioimage analysis (Fig. 3) where deep learning
has been particularly successful.
4.1. Deep learning for image enhancement

Many bioimage analysis tasks are greatly facilitated if the raw
microscopy images are first enhanced by removing artifacts and
restoring essential information as much as possible. Generally, a
high signal-to-noise ratio (SNR) and spatial resolution are benefi-
cial, but may not be achievable in a given experiment due to the
required imaging speed and maximum allowable light exposure
to avoid damaging the sample. Depending on the type of micro-
scope used and the imaging conditions, different kinds of image
enhancement operations may be applied, and deep learning has
proven to be a powerful methodology for these. For instance, using
well-registered pairs of low-quality and high-quality images, a
CNN can be trained to perform denoising and recover resolution
[175,179,200–204]. Similarly, trained with pairs of images from
different imaging modalities, deep networks can predict fluores-
cent labels from transmitted-light microscopy images of unlabeled
biological samples [179,195,205] (Fig. 4A), a technique referred to
as cross-modality inference or transformation. Also, generative
adversarial networks (GANs) have been shown to enable virtual
refocusing of a two-dimensional (2D) fluorescence microscopy
image onto a user-defined three-dimensional (3D) surface within
a biological sample, correcting for sample drift, tilt, and other aber-
rations [178].

4.2. Deep learning for object detection

Another challenge central to many bioimage analysis tasks is to
determine whether certain objects of interest are present in given
microscopy images. Object detection often goes hand in hand with
object localization and has been the subject of intense research for
more than half a century [206]. The problem can be solved by
extracting features from local image patches and performing clas-
sification on them. Here, too, traditional approaches have made
way for deep learning in numerous applications, with two-stage
region-proposal CNN-based (R-CNN) and unified you-only-look-
once (YOLO) approaches and variants being most popular [207–
209]. In contrast with traditional object detection methods, which
have found broad application in bioimage analysis for spotting
intracellular particles [16,18,210,211], cell nuclei [17,26], and cel-
lular events such as mitosis [212–214], deep learning approaches
for these tasks have been explored since only recently. First results
are promising [196,215–218] (Fig. 4B) but more extensive evalua-
tions are needed to assess their general superiority.

4.3. Deep learning for image segmentation

One of the most ubiquitous tasks in bioimage analysis is the
partitioning of images into meaningful segments for downstream
quantification and statistical evaluation [17,19,26]. It is therefore
no surprise that the bulk of literature on deep learning in many
application areas of computer vision including bioimage analysis
has focused on the potential for image segmentation
[188,190,219–222]. Similar to object detection, image segmenta-
tion can be cast as a classification problem, this time down to
the pixel level rather than the object level, which indeed is the
approach taken by many deep-learning based methods. In particu-
lar, fully convolutional neural networks (FCNs) [223] such as U-Net
[224], SegNet [225], DeepLab [226], and variants [227] (Fig. 4C)
have become immensely popular for image segmentation. Deep
learning methods have also begun to feature prominently in recent
international competitions in bioimage analysis, including on seg-
mentation of EM brain images [228], cell nuclei in FM images
[229], cells in a variety of time-lapse microscopy images [23],
and glandular structures in microscopy images of histological
slides [230]. No doubt the future will see more and more deep-



Fig. 3. Common tasks in bioimage analysis. The ultimate goal is to gain knowledge of biological processes in health and disease by extracting relevant information from
microscopy image or video recordings of these processes. Depending on the specific application, information extraction may involve image enhancement, object detection,
image segmentation, object tracking, quantification, and classification, data visualization and analytics, and mathematical or statistical modeling. Deep learning is used
increasingly in many of these tasks and we discuss several prominent ones in the main text. The diagram shows a typical order of tasks, with double-headed arrows indicating
the possible interrelation and feedback between tasks, as well as the fact that any of them independently may also contribute to knowledge along the way, affecting other
tasks. Modified from [6].
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learning based methods dominating the charts in such evaluation
studies.

4.4. Deep learning for object tracking

Characterizing real-life objects requires quantifying not only
their spatial properties but also their temporal behavior. As
advanced microscopes nowadays enable fully automated acquisi-
tion of time-lapse images of living cells and intracellular particles,
this calls for robust computational methods capable of not only
detecting and segmenting objects, but also tracking them over time
in these images. Object tracking is generally considered to be ‘‘one
of the most challenging computer vision problems” [231] and is a
common task also in bioimage analysis [22,232–235]. The first
international competition of particle tracking methods was held
before deep learning broke through, but already led researchers
to suggest the development of learning-based tracking methods
[21]. Also, the continuing series of cell tracking challenges has seen
the increasing use of deep learning methods for the problem [23].
As discussed in recent reviews, much of the work on deep learning
for object tracking in bioimage analysis has focused on the spatial
aspect of detection and segmentation [190,193], while the tempo-
ral aspect of data association and linking is typically still solved
using traditional computer vision methods. First studies have
appeared using DNNs to address both [236,237], as well as for sub-
sequent trajectory analysis [198] (Fig. 4D), but the challenge
remains to develop end-to-end deep-learning based cell and parti-
cle tracking methods [238].

4.5. Deep learning for object classification

The task of identifying images or objects therein as belonging to
one of multiple predefined classes is a fundamental problem of
computer vision in general [239–241] and a recurring theme also
in bioimage analysis [242–244]. Traditionally, the problem has
been addressed by extracting handcrafted image features and



Fig. 4. Examples of successful application of deep learning in bioimage analysis. A: Prediction of a fluorescence microscopy image (middle) from a bright-field microscopy
image (left) compared to the truth (right) [195]. The image shows neurons in a culture of induced pluripotent stem cells differentiated toward the motor neuron lineage but
containing other cell types as well. Fluorescent labels are TuJ1 (green) with Hoechst (blue) for the cell nuclei. The predicted image was obtained using a multiscale CNN
inspired by U-Net. B: Detection of cells in various types of microscopy images [196]: Ki-67 stained bright-field microscopy image of neuroendocrine tumor tissue (top left),
phase-contrast microscopy image of HeLa cervical cancer cells (top right), and H&E stained bright-field microscopy images of breast cancer tissue (bottom left) and human
bone marrow tissue (bottom right). Detected cells are marked by yellow dots with green circles indicating the ground truth and were obtained using a structured regression
model based on a fully residual CNN. C: Segmentation of neuronal axons (blue) and myelin sheaths (red) in a full scanning electron microscopy image slice of a rat spinal cord
[197]. The segmentation was obtained using a CNN called AxonDeepSeg. D: Motion analysis of tracked breast cancer susceptibility gene BRCA2 particles in time-lapse
fluorescence microscopy images [198]. Tracks were segmented into tracklets showing consistent motion (no switching between different dynamics states) using an LSTM
network. Subsequent moment scaling spectrum (MSS) analysis of the tracklets yielded an estimate of the number of mobility classes (three in this case) and their associated
parameters. Color coding indicates the value of the MSS slope per tracklet. E: Classification of fluorescence microscopy images (examples at the top) of yeast cells expressing
GFP-tagged proteins localizing to 15 subcellular compartments [199]. The classification was done using a CNN called DeepLoc. A visualization (bottom) of the activations of
the final convolutional layer of the network in 2D using t-distributed stochastic neighbor embedding (t-SNE) illustrates the power of the model to distinguish the different
classes. For more detailed information, see the cited papers, from which the shown examples were adapted with permission (see Acknowledgments section). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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using these together with given class labels to train classifiers such
as support vector machines (SVM) or random forests (RF)
[25,245,246]. But the capacity of deep CNN-based classifiers to
learn relevant image features autonomously make them favorable
over traditional approaches. Following their great success in the
2012 ImageNet challenge [51], CNN-based approaches have grown
in popularity for image classification tasks across the board. In
bioimage analysis, they have been shown to achieve expert-level
performance in a wide range of cell classification and subcellular
pattern recognition tasks [188,189,191] (Fig. 4E), although recent
evaluations have revealed they do not necessarily outperform tra-
ditional approaches [244]. An issue in many studies is the lack of
sufficient training data, which may be remedied by leveraging
transfer learning [190] or crowd-sourcing strategies [247].
5. Summary and outlook

Deep learning has had a long history of discoveries, inventions,
expectations, disappointments, rejections, revivals, successes,
declines, recoveries, and breakthroughs, but is now widely
accepted as the most powerful computing paradigm for big data
analysis. The impact of deep learning on our daily lives is already
unlike any other technology in the history of computer science,
yet it seems we have seen only the proverbial tip of the iceberg.
In biomedical imaging, DNNs are beginning to outperform human
experts in a growing number of visual interpretation tasks, which
is fueling fierce debates among professionals on the future ramifi-
cations for the field. Zeroing in on biological imaging, we have
reviewed the use of deep learning approaches for common tasks
in bioimage analysis, where they are now increasingly favored over
traditional computer vision methods. Notwithstanding impressive
achievements reported to date, many scientific and engineering
challenges remain to further improve deep learning. In closing this
mini-review, we touch on several important developments
addressing these challenges that are relevant to bioimage analysis
(see Table 1 for a quick summary of key research topics with refer-
ences to reviews and commentaries for further reading).
5.1. Biological deep learning

Biology has always been a great source of inspiration for tech-
nology. Recognizing the unparalleled capacity of the brain in pro-
cessing information, researchers in computer vision have
exploited models of human vision from very early on
[248,270,271]. Similarly, the idea of developing ANNs for data
analysis was born out of research into the workings of biological



Table 1
Overview of key reviews and commentaries for further reading on big research topics
in deep learning (DL).

Topic References

Biological DL Neuro-inspired AI [40]
Bio-inspired computer vision [248]
Integrating DL and neuroscience [249]
Biological vision and ANNs [250]

Optimal DL User-friendly software platforms [56]
Neural architecture search [251]
AutoML in biomedical imaging [252]

Economical DL Semi/weakly supervised learning [253]
Unsupervised learning strategies [254]
Transfer learning strategies [255]

Generalizable DL
Data simulation and DL [256]
Open-set recognition [257]
Domain adaptation [255]

Multimodal DL Multimodal learning models [258]
Data fusion strategies [259]
Omics applications [260]

Efficient DL Parallelization and distribution [261]
Compression and acceleration [262]
Biomedical imaging applications [263]

Explainable DL Interpretable AI approaches [264]
Visual analytics tools [265]

Responsible DL On replacing radiologists [266]
On replacing physicians [267]
On replacing microscopists [268]
Biomedical students on AI [269]
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neural networks (BNNs) [40,53,249]. In both cases, however, the
ties between computer science and neuroscience have not
remained strong, perhaps because ‘‘we simply do not have enough
information about the brain to use it as a guide” [53]. But as long as
human experts continue to be the gold standard in critical vision-
based decision-making tasks, it seems there is still much to be
gained from renewed interactions between the fields [40,248–
250]. Bioimage analysis could play a pivotal role here, in a virtuous
circle of helping to decipher BNNs at the microscopic level [272–
274] and translating discoveries into improved ANNs for such
studies [275–277].

5.2. Optimal deep learning

One of the key strengths of deep learning underlying its great
success is that it automates the process of finding optimal feature
descriptors given any data analysis task. While this eliminates the
cumbersome handcrafting of descriptors, it leaves the user with
the responsibility to design the right DNN architecture and tweak
its hyperparameters to achieve satisfactory results. In practice, this
may still require significant manual effort and yield suboptimal
results. Notwithstanding the great arsenal of software toolkits for
deep learning available today [54–57], there is still much room
for the development of higher-level, user-friendly platforms that
make it easier also for non-experts to adopt and use existing DNNs
or to design and deploy their own solutions. The desire to further
minimize human intervention in finding optimal solutions has
given birth to the field of automated machine learning (AutoML).
For deep learning, various neural architecture search (NAS)
approaches have been proposed to automate the network engi-
neering process [251,278,279]. First successful applications have
recently been reported in medical imaging [252,280,281], suggest-
ing NAS holds great potential also for bioimage analysis.

5.3. Economical deep learning

The most common form of deep learning is supervised learning,
which requires input data with corresponding labeled output data.
Especially in biomedical imaging applications, the output labels are
typically obtained by expert manual annotation of the input data.
However, as deep learning methods are notoriously data hungry,
preparing a training data set this way can be extremely burder-
some. Humans themselves largely learn in an unsupervised fash-
ion, as they ‘‘discover the structure of the world by observing it,
not by being told the name of every object” [35]. More economical
deep learning approaches requiring less human input and/or train-
ing data are very much needed. Semi-supervised, weakly super-
vised, and unsupervised learning are important research topics
[253,254,282] receiving increasing attention also in biomedical
imaging [283–285]. An alternative approach is transfer learning
between domains [255,278,286] which holds great promise for
biomedical imaging as well [287–290]. Another strategy popular
in bioimage analysis is to use high-fidelity simulated data as a sur-
rogate for real data [256,291,292], which allows supervised learn-
ing with any number of images without requiring manual
annotation [293–295].

5.4. Generalizable deep learning

In experimental evaluations of deep-learning methods, visual
recognition tasks are typically framed as ‘‘closed set” problems,
where the possible conditions in the test set are exactly the same
as those in the training set. But in many applications, including
in biomedical imaging, this is not very realistic. In practice, a more
realistic scenario is that ‘‘incomplete knowledge of the world is
present at training time, and unknown classes can be submitted
to an algorithm during testing” [296]. This implies that current
claims of superiority of machines over humans must be taken with
a grain of salt, and that more generalizable or ‘‘open set”
approaches to developing and evaluating deep-learning methods
are needed. Open-set recognition (OSR) has been studied in the
AI literature for some time [257,296,297] but has thus far received
very little attention in biomedical imaging.

5.5. Multimodal deep learning

Nowadays, biomedical studies are hardly ever based on data
from one imaging modality alone. Multiple, complementary imag-
ing modalities are often used to obtain a more complete picture of
the subject or sample under study. An example in bioimaging is the
correlative recording of structural and functional image data, using
electron and fluorescence microscopy, respectively [298–300]. But
it does not stop there. Experiments typically also involve collecting
genomic, proteomic, metabolomic, or other ‘‘omic” information
[260,301,302], and in clinical studies additional data may come
from electronic patient records. To take full advantage of all avail-
able information in such studies, powerful multimodal deep learn-
ing methods are required. This has been well recognized in various
other fields [258,259,303] but deserves more attention in bioimag-
ing and calls for an integrative approach to bioimage analysis and
bioinformatics.

5.6. Efficient deep learning

The ever-growing volume of biomedical data sets and the
increasing complexity of DNNs for improved analysis put propor-
tionally higher demands on computing power. Training a deep net-
work to achieve super-human performance, particularly in highly
specialized domains such as biomedical imaging, essentially
requires super-computing technology. To some extent this is pro-
vided by modern multicore GPUs, and more recent tensor process-
ing units (TPUs), which enable single-machine parallelization. But
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more efficiency is often needed to finish network training within a
desired time frame. Codesigning architectural, algorithmic, soft-
ware, and hardware solutions to allow multi-machine parallelism
and scalable distributed deep learning for this purpose is an ongo-
ing engineering challenge [261,262,304]. Biomedical imaging at
large will greatly benefit from such solutions, as they also facilitate
exploiting data from multiple institutes in training DNNs without
actually having to share the data, thus mitigating legal or ethical
concerns [263,305,306].
5.7. Explainable deep learning

A major point of criticism for which even the pioneers of deep
learning had their early papers rejected by peers in computer
science, is that the use of neural networks for any given perceptual
task provides ‘‘no insight into how to design a vision system” [51].
Even today, many in the community still have a propensity for
carefully hand-designed solutions based on a solid understanding
of the nature of the task. But the reality is that ‘‘methods that
require careful hand-engineering by a programmer who under-
stands the domain do not scale as well as methods that replace
the programmer with a powerful general-purpose learning proce-
dure” [51]. Nevertheless, the call for more explainability and inter-
pretability of deep learning methods is legitimate and receiving
growing attention in many areas of AI research [307,308,264]
including computer vision [309–311]. A host of visual analytics
tools have been developed to dissect DNNs and uncover what they
have actually learned [265,312,313]. Such tools have not yet found
widespread application in bioimage analysis but could help practi-
tioners better understand the predictions made by network
models.
5.8. Responsible deep learning

Ultimately, the goal of developing computational image analy-
sis methods for the biomedical domain, from fundamental biolog-
ical imaging to clinical medical imaging, is to improve the efficacy
of healthcare. But in order for biomedical professionals to be will-
ing to transfer their responsibilities to machines, and for those
whose health depends on their care to accept such transition, these
methods need to be trustworthy enough. In this regard it seems we
have not quite reached the tipping point. In the past few years, the
question whether or when AI will replace human experts has been
pondered in many areas of biomedical imaging [132,266–
269,314,315]. It goes without saying that decision making in bio-
medicine is more critical and risk-averse than in most other tech-
nological domains. Much work remains to take deep learning to
the level of transparency, adaptability, creativity, empathy, and
responsibility normally required of biomedical specialists. That
said, as deep learning methods are already achieving human-
competitive performance in specific subtasks and have only just
begun showing their considerable potential, DNNs will increas-
ingly play an integral role in biomedical procedures. Historically,
‘‘human-machine collaborations have performed better than either
one alone” [266], and there are no compelling reasons to believe
this will ever change.
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Hluchý L. Machine learning and deep learning frameworks and libraries for
large-scale data mining: a survey. Artificial Intelligence Rev 2019;52:77–124,
https://doi.org/10.1007/s10462-018-09679-z.

[57] Shrestha A, Mahmood A. Review of deep learning algorithms and
architectures. IEEE Access 2019;7:53040–65. https://doi.org/10.1109/
ACCESS.2019.2912200.

[58] Sejnowski TJ. The Deep Learning Revolution. The MIT Press, Cambridge, MA,
USA, 2018. https://www.amazon.com/dp/026203803X.

[59] Williams MA. The artificial intelligence race: will Australia lead or lose?. J
Proc Royal Soc New South Wales 2019;152:105–14. https://royalsoc.org.au/
council-members-section/435-v152-11007/s10462-016-9505-7.
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