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Based on a newly developed size-dependent cohesive energy formula for two-dimensional materials, a
unified theoretical model was established to illustrate the gap openings in disordered graphene flakes,
involving quantum dots, nanoribbons and nanoporous sheets. It tells us that the openings are essentially
dominated by the variation in cohesive energy of C atoms, associated to the edge physicochemical nature
regarding the coordination imperfection or the chemical bonding. In contrast to those ideal flakes,
consequently, the gaps can be opened monotonously for disordered flakes on changing their sizes, affected
by the dimension, geometric shape and the edge saturation. Using the density functional theory,
accordingly, the electronic structures of disordered flakes differ to the ideal case because of the edge
disorder. Our theoretical predictions have been validated by available experimental results, and provide us a
distinct way for the quantitative modulation of bandgap in graphene for nanoelectronics.

I
n the fields of materials science, increasing interest is now being attracted to graphene, a two-dimensional (2D)
sheet composing of carbon atoms arranged in a honeycomb lattice structure1. Because of its compatibility with
industry-standard lithographic processing, electron mobility up to 150 times greater than Si and a thermal

conductivity of graphene twice of that of diamond2, graphene shows its promise as a future material for the nano-
and micro-electronics applications, such as field effect transistors (FETs)3,4, biological membranes5, sensitive
platforms6,7, and so on. Among them, as the most successful device concept in electronics, most works on
graphene devices so far have been related to FETs8,9. When graphene is used as the channel material, the
graphene-based transistors will own an ultrafast speed, making it able to operate in the THz frequency range10.
Moreover, the extremely thin channels will possibly allow the transistors to be scaled to shorter channel lengths
without encountering the adverse short channel effects, which restrict the performance of existing devices.

To achieve graphene-based electronic devices with high performance, specific bandgaps of graphene are
usually required for different electronic applications11–13. As instance, since the Ion/Ioff ratios in FETs are largely
dependent on Eg of the channel materials on the basis of their proportional relationship with Ion/Ioff / eEg/kBT,
graphene materials with sufficiently large bandgaps are demanded for room-temperature FET operation14–16,
where Eg denotes the bandgap, kB the Boltzmann constant and T the absolute temperature. In general, Eg with
only a few tens of meV is too weak for room-temperature operation of FETs14. To have Ion/Ioff ratios as 10–100, Eg

of graphene materials around 0.1 eV is required15, while for high Ion/Ioff of 107, it should be large as 0.4 eV15,16.
Despite this, however, graphene cannot be directly adopted as semiconductors in electronics because of its zero
bandgap [Eg(‘) 5 0 eV]17, where ‘ denotes the bulk size in 2D. With such an issue, graphene creates a unique set
of challenges for implementation into conventional electronics due to substantial leakage currents in the off state
for field-effect devices. To address it, the degeneracy of the conduction and valance bands should be lifted via
breaking the equivalence between the A and B sublattices18. Aiming at this purpose, the bandgap openings (BOs)
in graphene have been realized by forming graphene quantum dots (GQDs)2,19,20, nanoribbons (GNRs)2,15,21–23 and
nanoporous graphene sheets (NPGs)24,25.

Upon the investigation on the BOs in GQDs, GNRs or NPGs, different edge natures should be considered.
According to its honeycomb lattice, graphene may own ideal armchair (AC) or zigzag (ZZ) edges12. With the
present fabrication techniques, however, these perfect edges are difficult to be formed for GQDs and GNRs26,27.
Instead, disordered edges are usually observed, which can be regarded as the mixture of AC and ZZ edge
shapes2,28. Because of it, the two edge structures of GNRs remain asymmetric2,26,27. Moreover, their edges are
kept naked with one dangling bond for each C atom. To stabilize those C atoms, dangling bonds can be chemically
saturated with some radicals or groups denoted by R beneficial for the BOs, such as R 5 H29, F30 or OH31. Such an
edge saturation was not performed for GQDs and GNRs in most experiments due to its technical difficulty, while
Ritter et al.2 claimed that it can be performed through exposing GQD or GNR flakes to H radicals. Disordered
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GQDs and GNRs without the edge saturation will be shown as GQD-
null and GNR-null, while those saturated with R will be exhibited as
GQD-R and GNR-R. As to mesoscopic NPGs24,25, the holes in gra-
phene are usually fabricated by the lithography technique with dif-
ferent geometrical shapes, such as circles or squares (C-NPGs or S-
NPGs). Far from the atomistic precision, the internal edges are usu-
ally kept disordered and naked, referred to as DO-NPG-null. Owing
to these attempts, the BOs were observed in disordered GQDs19,20,
GNRs3,15,21,23,32–34 and NPGs24,25, while the D-dependence of Eg(D)
varies considerably among them, where D denotes the diameter of
GQDs or holes in C-NPGs, width of GNRs, or the side length of holes
in S-NPGs. On lowering their D, a monotone increase in the
openings was observed for disordered and naked GQDs and
GNRs3,15,19–21,23,32–34, while it is more substantial for GQDs. As regards
NPGs, a monotone decrease in the BOs has been reported24. In
contrast, the BOs are lowered when their edges are saturated2.
However, our understanding to the openings in disordered flakes
is still in incubation.

Much effort has been devoted to investigating the opening mech-
anism in graphene. As a powerful technique, the computer simu-
lation approaches, such as the first principles density functional
theory (FP-DFT), Dirac equation and the tight-binding (TB) approx-
imations, have been adopted for such studies. It may provide us band
structure images, electronic density and other basic information of
graphene for analyzing and explaining the electronic performance35.
By this means, the opening behavior is usually studied using ideal
GQDs and GNRs with regular edge structures13,29,31,36,37 or ideal
NPGs with perfect periodic antidot superlattices or holes38–40. With
these contributions, however, it seems still difficult to illustrate the
openings in disordered flakes, since these ideal flakes exhibit much
different D-dependences of Eg(D). The BOs in ideal GQDs and GNRs
are relevant to edge structures. AC-GQDs have larger Eg(D) than ZZ-
GQDs do36. By exploring the electronic properties for a wide class of
nanoribbons, GNRs exhibit a rich variety of bandgaps from metals to
typical semiconductors13,37. Typically, ZZ-GNRs show a metallic or
semiconducting state13,29,31,37, while AC-GNRs present the oscillating
BO behaviors from the metallic to semiconducting state with respect
to D13,29,37, where the metallic points emerge at the period of 3 with Na

5 3p 1 2, Na the number of AC chains and p a positive integer.
Concerning ideal NPGs38–40, the opening behaviors are much com-
plicate, which may be affected by not only the hole diameter but also
the hole geometry, lattice geometry, separation between adjacent
holes, hole locations and the edge geometry. When D of holes rises,
Eg(D) would increase for some antidot lattices39, such as hexagonal or
triangular antidot lattices with a hexagon-shaped hole, while for the
rectangular, rotated triangular and the honeycomb antidot lattices
with a hexagon-shaped hole, only particular hole separations lead to
an obvious opening39. The rectangular antidot superlattices perfo-
rated with four holes of honeycomb symmetry can exhibits the semi-
conducting or metallic states, depending on the width ratio of AC
chains to ZZ chains38. More impressively, in particular, AC-
GNRs with Na 5 11 can be changed from the metallic state to the

semiconducting state when it is perforated with a honeycomb hole
especially at the central position, while it is still metallic if a triangu-
lar-shape hole is introduced38.

Besides the above studies, some other theoretical ways have been
explored for the BOs in DO-GNRs by considering the impact from
the edge disorder31. With the renormalized lateral confinement
approach41, Eg(D) of DO-GNRs is decided by the structural disorder
at the edges caused by etching or inaccuracies in the width deter-
mination, while such a disorder can result in an 0effective transport
width0 smaller than the ribbon’s nominal width. Alternatively, the
BO behaviors can be explained with the Coulomb blockade or char-
ging effects22,26,27, where the BOs are induced not only by confine-
ment but also by Coulomb blockade originated from the edge
roughness. However, the BOs in disordered GQDs and NPGs have
been less discussed. As shown in Table 1, in addition, some expres-
sions have been presented to plot Eg(D) of disordered GQDs, GNRs
or NPGs. In general, these expressions are achieved using the fitting
method with those experimentally measured Eg(D) values, while one
or two adjustable parameters a and/or b are present there. Since these
parameters are case-dependent and vary considerably among differ-
ent researches, the reported fitting expressions cannot take their
essential roles in helping us revealing the opening mechanism either.

Due to the limitation in existing approaches or expressions, some
issues on the BOs in disordered graphene flakes have not been
addressed. As instances, a theoretical way to describe the difference
in Eg(D) induced by the dimension effect is still absent. It also
remains unclear how to depict the reverse change in Eg(D) of
NPGs relative to those of GQDs and GNRs. As to the role from
the edge saturation, on the other hand, its exact mechanism has
not been clarified as yet. On account of it, one still wonders how
the BOs in saturated flakes will be weakened relative to those naked
ones. In practice, the gap opening mechanism of disordered flakes is
much complicated, which is relevant to not only the size but the
dimension, geometric shape and the edge saturation. However, a
systematic theoretical investigation on their roles is still absent,
which obstructs our physical insight into the BOs and throws obsta-
cles in our way toward the full-scale application of graphene in
electronics. Because of these, a unified theoretical approach should
be developed to elucidate the BOs in disordered graphene flakes.

In recent years, with the use of the mesoscopic thermodynamics of
materials42,43, a bandgap thermodynamics has been proposed to illus-
trate the Eg(D) function of 3D III–V and II–VI nanosemiconductors
with macroscopic parameters of materials based on the nearly-free-
electron approach44–46. In light of it, strikingly, it reads,

Eg Dð Þ~ 2{Ec Dð Þ3D

�
EC ?ð Þ

� �
Eg ?ð Þ: ð1:1Þ

In equation 1.1, Ec(D)3D is the energy required to break the atoms
in the solid into isolated atomic species, which can be obtained
experimentally by measuring the latent heat of sublimation at any
temperature, and extrapolating to zero Kelvin. Inspired by
Lindemann9s criterion for solid melting and Mott9s expression for

Table 1 | Equations or expressions reported to depict measured Eg(D) of disordered GQDs, GNRs and NPGs with or without the edge
saturation

flakes saturation Eg(D) in eV a b

GQDs H Eg(D) 5 a/Db 2 1.57 6 0.21 1.19 6 0.15
GNRs null Eg(D) 5 a/D15,21 0.8 eVnm15 —

1.26 eVnm21

Eg(D) 5 a/(D 2 b)23,41 0.38 eVnm23 16 nm
0.2 eVnm41 16 nm

Eg(D) 5 a/(DebD) 22,23 1 eVnm 22 0.023/nm
2 eVnm 23 0.026/nm

NPGs Eg(D) 5 a/(33 2 D) 24 0.95 eVnm —

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1524 | DOI: 10.1038/srep01524 2



vibrational melting entropy47–50, utilizing the proportional relation-
ship between Ec(D) and Tm(D), Ec(D)3D/Ec(‘) function for the 3D
nanocrystals having free surfaces with broken bonds is given as44,45,

Ec Dð Þ3D

�
Ec ?ð Þ~ exp { a0

3D{1
� ��

D
�

D0
3D{1

� �� �
, ð1:2Þ

where a0
3D is a surface physicochemical amount with a0

3D 5

ssv(D)2�sin�3D(D)2, s2 the mean square displacement of thermal
vibration at the melting temperature, and the subscripts sv and in-
3D the surface and interior atoms. Using Lindemann9s criterion for
solid melting and Mott9s expression49,50, it was derived that a0

3D 5

2Svib(‘)/3R 1 1, where Svib(‘) denotes the atomic vibration entropy
and R the gas constant. D/D0

3D 5 v/sh or D0
3D 5 2(3 2 d)h denotes the

critical diameter of crystals where almost all atoms or molecules are
located on the surface and a crystalline structure is no longer stable,
v/s means the volume/surface ratio, d the dimension of the crystal
with d 5 0 for nanoparticles, d 5 1 for nanowires and d 5 2 for thin
films. In light of equations 1.1 and 1.2, the bandgap expansion for
nanoscaled 3D III–V and II–VI semiconductors induced by the
surface or interface effect has been illustrated successfully44–46.
Stimulated by this success, one may conceive that the aforesaid issues
on the BOs in the 2D graphene system may also be addressed in the
thermodynamic way. Figure 1 illustrates the schematic plots of (A)
GQDs, (B) GNRs, (C) C-NPGs and (E) S-NPGs, while a tripolar flake
marked with YA1A2B1B2C1C2 in (D) and a cross flake with
1A1A2B1B2C1C2D1D2 in (F) denote the nanoscopic functional units
of C-NPGs in (C) and S-NPGs in (E), respectively. In view of it, an
atomic layer can be observed at the edge of GQDs, GNRs and tripolar
or cross flakes, which should be responsible for the BOs in graphene.
With this way, the distinct edge physicochemical nature of C atoms,
such as coordination imperfection (CI) or chemical bonding, should
play an important role in the BOs in graphene with relation to the
dimension, geometric shape and the edge saturation. However, no
attempts have been made on it so far.

In this paper, a general thermodynamic approach will be proposed
to illustrate the BO behaviors in disordered graphene flakes. Based on
this, significantly, it provides us a new physicochemical insight into
the openings in graphene. With the DFT simulation, accordingly, the
electronic structure of disordered GNRs will be investigated.
Suggestions will be made how to tune Eg(D) of graphene for its
application in nanoelectronics.

Results
BOs in disordered and naked GQDs, GNRs and NPGs. In light of
equations 2.1 and 2.2 in methods, Eg(D) of naked graphene flakes can
be worked out as long as a0

2D and D0
2D are known. Since a0

3D and a0
2D

are decided by the CI of atoms at the surface of 3D nanocrystals or
edge of 2D graphene flakes, a0

2D can be correlated with a0
3D via the

coordination number CN of atoms at the surface Nsv and that at the
edge Nedge. According to the inverse proportion relationship between
s2 and CN of atoms, based on the definitions of a0

3D in Introduction
and a0

2D in Methods, one has a0
3D / (Nsv/Nin23D)21 and a0

2D /
(Nedge/Nin22D)21, where Nin23D and Nin22D denote the CN in the
bulk 3D and 2D crystals. It thus reads a0

2D/a0
3D 5 (Nsv/Nin23D)/

(Nedge/Nin22D). Since Nin23D 5 12 and Nsv 5 9 for face-centered
cubic crystals and Nin23D 5 8 and Nsv 5 6 for body-centered cubic
ones47, Nsv/Nin23D 5 3/4. Moreover, Nedge 5 2 and Nin22D 5 3 for
2D graphene flakes. On the basis of these, a0

2D can therefore be
elucidated with a0

2D 5 9a0
3D/8. Utilizing the published a0

3D expres-
sion cited in Introduction, one has a0

2D 5 9[2Svib(‘)/3R 1 1]/8.
As regards D0

2D of GQDs, GNRs and NPGs, it can be given with
equation 2.4. Since l/s 5 2(2 2 d)/D, D0

2D of GQDs and GNRs can be
given as D/D0

2D 5 D/[2(2 2 d)h] or D0
2D 5 2(2 2 d)h, where d 5 0 for

GQDs and d 5 1 for GNRs. As regards NPGs, D0
2D cannot be decided

directly with that for GQDs or GNRs. This is because D here denotes
not the size of functional tripolar or cross flake but that of holes in
NPGs. Given that the effective size of tripolar or cross flakes is Deff,
Deff/D

0
2D should be explored using Deff/D

0
2D 5 s/lh. For the tripolar

unit of C-NPGs in Figure 1(D), the edge-C atoms along the concave
edges of A1A2, B1B2 and C1C2 own broken bonds, while those along
straight lines of A2B1, B2C1 and C2A1 are still embedded in graphene
without any CI, where not the latter but the former takes effect in the
BOs of NPGs. Hence, the effective free edge l of YA1A2B1B2C1C2

comes from three concave sections of A1A2, B1B2 and C1C2 only. Let
the distance between the center of any two neighboring circles O1, O2

and O3 be C larger than D, l 5 A1A2 1 B1B2 1 C1C2 5 3A1A2 5 pD/
2, and s 5

ffiffiffi
3
p

C2/4 2 pD2/8. Thus, we have l/s 5 4pD/(2
ffiffiffi
3
p

C2 2

pD2). Taking it into the above Deff/D
0
2D expression, one has Deff/D

0
2D

5 (2
ffiffiffi
3
p

C2 2 pD2)/(4pDh). Concerning the cross unit of S-NPGs in
Figure 1(F), in analogy, l/s 5 4D/(C2 2 D2), and Deff/D

0
2D 5 (C2 2

D2)/(4Dh). Inserting these Deff/D
0
2D expressions into equation 2.2

instead of D/D0
2D, Eg(D) as the function of D can be explored for

C- and S-NPGs.
With the above amounts, Figure 2 shows the solid Eg(D) curves as

the function of D for (A) GQD-null or GNR-null, (B) C-NPG-null
and (C) S-NPG-null plotted with equations 2.1 and 2.2 . For the
comparison purpose, the reported reciprocal or exponential fitting
expressions are also shown using dashed and/or dotted curves for
GNR-null15,41,21,23 and NPG-null24. Available experimental results
(symbols) were shown accordingly for verification. In light of
Figure 2, the bandgaps are substantially opened for naked GQDs,
GNRs and NPGs. As D shrinks, Eg(D) of GQDs and GNRs is
expanded exponentially. Moreover, GQDs have larger Eg(D) values
than GNRs do. In contrast, much similar D-dependence of Eg(D) has
been observed for C-NPGs in (B) and S-NPGs in (C), where Eg(D)
shrinks on decreasing D, and Eg(D) becomes strong as C declines
from 44 nm to 22 nm. Our predicted curves go through experimental
results shown in Figure 2(A)–(B), supporting that our theoretical
approach can be utilized to elucidate the BOs in graphene regarding
the dimension and geometrical shape. As regards the upward or

Figure 1 | Illustration of edge atomic layers (marked in red) for (A)
GQDs, (B) GNRs, (C) C-NPGs, (D) tripolar unit of (C), (E) S-NPGs, and
(F) cross unit of (E).

www.nature.com/scientificreports
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downward deviation of reported Eg(D) values of GNRs from our
predictions, it should be attributed to the methods to measure
Eg(D). As exampled by GNRs, in particular, its Eg(D) is usually
derived from the Ion/Ioff ratios of GNR-based FETs3,15,16,51. Utilizing
this means, there will be some possible errors caused by inaccurate D
determination due to over-etching underneath the etch mask, uncer-
tainties in the D measurements based on atomic form microscope or
the assumption of negligible Schottky barrier for holes in ultra-nar-
row GNR-based FETs15,41.

BOs in disordered but saturated GQDs and GNRs. Using
equations 2.1 and 2.2 , Eg(D) of saturated GQDs and GNRs can be
explored if aR

2D is known, where D0
2D is the same as that of naked

GQDs and GNRs. Since a2D is related to the edge atomic nature, aR
2D

may be resolved via a0
2D. According to equation 2.3, it reads aR

2D 5

sR
edge(D)2

.
sin�2D(D)2 and a0

2D 5 s0
edge(D)2

.
sin�2D(D)2. Divided

aR
2D by a0

2D, it has aR
2D/a0

2D 5 sR
edge(D)2

.
s0

edge(D)2. Since Ec / s22,

one gets aR
2D 5 ½E0

c (D)=ER
c (D)�a0

2D, where E0
c (D) and ER

c (D) are the
respective atomic cohesive energies of edge-C atoms of naked and
saturated GQDs and GNRs. Provided that E0

c (D) and ER
c (D) have the

same D-dependences, the ratio of E0
c (D)=ER

c (D) should be D-
independent, and thus aR

2D 5 ½E0
c=ER

c �a0
2D. With its help, aR

2D can be
given when E0

c and ER
c are known.

With the above derived expressions, Figure 3 shows the solid Eg(D)
curves as the function of D in light of equations 2.1 and 2.2 for DO-
GQD-R and DO-GNR-R with (A) R 5 H, (B) R 5 F and (C) R 5

OH. In comparison, the reported reciprocal fitting expression2 to
depict the D-dependences of Eg(D) for GQD-H as aforementioned
is also given using dashed curves in (A). Available experimental
results (symbols) were also shown accordingly. As can be seen in
Figure 3, when the edge saturation process is carried out, the BOs are
realized, where Eg(D) is enhanced as D decreases. There exists a fair
agreement between our curves and experiment results in Figure 3A,
which validates our theoretical models.

Investigation on electronic structure of DO-GNRs. Because of its
importance in electronics, in usual, ideal AC or ZZ-GNRs have been
adopted to investigate the electronic structure of graphene-based
nanostructures13,18,29,37,52. However, seldom attempts have been
made to it for DO-GNRs. Hence, the electronic structure of DO-
GNRs with the AC or ZZ skeleton along the periodic axis, referred
to as DO-GNRs(AC) or DO-GNRs(ZZ), is investigated here. Figure 4
shows the band structures and the corresponding charge density
isosurfaces of the lowest unoccupied molecular orbital (LUMO)
and the highest occupied molecular orbital (HOMO) at C point of

Figure 3 | The solid Eg(D) curves as the function of D in light of equations
2.1 and 2.2 for DO-GQD-R and DO-GNR-R with R 5 H in (A), F in (B)
and OH in (C), where aR

2D and D0
2D are from Results. In comparison, the

reported reciprocal fitting expression from Table 1 to depict the D-

dependences of Eg(D) with Eg(D) 5 a/Db for DO-GQD-H2 is also given in

(A) using dashed curve. The symbols denote the measured results with&2.

For naked GQDs or GNRs, E0
c 5 EC5C where EC5C is the bond energy of C

5 C. Upon the edge saturation with R, ER
c 5 EC5C 1 EC2R/2. EC5C and

EC2R will be taken as the averaged values from ZZ and AC-GNRs. The

respective EC5C values are taken as 4.68 and 5.81 eV for E0
c of ZZ and AC-

GNRs56. To have ER
c , the respective EC5C and EC2R are 4.97 eV and 5.47 eV

with R 5 H, 4.60 eV and 5.22 eV with R 5 F and 4.44 eV and 5.06 eV with R

5 OH, where the values of these parameters are given with the simulation

method in Supplementary Information. See the caption of Figure 2 for

other necessary parameters in calculation.

Figure 2 | The solid Eg(D) curves as the function of D using equations 2.1
and 2.2 for (A) DO-GQD-null and DO-GNR-null, (B) DO-C-NPG-null
and (C) DO-S-NPG-null at C 5 22, 33 and 44 nm, where a0

2D and D0
2D are

from Results. For the comparison purpose, the reported reciprocal or

exponential fitting expressions from Table 1 are also shown using dashed

and/or dotted curves with Eg(D) 5 a/D15,21, Eg(D) 5 a/(D 2 b)23,41 and

Eg(D) 5 a/(DebD)22,23 for GNR-null in (A) and Eg(D) 5 a/(33 2 D)24 in (B).

The symbols denote available measured results with .19 and X20 for GQDs

and %41, q15, %21, o23, #3, D32, =33, and 34 for GNRs in (A) and #24 for

C-NPGs in (B). For calculation, h 5 0.142 nm18,35. Svib(‘) is given with

Svib(‘) < Sm(‘)2 R44,45,50, where Sm(‘) means the melting entropy using

Sm(‘) 5 Hm(‘)/Tm(‘)44,50 with Hm(‘) and Tm(‘) being the melting

enthalpy and melting point, respectively. Svib (‘) or Sm of graphene can be

referenced to that from graphite with Hm(‘) 5 132 kJ/mol and

Tm(‘) 5 5500 K58,59.

www.nature.com/scientificreports
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DO-GNRs(AC) and DO-GNRs(ZZ) in (a) R 5 H, (b) R 5 F and (c)
R 5 OH or of DO-GNRs(ZZ) in (d) R 5 H, where their width is
given at D < 1.2 nm. In light of their band structures, the energy
bands for spin-up and spin-down states are degenerate, while the
openings are observed substantially for all DO-GNRs. The respective
gaps are 0.44, 0.50 and 0.56 eV for DO-GNRs(AC) saturated by R 5

H, F and OH. Regarding DO-GNRs(ZZ) saturated with R 5 H, Eg(D)
5 0.40 eV, close to that of DO-GNRs(AC) with R 5H. In
comparison, some differences in HOMO and LUMO can be
observed between DO-GNRs and ideal GNRs. In ideal AC-GNRs,
the charge densities are concentrated homogenously along the C5C
bonds over the whole framework36. In Figure 4(a)–(c) for DO-
GNRs(AC), the HOMO and LUMO orbitals distribute mainly
along the C5C bonds. However, the densities are inhomogeneous
over the whole region, much weak in the inner area instead.
Moreover, some electronic states appear at single ZZ-structured
edge-C atoms (labeled as 1, 2 and 3). In ideal ZZ-GNRs, on the
other hand, the charge densities are centered at single C atoms
especially for those along the two ZZ edges36. As for DO-
GNRs(ZZ) in (d), however, the LUMO and HOMO charge
densities are mainly centered at single C atoms, which seems
strong in the interior area. Some charge densities along the C5C
bonds have also been observed.

Discussion
According to our predictions, the BOs observed for disordered and
naked GQDs, GNRs or NPGs in Figure 2 are contributed from the

decrease in Ec of C atoms at the edge compared to that in the interior.
In a perfect graphene, each C atom has a planar sp2 configuration
with three C 5 C bonds. When graphene flakes are naked, each edge-
C atom has one dangling bond, and it thus consists of two C5C
bonds only, leading to a decrease in Ec of edge-C atoms relative to
those in the interior. Consequently, the equivalence between the A
and B sublattices is broken, giving rise to the BOs in graphene flakes.
As regards the saturated case in Figure 3, the dangling bonds of edge-
C atoms are terminated, while each edge-C atom owns two C 5 C
bonds and one C-R bond, different from the case in the interior. On
account of it, the equivalence of A and B atoms is broken, resulting in
the BOs in GQD-R or GNR-R. This infers that the BOs in saturated
GQDs and GNRs should also be ascribed to the bonding change of
edge-C atoms. With regard to the difference in Eg(D) among GQDs,
GNRs and NPGs, it agrees with their D-dependences of l/s ratio,
which rises for GQDs and GNRs but shrinks for NPGs on lowering
D (Supplementary Fig. S1). Concerning the large Eg(D) of GQDs
relative to GNRs, it should be attributed to the observation that
GQDs have larger l/s ratios than GNRs do. It should be noted that
the D-dependences of Eg(D) for GNR-null in Figure 2(A), NPG-null
in Figure 2(B) and GNR-H in Figure 3(A) can be reflected on
decreasing D with those reported fitting expressions. However, these
expressions can only be adopted for elucidating the BO behaviors in
those graphene flakes numerically, while neither of them can be
adopted to address the issues on the essential roles played by the
dimension effect, geometric shape and the edge saturation, ascribed
to the presence of adjustable parameters a and/or b in them. In

Figure 4 | Band structure, charge density isosurfaces of LUMO and HOMO at C point of DO-GNRs(AC) with (a) R 5 H, (b) R 5 F and (c) R 5 OH and
of DO-GNRs(ZZ) with (d) R 5 H. The EF is set to zero. Blue and yellow denote the positive and negative wave function contours, respectively, and the

value of the isosurfaces is 0.02 e/Å3. C, H, F and O atoms are denoted by gray, white, cyan and red balls, respectively.
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Figure 2(A), in particular, several fitting expressions have been
reported to elucidate the D-dependence of Eg(D) for GNR-null.
However, they vary considerably among different researches, and
it is difficult for one to see which one is suitable for illustrating the
D-dependence of Eg(D) for naked GNRs.

According to the previous studies, a monotonous increase of Eg(D)
has been reported for ideal AC and ZZ-GQDs36, which agrees with
our predictions on Eg(D) of DO-GQDs. Concerning the difference in
the size of Eg(D) between AC-GQDs and ZZ-GQDs36, it should be
attributed to their different edge natures53. However, the opening
behaviors of disordered GNRs differ to those ideal AC and ZZ-
GNRs. The oscillating BO behaviors in AC-GNRs are induced by
the full Fermi wavelength effect13. As for ZZ-GNRs, the reported
metallicity is caused by the flat bands at the Fermi level EF from
the highly localized states formed at the edges18, while the semicon-
ducting state is stemmed from the staggered sublattice potential on
the hexagonal lattice induced by the edge magnetization29. One may
thus wonder whether the roles from the Fermi wavelength effect, the
flat bands at EF or the interedge magnetic interaction observed in AC
or ZZ-GNRs would affect the BOs in disordered GNRs or not.
Among them, in fact, the roles from the Fermi wavelength effect
and the flat bands at EF in DO-GNRs should be negligible. This is
reasonable since almost no oscillating BO behaviors or metallic states
have been reported for experimentally fabricated DO-GNRs, while
the openings in them are observed substantially and rise monoto-
nously on lowering D instead3,15,21,23,32–34. As to the role from the
interedge magnetic interaction, it was investigated in the present
work by performing spin-polarized and non spin-polarized calcula-
tions for DO-GNR-R shown in Figure 4(a)–(d). The obtained results
show that almost no energy difference can be found for them
between these two methods, indicating that all DO-GNRs give the
nonmagnetic characteristics. In light of it, the contribution from the
interedge magnetic interaction to the BOs in DO-GNRs should also
be neglected. Obviously, the negligible roles from these factors
should be attributed to the edge disorder. In Figure 4, in addition,
the increasing order of Eg(D) for DO-GNR-R at D < 1.2 nm from the
simulation method with R 5 H, F and OH is the same as that from
our predictions in Figure 3. However, their sizes are somewhat lower
than those from our predictions, which might be related to the
investigation approaches. As to the difference in the HOMO and
LUMO charge density between DO-GNRs and ideal GNRs, it should
also be relevant with the edge disorder in the former.

As mentioned above, in addition, the BOs contributed from the
confinement role of D of holes have been reported for some typical
ideal antidot superlattices38–40, which are in agreement with our
predictions on DO-NPGs. In contrast, the metallic state observed
in some other superlattices should be induced by the flat bands
attributed to some factors, such as the instability of the incomplete
benzenoid bonding pattern, large width of the ZZ chains or the
presence of the ZZ rims38–40. As the metal-semiconductor transition
in porous AC-GNRs with Na 5 11 regarding the position effect, it is
induced by the suppression of the localized states38. However, it
seems that the roles from these factors can be neglected in the BOs
in DO-NPGs, since they can be much suppressed by the internal edge
disorder of holes. As evidence, no metallicity has been observed in
experimentally fabricated DO-NPGs24,25,54. Besides it, a more recent
investigation on the BOs in ideal AC or ZZ-GNRs perforated with
disordered holes claims that the sensitivity of Eg(D) to the lattice
symmetry is significantly suppressed in the presence of disorder55.

To see how Eg(D) of saturated DO-GQDs or GNRs will evolve
relative to the naked case, Figure 5 shows DEg(D) as the function of D
with DEg(D) 5 Eg(D)R 2 Eg(D)null. DEg(D) are negative for the edge
saturation by H, F and OH, decreasing on the decline of D. This
suggests that the BOs are weakened after the edge saturation. In
comparison, the D-dependence of DEg(D) for GQDs is stronger than
that for GNRs where the D-dependence ofDEg(D) is the strongest for
the H saturation and the weakest for the OH saturation. In view of it,
further, one can see that Eg(D) of GQDs or GNRs can be lined in
sequence with Eg(D)H , Eg(D)F , Eg(D)OH , Eg(D)null. Frankly,
such a variation is essentially relevant to the difference in Ec of edge-
C atoms for GQDs or GNRs with or without the edge saturation.
Relative to naked graphene flakes, Ec of edge-C atoms is increased
after the edge saturation56, depending on the radicals or groups.
Accordingly, the edge physicochemical amount a2D is suppressed,
leading to the change in Eg(D) in an decreasing order with R 5 null,
OH, F and H as observed, Thanks to it, the opening suppression
originated from the edge saturation can be understood associated
with the edge physicochemical nature.

In light of equations 2.1 and 2.2, moreover, Figure 6 gives a com-
parison of D necessary to achieve Eg(D) 5 0.1 eV (denoted as D0.1eV)
and Eg(D) 5 0.4 eV (marked with D0.4eV) between naked and satu-
rated GNRs, which are specified by Ec of edge-C atoms along the x-
axis. From naked GNRs to saturated GNRs with R 5 OH, F and H,
interestingly, D decreases as Ec rises, while the D0.4eV curve goes

Figure 5 | DEg(D) as the function of D for disordered GQDs and GNRs
between the cases with the saturated and naked edges, where DEg(D) 5
Eg(D)R 2 Eg(D)null with R 5 H, F and OH. The corresponding values of

a0
2D, aR

2D and D0
2D for calculation are referenced to those adopted in

Figures 2 and 3.

Figure 6 | A plot of D necessary to achieve Eg(D) 5 0.1 eV and
Eg(D) 5 0.4 eV for disordered GNRs with or without the edge saturation
specified by Ec of edge-C atoms. The values of E0

c , ER
c , a0

2D, aR
2D and D0

2D
necessary for the calculation are referenced to those adopted in Figures 2

and 3.
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below the D0.1eV curve. Relative to the naked case, small D0.1eV and
D0.4eV are strictly required for GNR-R, decreasing in the order of
R 5 OH, F and H. Owing to these, one can see that, if a certain Eg(D)
value is devised for a graphene flake, the necessary D will be affected
by the edge physicochemical nature associated with the saturation.

In published papers, special interest has been attracted how to tune
the gap of graphene. One important way for it is to control the edge
states or nature of graphene flakes via the edge saturation with
different chemical radicals or groups31. In ZZ-GNRs, the edge
modifications can break the spin degeneracy. This will lead to a
semiconducting-metal transition or a half-semiconducting state with
the two spin channels having different band gaps, or a spin-polarized
half-semiconducting state with the spins in the valence and conduc-
tion bands being oppositely polarized. About AC-GNRs, the edge
saturation gives electronic states a few eV away from the Fermi level
and does not significantly affect their bandgap. Based on it31, hence, it
is reasonable that Eg(D) of disordered GQDs or GNRs can be modu-
lated quantitatively by the edge saturation. In view of our predictions,
since there exists an obvious discrepancy of Eg(D) between naked and
saturated GQDs or GNRs, such a modulation can be realized by
controlling the edge coverage upon the saturation, which can be
performed through eliminating only a certain percentage of dangling
bonds in a uniform way. Given that there exists a linear relationship
between a2D and the edge coverage, one has a2D 5 a0

2D(1 2 xR) 1

aR
2DxR for partially saturated GQDs and GNRs, where xR denotes the

percentage of saturated edge-C atoms from 0 (the full edge-naked
state) to 1 (the complete edge-saturated state). Inserting the above
a2D expression into equation 2.2, Eg(D) as the function of xR at D 5

1.6 nm was plotted in Figure 7 using equation 2.1 with R 5 H in (A),
R 5 F in (B) and R 5 OH in (C). Eg(D) decreases continuously as xR

rises. On increasing xR from 0 to 1, Eg(D) declines from 1.70 eV to
0.93 eV for GQDs and from 0.84 eV to 0.41 eV for GNRs in (A) with
R 5 H, from 1.70 eV to 1.12 eV for GQDs and from 0.84 eV to 0.50

eV for GNRs in (B) with R 5 F, and from 1.70 eV to 1.18 eV for
GQDs and from 0.84 eV to 0.53 eV for GNRs in (C) with R 5 OH.
This suggests that Eg(D) of disordered GQDs and GNRs can be
adjusted subtly by changing xR, beneficial to the design and engin-
eering of graphene-based nanoelectronic devices.

Methods
General consideration on the BOs in disordered graphene flakes. Although the
dimensionality of 2D graphene differs from 3D semiconductors, there exists CI for
edge-C atoms of graphene. By reason of such a similarity, the coherent energy of
edge-C atoms will be decreased definitely. It is natural that the nearly-free-electron
approach can also be adopted in predicting the BOs in graphene. In view of this, the
decrease in Ec of edge-C atoms will play an essential role in influencing the crystalline
field of graphene, and the equivalence between the A and B sublattices will resultantly
be broken, leading to the BOs in graphene.

According to the tight-binding approach57, electrons are viewed as occupying the
standard orbitals of their constituent atoms, and then hopping between atoms during
conduction. Mathematically, this is represented as a hopping or transfer integral
between neighboring atoms, which can be viewed as the physical principle that creates
electron bands in crystalline materials, due to overlapping between atomic orbitals. In
virtue of it, the BOs in graphene induced by the upward shift of conduction band and
downward shift of valence band of the p bonds are associated to the hopping energy
Eh between p orbitals with Eh 5 2.96 eV57. In light of these, with reference to 3D
nanosemiconductors44,45, Eg(D) of graphene flakes is given as,

Eg Dð Þ~ 1{Ec Dð Þ2D

�
Ec ?ð Þ

� �
Eh: ð2:1Þ

To obtain Eg(D) with equation 2.1, Ec(D)2D/Ec(‘) function should be explored for
2D flakes, which can be referenced with the 3D case44,45,49,50, where free surfaces of 3D
nanocrystals with broken bonds are substituted by free edges of 2D flakes. One thus
has,

Ec Dð Þ2D

�
Ec ?ð Þ~ exp { a2D{1ð Þ

�
D
�

D0
2D{1

� �� �
: ð2:2Þ

In equation 2.2, a2D is an edge physicochemical amount, while D0
2D denotes the

critical size of 2D materials. To explore Ec(D)2D, these two amounts should be
developed by considering the roles played by the dimension, geometric shape and/or
the edge saturation. Referenced by the 3D case44,45,49,50, the physicochemical amount
a2D in equation 2.2 for 2D graphene flakes is decided by the edge nature relative to the
interior case, and one thus has,

2D~sedge Dð Þ2
�
sin{2D Dð Þ2, ð2:3Þ

where the subscripts edge and in-2D mean the edge and interior atoms of 2D graphene
flakes. In principle, a2D of naked graphene flakes marked with a0

2D is decided by the CI
of C edge-atoms. Since the CI of edge-C atoms is eliminated upon the edge saturation,
in contrast, a different a2D will be resulted from it for saturated graphene flakes
denoted with aR

2D. On the other hand, D0
2D is one amount related to the dimensionality

or the geometrical shape of graphene flakes, which can be principally given as,

D
�

D0
2D~s=lh, ð2:4Þ

where s/l is the area/edge ratio. Associated to it, the D-dependences of Eg(D) should be
relevant to the l/s ratio of graphene flakes.

DFT approach to electronic structure of DO-GNRs. The electronic structure of
DO-GNRs was investigated with the DFT approach. DO-GNRs are 1.2 nm wide or so
with the AC or ZZ skeleton along the periodic axis, referred to as DO-GNRs(AC) or
DO-GNRs(ZZ). Moreover, the two edges of both DO-GNRs(AC) and DO-
GNRs(ZZ) are composed of the mixed AC or ZZ structures and kept symmetric. For
DO-GNRs(AC), the supercell includes 12 zigzag C5C bonds in the periodic
direction, as shown in Figure 4(a)–(c), where the edges are saturated by H, F and OH,
respectively. For DO-GNRs(ZZ), the supercell has 12 armchair C5C bonds in the
periodic direction [see Figure 4(d)], where the edge is saturated by H atoms.

Spin-polarized DFT calculations are performed using DMOL3 code with GGA-
PBE as the exchange correlation function. All electron core treatment and double
numeric plus polarization (DNP) basis set are adopted. The Brillouin zone is sampled
by 5 3 1 3 1 k-points and the real space global cutoff radius is set to be 5.0 Å for the
geometry and electronic calculations. In addition, a uniform vacuum of 15 Å per-
pendicular to the GNR is employed to ensure no interactions between neighboring
cells. These bring out the convergence tolerance of energy of 1 3 1025 Ha, maximum
force of 0.002 Ha Å21 and maximum displacement of 0.005 Å, respectively.
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