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This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic
and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values
of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by
using the Hadamard product as fitness function.This proposed method is evaluated in terms of computational time and compared
with two implementations of the generalized Hough transform and RANSACmethod for parabola detection. Experimental results
show that the proposedmethod outperforms the comparativemethods in terms of execution time about 93.61%on synthetic images
and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed
method can be highly suitable for different medical applications.

1. Introduction

In the pattern recognition field, detection of curves in natural
or medical images is a significant and challenging problem
since relevant information about an object is highly related to
the shape of its boundary. Any curve can be detected by using
the Hough transform (HT), if this curve can be represented
by a parametric equation [1, 2].

Circular Hough transform (CHT) is based on the Hough
transform principle and it has been adapted for the detection
of circles [3]. For this particular problem, three different
parameters (𝑥0, 𝑦0, 𝑟) that define a circle have to be deter-
mined. The parameters (𝑥0, 𝑦0) represent the coordinate of
the center and 𝑟 represents the radius [4]. Although the CHT
is able to detect suitable approximation to circles in different

type of images, the computational time to detect a single
curve is high. This disadvantage is due to the fact that each
single pixel represents a potential center (𝑥0, 𝑦0), and a range
of possible radii have to be tested for each particular pixel. On
the other hand, the voting accumulator [5] that indicates the
parameters of a curve that exists in the image is computed on
a matrix where each cell has the number of intersections of
the circles formed by taking a single pixel as the center; if the
matrix is plotted in a three-dimensional graph, sharp peaks
will be visualized in the cells that have more intersections.
The parameters of the circle are computed by taking the
highest peak in the accumulator. Since the representation of
an accumulator is a matrix, two of the three parameters of
the circle are represented by the rows and columns; in order
to cover the third parameter, a three-dimensional matrix is
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needed. Although it is possible that several sharp peaks will
be formed in the accumulator, when the radius of the tested
circle is close to the radius of the circle, these peaks do not
represent a real circle. Therefore, once the accumulator has
been computed, the next challenge is to find the peak that
actually represents the real circle. Due to the nature of the
CHT, it would be virtually impossible to find multiple circles
in an image; therefore, some studies have proposed different
techniques to solve this issue by using techniques such as
genetic algorithms [6] or Harmony Search (HSA) [7]. Ayala-
Ramirez et al. [6] optimize the computational time of the
CHT, by applying a strategy consisting in selecting three
random pixels from the edge image as the chromosomes for
the genetic algorithm.These three points are used to calculate
a center and radius of a circle, and the fitness function
evaluates how many pixels of a virtual circle are actually
present in the real edge image.

The problem of detecting parabolas can be accomplished
by finding the basic parameters of the general equation for
parabolic shapes, which are the vertex in (𝑥0, 𝑦0), the angle,
and its aperture. In literature, different methods have been
proposed to detect parabolas using the Hough transform
as a baseline. Maalmi et al. [8] proposed a method that
applies genetic algorithms to perform the voting process of
the Hough transform.The detected curves are horizontal and
the aperture is fixed. This implementation was reported for
the detection of crack defects in B-scan images. Oloumi and
Rangayyan [9] applied the Hough transform for parabola
detection using three parameters: (𝑥0, 𝑦0) that represent the
vertex and 𝑎 to describe the latus rectum or aperture. The
main application reported of this method is the detection of
temporal arcade in retinal fundus images, where parabolas fit
retina vessels [10, 11]. Other reported works also have been
focused on the human eye, for finding the iris [12], and in
retina angiography [13].

Another potential application for parabola detection can
be seen in medical images for orthopedic diagnostics in
the plantar arch. Some of the basic human movements are
walking and running; these movements are possible thanks
to a complete set of muscles working together. However, if
the plantar arch of the human feet is not of the correct size, a
set of problems (e.g., back problems) can lead to surgery and
prosthetics [14]. In patients with diabetes, it was observed that
there is a relationship between forefoot and rear foot pressure
with the ulceration on the human foot [15]. Differentmethods
have been proposed to address problems in the orthopedic
area. P. S. Kulkarni andV. B. Kulkarni [16] proposed amethod
to classify the human footprint using a parameter that they
call Footprint Index (FPI). First, they found the minimum
distance from𝑦-axis on the lateral upper and lower part of the
footprint; with those two points, they draw a line𝐶, where the
middle point of 𝐶 will be the center of the arch. Considering
this center, two lines 𝐵 and 𝐴, which are perpendicular to𝐶, are computed. These lines will provide the distances from𝐶 to the arch vertex and from the arch vertex to the edge
foot, respectively.The FPI parameter is calculated as the ratio
of 𝐵 to 𝐴. Then, the footprint can be classified as flat foot,
normal foot, or high arch foot. Chu et al. [17] proposed a
similar process as in [16]; however, some othermeasurements

were computed and were added to the ratios proposed by P. S.
Kulkarni and V. B. Kulkarni [16] in an effort to compute the
arch height. Zheng et al. [18] used the footprint to perform
an analysis and match a subject’s gait with the corresponding
footprint.

Some other approaches have been proposed for parabola
detection. Salehin et al. [19] proposed conic detection by
applying Pascal’s theorem (i.e., approximating the curve from
two tangent lines and a point from the conic). Merazi-
Meksen et al. [20] detected parabolic forms from Time-Of-
Flight Diffraction images in order to analyzematerial defects.
Detection procedure is named randomizedHough transform
and is a combination of Least Squares, Randomized Sampled
Consensus (RANSAC), and Hough transform. Certainly,
robust fitting may be seen as a nonlinear optimization prob-
lem that could be solved iteratively by RANSAC method; in
particular, thismethod is able to copewith outliers to estimate
the parameter of a desired mathematical method. RANSAC
is a simple and powerful method that could be useful in
many applications; depending on the model it could have
many parameters to tune, but the probability of convergence
increases as more iterations are used. The convergence is not
warranted because initialization is chosen randomly from a
small data subset (i.e., results are not repeatable). In some
special cases, RANSAC is not always capable of obtaining the
optimal results for well-conditioned data [21, 22].

Most state-of-the-art algorithmsuseHough transform for
model fitting which is very time demanding. EDAs represent
a stochastic optimization technique similar to genetic algo-
rithms, which has begun to attract more attention for solving
different problems in the area of image analysis [23, 24]. One
of the main advantages of EDAs (UMDA) is that they use
global statistical information of the best solutions instead of a
crossover or mutation operators. On the other hand, UMDA
has only two parameters to be tuned, number of individuals
and selection rate, since the number of generations can be
replaced by another convergence criterion such as the average
or standard deviation of the population.

In this paper, a new method for the parabola detection
problem based on Estimation of Distribution Algorithms
(EDAs) is proposed. The method is evaluated in terms of
computational time on synthetic and medical images of the
retina and human plantar arch. Since EDAs represent an evo-
lutionary computation technique, the fitness function used
in this work is based on the Hadamard product. EDAs have
shown remarkable advantages in order to solve optimization
and model fitting problems. In our proposed approach,
Univariate Marginal Distribution Algorithm (UMDA) [23]
performs a single detection of a parabola 94% faster than HT
and 45% faster than RANSAC.

Finally, the results of the proposed method are compared
with those obtained by using the Hough transform imple-
mentation of Sanchez found in the MATLAB� central [25],
the parabolic shapes detection provided by the MIPAV� [26]
software, and additionally the well-known RANSACmethod
proposed by Fischler and Bolles [27]. The remainder of this
paper is organized as follows: in Section 2, the fundamentals
of the Hough transform, the Estimation of Distribution
Algorithms, and the proposedmethod for detecting parabolic
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Figure 1: Parametric curves described by (2) and (3), respectively.

shapes are explained in detail. Experimental results are
presented and discussed in Section 3, and conclusions are
given in Section 4.

2. Methods

2.1. Parabola Detection. The detection of curves can be
achieved by exploring the duality between points on a curve
and the parameters representing that curve; this method is
known as Hough transform (HT) [28]. Geometric curves
such as circles, ellipses, parabolas, and hyperbolas can be
parameterized in a polar coordinate system (𝑟, 𝛽), if the equa-
tion that represents the curve satisfies one of the following
two equations:

𝑟 = 𝑑𝑒1 ± 𝑒 cos𝛽,
𝑟 = 𝑑𝑒1 ± 𝑒 sin𝛽, (1)

where 𝑒 represents the eccentricity and 𝑑 is the shortest
distance between the focal points and the directrix of the
curve. Since the present work is focused on the detection of
parabolic curves, in these equations, the 𝑒 parameter must
have a value of 1. The most common parameters to identify a
parabola are the vertex (𝑥0, 𝑦0), the coordinates (𝑓𝑥, 𝑓𝑦) of the
focus, the orientation 𝜃0 of the axis of symmetry with respect
to the coordinates axes, and the coefficients of (1).

On the other hand, the equation in the Euclidean space
that represents a parabolic curve with directrix parallel to the𝑦-axis can be defined as follows:

(𝑦 − 𝑦0)2 = 4𝑎 (𝑥 − 𝑥0) , (2)

and if the directrix is parallel to the 𝑥-axis, the equation is
modified as follows:

(𝑥 − 𝑥0)2 = 4𝑎 (𝑦 − 𝑦0) , (3)

where the parameter 𝑎 is used to modify a parabola in two
different aspects: the aperture direction and its magnitude.

For large values of |𝑎|, the aperture is increased, and if 𝑎 is
positive, the parabola of (2) opens up or to the right, while in
(3) the parabola opens to the positive 𝑦-axis, as it is shown in
Figures 1(a) and 1(b), respectively. Hence, a parabolic shape
is completely determined in the Euclidean space by defining
the set of parameters {𝑥0, 𝑦0, 𝑎}.

To detect parabolic shapes in images using the Hough
transform algorithm, all the pixels with intensity different to
zero and with coordinates (𝑥, 𝑦) represent a potential curve
in the Hough space. However, a drawback of the Hough
transform is the resolution used to generate the accumulator
because the input parameters such as the aperture are
unknown.Consequently, there is a tradeoff between precision
and fast execution time. When the tested aperture is close to
the real aperture, the accumulator shows several peaks with
high magnitude as it can be seen in Figure 2, and by using
a low precision for the aperture parameter, the real parabola
may not be found.

The main disadvantages of the HT are the computational
time it takes to determine the best parameter values and the
selection of the optimal peak in the accumulator, where the
most commonly strategy used to find it is the local maxima
method.

2.2. Estimation of Distribution Algorithms. The Estimation of
Distribution Algorithms (EDAs) represent an extension to
the field of evolutionary computation (EC). EDAs are useful
to solve problems in the discrete and continuous domain by
using some statistical information of potential solutions, also
called individuals [29–31]. Similar to EC techniques, EDAs
perform the optimization task by using binary encoding and
selection operators over a set of potential solutions called
population. The main difference regarding the classical EC
techniques is that EDAs replace the crossover and mutation
operators by building probabilistic models at each generation
based on global statistical information of the best individuals.

By using these explicit probabilistic models, EDAs are
able to solve optimization problems to cope with high level
of epistasis. The principal advantages of EDAs over genetic
algorithms are the absence ofmultiple parameters to be tuned
and the expressiveness and transparency of the probabilistic
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Figure 2: Example of a parabola accumulator using the Hough transform.

model that guides the search process. EDAs have been proven
to be better suited to some applications than GAs, while
achieving competitive and robust results in the majority of
tackled problems [24]. By the way, EDA is a discrete algo-
rithm and PSO has been applied for continuous processes;
although PSO has been applied in different works in discrete
problems, its real potential is in the continuous domain [32].
PSO is similar to the genetic algorithm (GA) in the sense
that these two evolutionary heuristics are population-based
search methods by using a combination of deterministic and
probabilistic rules. PSO has the same effectiveness as GA
but with a significantly better computational efficiency [33].
Additional advantages of using EDAs are that they have the
ability to adapt their operators, provide optimization practi-
tioners with a Roadmap of how the problem was solved, use
prior knowledge by injecting specific solutions, and require
reduced memory and reduced computational times [29]. In
this work, the Univariate Marginal Distribution Algorithm
(UMDA) has been adopted as optimization strategy, because
it is ideal for linear problems [23, 34, 35]. UMDA uses a
binary codification for each possible solution, and it generates
a probability vector p = (𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛)𝑇, where 𝑃𝑖 is the
marginal probability of the 𝑖th bit of each individual, to be
one or zero in the next generation. Then, UMDA tries to
approximate the probability distribution of the individuals in
P. This can be defined as follows:

P (𝑥) = 𝑛∏
𝑖=1

P (𝑋𝑖 = 𝑥𝑖) , (4)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 is the binary value of the 𝑖th
bit in the individual and 𝑋𝑖 is the 𝑖th random value of the
vector 𝑋. An objective function is needed to select a subset
of best individuals. This function is used to determine the
fitness of the current potential solution. A probability vector
is computed from the subset of candidate solutions in order
to generate a new population based on its distribution. This
process is iteratively performed until a stop condition is
achieved, and the best solution is chosen to be the individual
with the best fitness value along the evolutionary process.

2.3. Proposed Method. This section describes the proposed
method to detect parabolic shapes in images using the
population-basedmethod of UMDA along with the objective
function to evaluate the fitness for each potential solution.
The most representative steps of the proposed methodology
for parabola detection are represented in Algorithm 1.

2.3.1. Individual Representation. A parametric equation that
describes a parabola is required to represent a potential
solution for finding parabolic shapes in images. In the
Cartesian coordinate system, a parabola can be described by
using its general form as follows:

𝐴𝑦2 + 𝐵𝑦 + 𝐶 = 𝑥, (5)

where𝐴, 𝐵, and𝐶 represent unknown constant values, which
can be determined using three independent pixels from the
spatial image domain. Considering that the search space is
a binary image, the coordinates (cols(𝑥), rows(𝑦)) of three
random pixels are selected in order to form an individual for
the population of the UMDA. For simplicity, the label 𝑥 is
used for cols(𝑥) and 𝑦 for rows(𝑦).

The whole set of potential pixels in the input image are
listed by their relative position to an origin, and they are
labeled with an index ind = {1, 2, 3, . . . , 𝑁}, where 𝑁 is the
total number of potential pixels. The coordinates (𝑥ind, 𝑦ind)
of the set {𝑖, 𝑗, 𝑘} of pixels are used to compute the three
constant values as follows:

𝐴 = 𝑦𝑘 (𝑥𝑗 − 𝑥𝑖) + 𝑦𝑗 (𝑥𝑖 − 𝑥𝑘) + 𝑦𝑖 (𝑥𝑘 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) (𝑦𝑖 − 𝑦𝑘) (𝑦𝑗 − 𝑦𝑘) ,
𝐵 = 𝑦2𝑘 (𝑥𝑖 − 𝑥𝑗) + 𝑦2𝑗 (𝑥𝑘 − 𝑥𝑖) + 𝑦2𝑖 (𝑥𝑗 − 𝑥𝑘)(𝑦𝑖 − 𝑦𝑗) (𝑦𝑖 − 𝑦𝑘) (𝑦𝑗 − 𝑦𝑘) ,
𝐶
= 𝑦𝑗𝑦𝑘 (𝑦𝑗 − 𝑦𝑘) 𝑥𝑖 + 𝑦𝑘𝑦𝑖 (𝑦𝑘 − 𝑦𝑖) 𝑥𝑗 + 𝑦𝑖𝑦𝑗 (𝑦𝑖 − 𝑦𝑗) 𝑥𝑘(𝑦𝑖 − 𝑦𝑗) (𝑦𝑖 − 𝑦𝑘) (𝑦𝑗 − 𝑦𝑘) .

(6)
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Input: PopulationSize, GenerationSize, SelectionPercentage, nbits
Output: 𝑆best

(1) Population ← InitializePopulation(PopulationSize, nbits)
(2) EvaluatePopulation (Population)
(3) 𝑆best ← 𝐺etBestSolution(Population ∗ SelectionPercentage)
(4) for gen to GenerationSize do
(5) Selected ← SelectFitSolutions(Population, SelectionSize)
(6) 𝑉 ← 𝐶alculateFrequencyOfComponents(Selected)
(7) Offspring ← 0
(8) for 𝑖 to PopulationSize do
(9) Offspring ← ProbabilisticallyConstructSolution(V)
(10) Entr ← EntropyMeasurements(Offspring, Model)
(11) end
(12) EvaluatePopulation(Offspring) 𝑆best ← 𝐺etBestSolution(Offspring)
(13) Prob𝑠 ← 𝑃robabilityMeasurements(𝑆best)
(14) Population ← GetElitePopulation(Probs, Offspring, Population)
(15) if StopCondition(Entr) then
(16) Break
(17) end
(18) end
(19) return (𝑆best)

Algorithm 1: Fast parabola detection method by UMDA.

Table 1: Example of an individual with 3 indexes where each index represents an 8-bit pixel position.

Individual
Index 𝑖 Index 𝑗 Index 𝑘

0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1

Finally, the coordinate values of the vertex and the
aperture of the parabola can be computed by using the
following:

𝑥vertex = − 𝐵(2𝐴) ,
𝑦vertex = 𝐶 − 𝐵2(4𝐴) ,

4𝑝 = 1𝐴.
(7)

To illustrate the representation of a potential solution
in an optimization model fitting process, Table 1 shows an
example of an individual formed with the integer indexes{22, 58, 39} represented in base-2 numeral system that can
be coded by 8-bits string. This individual is formed by
concatenating the binary string indexes {𝑖, 𝑗, 𝑘} of the three
selected pixels in a single vector as it was used by Ayala-
Ramirez et al. [6]. The number of genes for each individual
directly depends on the number of potential pixels 𝑁 in the
spatial image domain.

Since the proposed method uses the indexes to form
all the individuals, the UMDA method can easily eliminate
unfeasible solutions by using a function to measure the
quality of an individual.

2.3.2. Fitness Function. To evaluate the fitness of an individ-
ual, a binary image 𝐼VS (virtual shape) of the same size that

the input image is generated. The value of all the pixels on
the virtual image are set to zero, and this leads to a black
color image.Then, the vertex and aperture 4𝑎 of the parabola
represented by (5) are computed using the values 𝐴, 𝐵, and𝐶 obtained from the individual representation. Subsequently,
the edge points of the parabola are computed and stored
in 𝐼VS by setting to 1 the corresponding pixels. Finally, the
Hadamard product [36] between the binary form 𝑓binary of
the input image and the virtual image is calculated as follows:

Hd = 𝑓binary ⊙ 𝐼VS. (8)

The resulting image Hd contains only those pixels where𝑓binary and 𝐼VS match. Figure 3(a) illustrates an example with
the three points taken from an individual to form a parabola
in the virtual shape. It can be seen that theHadamard product
obtains partial information of the real parabola. Figure 3(b)
shows an example where the three points taken from the
individual are part of a parabola that fits perfectly with the
parabolic shape of the input image.

The fitness function used to assess the quality of potential
solutions is the number of pixels resulting of the Hadamard
product. Given that the binary image of the virtual shape is
initialized with all pixels on black (intensity value of zero),
with more matching pixels in Hd more white pixels will
appear.
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Figure 3: Hadamard product between virtual and input images.

Table 2: UMDA parameters for all the computational experiments.

Parameter Value
Number of individuals 10
Selection rate 0.6
Maximum number of generations 30

3. Results and Discussion
In this section, the proposedmethod for parabola detection is
applied on synthetic images and medical images of the retina
and human plantar arch. In order to assess the proposed
method, it is compared with the Hough transform by apply-
ing the algorithm of Sanchez found in the MATLAB central
[25] and by running the Hough transform for parabolic
shapes algorithm provided by the MIPAV [26] software,
that can be downloaded from the website [37]. However,
considering that MIPAV and MATLAB parabola detection
implementations are based on Hough transform, RANSAC
algorithm [21] was implemented to analyze the performance
of the proposed algorithm (cf. Tables 3 and 4).

The computational implementations are performed by
using the MATLAB version 2013b, on a computer with
an Intel Core i5, 4GB of RAM, and 2.4GHz processor.
Moreover, computational experiments using UMDA were
performed using 30 runs in order to perform a statistical
analysis of the stochastic process applying the parameter
values presented in Table 2.

These parameter settings were determined based on the
solutions that give the best tradeoff between precision (lowest
RMSE) and computational time using 30 trials to determine
the best set of parameters. Moreover, different works were
taken into account such as [23].

3.1. Application on Synthetic Images. The first experiment
was performed by using synthetic images like the one in
Figure 4(a). This synthetic image was generated by drawing
randomly located parametric objects such as lines, circles,
and a parabola in order to evaluate the algorithm in a
controlled way.

Table 3 presents a comparative analysis using Figure 4(a).
The method presented in [25] shows the largest execution
time, given that the result is the execution time per pixel
and this image contains 125,899 pixels. Hence, this method

Table 3: Comparative analysis of execution time using the binary
image (Figure 4(a)).

Method Execution time (s) Number of iterations

Proposed method

Minimum 1.7141 Minimum 15
Maximum 3.5928 Maximum 28
Mean 2.3756 Mean 19.55
Median 2.1934 Median 19

Hough transform [25] 8.8205 per pixel —
MIPAV [26] 37.68 —
RANSAC [27] 16.35 5000

Table 4: Comparative analysis of execution time using the skeleton
of the binary image (Figure 4(c)).

Method Execution time (s) Number of iterations

Proposed method

Minimum 0.2820 Minimum 13
Maximum 3.2988 Maximum 29
Mean 1.4163 Mean 17.33
Median 1.4326 Median 18

Hough transform [25] 8.8205 per pixel —
MIPAV [26] 36.47 —
RANSAC [27] 14.86 5000

depends entirely on the number of potential pixels. The
proposed method performs a reduction of 93.61% of the
execution time achieved with the MIPAV software, given
that the UMDA method has 10 individuals and taking into
account the mean of the number of iterations, only 195
function evaluations are required to obtain the best result as
it is shown in Figure 4(b).

To ensure that the algorithm is robust and results are con-
sistent with different input conditions, the complexity of the
image was increased by adding “salt and pepper” noise. The
test was performed by obtaining the skeleton of Figure 4(a)
and adding a 10% of “salt and pepper” noise, as it is shown in
Figure 4(d). In Table 4, a comparison of the three methods
using Figure 4(d) is illustrated. Since the method in [25]
works over a single pixel, the result is consistent with Table 3.
The proposed method achieves a reduction of 96.14% in
comparison with the MIPAV software. Considering that the
amount of pixels is lower than the binary image, the number
of iterations is congruent with the reduction in the execution
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Table 5: Comparative RMSE for synthetic and real images shown in Figure 7.

Algorithm Parameters (ℎ, 𝑘) P Time (s) RMSD uRMSD∗ Matched points
Proposed method (468, 276) −40.92 4.464 9.330 64.230 1439
RANSAC [27] (468, 301) −44.55 12.993 8.453 211.137 1625
Proposed method (502, 512) 135.2 15.490 13.895 426.277 2752
Proposed method (464, 278) −43.74 4.022 9.641 77.995 1939
RANSAC [27] (431, 259) −54.18 27.099 13.932 340.910 1258
Proposed method (508, 522) 130.6 4.357 9.712 182.037 4178
∗Unnormalized RMSD/RMSE.

(a) (b) (c) (d)

Figure 4: Parabola detection on synthetic image using the proposed method.

time. In this test, the average number of function evaluations
to obtain the best result using UMDA was 173 (Figure 4(d)).

In order to quantify the fitness of detected parabolas,
ten synthetic images with parabolas were generated using (5)
with random values of 𝐴, 𝐵, and 𝐶. Salt and pepper noise in
the regular range of [0, 25%] was added to the images giving
a total of 260 test images. Normalized root-mean-square
deviation (RMSD) or root-mean-square error (RMSE) was
computed to compare original parabolas to the one detected
by the proposed algorithm, according to the following:

RMSD = √ 1𝑛
𝑛∑
𝑡=1

(𝑥real − 𝑥detected)2. (9)

To obtain a true normalized version, (9) can be divided by
max(𝑥real), mean(𝑥real), or Cardinality(𝑥real == 𝑥). In our
experiments, the Cardinality was used to prioritize the fitting
curves having maximum number of matched points.

A test by adding “salt and pepper” noise over the range[1, 25] percent to Figure 4(c) (skeleton image) was carried out
in order to evaluate the performance of the proposedmethod
in terms of computational time with different amounts of
noise. Figure 5(a) shows the average execution time of the
obtained results. Since the image has fewer potential pixels
than the binary image, the execution time with 1% of noise
was low in comparison with previous results. Considering
that the UMDA method is a stochastic algorithm, its perfor-
mance is not shown as a straight line; however, themean time
tends to increase when the amount of noise is also increased.
Figure 5(b) shows the standard deviation of the performed
tests; since the graph tends to a constant mean over all the
percentages of noise, it can be assumed that the algorithm
is stable and robust in the presence of noise over the time
(i.e., noise may affect quality results). This time stability is

originated by the normalized RMSD metric, because more
noisy pixels are considered as part of the detected parabola
while the global error is also increasing. However, it is
observed that most methods (RANSAC, MIPAV, and Hough
transform) fail to detect correctly the parabola parameters on
images having more than 25% of salt and pepper noise, and
the proposedmethod could detect parabolas on synthetic and
real images contaminated until 30%.

Figure 6(a) is a synthetic image for fitness testing, and
Figures 6(b) and 6(c) present detected parabolas using
our proposed algorithm and MIPAV software, respectively.
RMSD values for both times of individual detection are
0.0026 and 0.0089, demonstrating the validity of ourmethod.
In Figure 7, comparative results between the proposed
method and RANSAC are depicted, and Table 5 shows the
normalized errors in parabola detection on original images
and with 15% of noise. The fast and stable performance of
the proposed algorithm compared to RANSAC is noticed;
besides, RANSAC has many parameters to tune and is
computationally expensive and there is no warranty for
reproducing the same results in a new evaluation.

3.2. Retinal Fundus Images. The detection of parametric
objects has been applied in different areas of engineering.
In medical imaging, the detection of parabolas in retinal
fundus images has a particular importance, since the form
of the retinal vessels can be approximated to the parabola
parametric form. In the previous work, the standard model,
the Hough transform, has been used to find the parabola that
fits the best on the retinal images. For instance, in the work
reported byOloumi et al. [10, 11], the formof the retina vessels
is approximated to a parabola with the aim of monitoring the
measurements of the openness of the major temporal arcade
(MTA). This study facilitates the quantitative analysis of the
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Figure 5: Average computational time and standard deviation (in seconds) over 30 runs of UMDA per percentage noise for the skeleton
image (Figure 4(c)).

(a) (b) (c)

Figure 6: Parabola detection performed by the proposed approach and MIPAV software.

MTA and overcomes the limitations associated with manual
analysis. Another application is reported by Yu et al. [38],
where the retinal images are used to find the vertex of all
the vessels; this vertex is known as fovea [39]. This study is
significant because the position of the vertex can give the
grade of diabetic retinopathy.

In the tests reported in the present work, the proposed
method was used to approximate the retinal vessels to a
parabola. Figure 8 shows the results obtained, where the best
fit for the parabola in the image is shown in red color. As
in the work reported by Yu et al. [38], the public database
DRIVE [40] that contains a set of 20 retinal fundus images
was used. Images were preprocessed by applying Gaussian
matched filters for vessel detection.

Table 6 presents the statistical analysis of the results
obtained by applying the proposed and comparativemethods
to the DRIVE database. The method presented in [25]
remains constant with the execution time per pixel; then, this
execution time for this algorithm is the largest time. Since the
proposed method accomplishes the best result with only 165
function evaluations, it is possible to achieve a reduction in
terms of computational time of 89% in comparison with the
one performed on the MIPAV software.

Table 6: Comparative analysis of the average execution time using
the DRIVE database of retinal fundus images.

Method Execution time (s) Number of iterations

Proposed method

Minimum 1.2280 Minimum 5
Maximum 6.3285 Maximum 22
Mean 4.5838 Mean 16.28
Median 5.1588 Median 19

Hough transform [25] 8.8205 per pixel —
MIPAV [26] 43.65 —
RANSAC [21] 16.66 5000

Given that the skeleton of an image passes through the
center section of a set of pixels, if the proposed algorithm
is applied to the skeleton of the retinal images, it is then
expected for the algorithm to achieve a lower execution time
than in the binary image. In Table 7, the statistics of the execu-
tion time for the skeleton images are shown. The results are
consistent with those obtained for the synthetic image, and
as it can be seen, the proposed method clearly outperforms
the execution time of HT algorithm from Sanchez and the
MIPAV software.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Comparative images between RANSAC and the proposed method (noise added). (a) Retinal image process by the proposed
algorithm, (b) retinal image processed by RANSAC, (c) synthetic image processed by the proposed method, and (d, e, f) images from (a,
b, c) with 15% of salt and pepper noise, respectively.

Table 7: Comparative analysis of execution time using the skeleton
of the retinal fundus images (DRIVE database).

Method Execution time (s) Number of iterations

Proposed method

Minimum 0.9550 Minimum 4
Maximum 5.7105 Maximum 20
Mean 3.3706 Mean 12
Median 2.7343 Median 10

Hough transform [25] 8.8205 per pixel —
MIPAV [26] 41.87 —
RANSAC [21] 12.99 5000

Since the proposed method takes three pixels to compute
a parabola, it can be assumed that the number of iterations to
achieve the best result is not related to the size of the image.
This assumption is validated with the results shown in Tables
6 and 7, where the average number of iterations for both the
binary image and the skeleton image is less than 30.

3.3. Plantar Arch Images. The form of the plantar arch in
humans can conduct to several conditions if the contact
area with the floor, given by the plantar arch, is not of the
correct size. In clinical practice, the procedure for providing
a diagnosis of flatfoot degree is by visual inspection of the
specialist. Therefore, the proposed method in this work can
be applied to plantar arch images to approximate the heel and
the plantar arch to parabolas; hence, these parameters could
be used to assist a medical diagnostic. The image database
used in this test was created by the authors and approved by

a specialist (Dr. Carlos Reséndiz Ramı́rez). This database is
composed of 80 images of size 285 × 707 pixels in RGB color
space of left and right foot collected from different patients.
Images were first preprocessed, to reduce the amount of data
that was not useful for this study, as described below.

Let 𝐼 be a grayscale image of the foot to be analyzed, with𝑀 and 𝑁 as the number of pixels for the width and height,
respectively; then,

𝐼 = 𝑓 (𝑥, 𝑦) , 𝑥 ∈ [0,𝑀 − 1] , 𝑦 ∈ [0,𝑁 − 1] . (10)

The first step of the method consists in smoothing the
image by applying a mean filter, that is, convolving the image
with a filter mask: 𝐼smooth = 𝐼 ⋆ 𝑓smooth, (11)

where 𝑓smooth is defined by

𝑓smooth = [[[[[[[

19 19 1919 19 1919 19 19

]]]]]]]
. (12)

This filter removes part of the spurious pixels, improving
the probability of finding the curves of interest. After the
smoothing step, gradients are computed on the image in
order to find the edges of the footprint. Canny edge detection
is the algorithm used to perform this step. The resulting
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Figure 8: Results of parabola detection using the proposed method over a subset of retinal fundus images from the DRIVE database.

contour image𝑓edge is then dilated (13) by using a Structuring
Element (SE) of radius 3, where the dilation operation closes
slightly open contours and makes borders thicker.𝑓binary = 𝑓edge ⊕ SE. (13)

The 𝑓binary image is the result of the preprocessing stage
in the proposed method. This image is referred to as the edge
image.

In order to address the plantar arch issue, the foot image
was divided into three sections from the fingers to the heel,
where each section contains 33.33%of the image.The sections

of interest for this study are only those two that include the
plantar arch and the heel.

Table 8 presents a comparative analysis of the execution
time of the algorithms over the database of the human plantar
arch images. As it can be observed, the method developed
in [25] maintains the average time per pixel, and so, it takes
the largest execution time. The proposed method performs
a reduction of 89.96% of the execution time achieved on
the MIPAV software; this is because the algorithm requires
only an average of 135 function evaluations to obtain the best
result. Figure 9 shows a subset of human plantar arch images,
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(a)

(b)

(c)

(d)

Figure 9: (a) Subset of human plantar arch images. (b) Preprocessing step applied to the images in (a). (c) Results of parabola detection
(plantar arch and heel) over the edge images. (d) Quantitative analysis of the detected parabolas from the images in (a).
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Table 8: Comparative analysis of execution time using the database
of human plantar arch images.

Method Execution time (s) Number of iterations

Proposed method

Minimum 4.2118 Minimum 3
Maximum 7.1688 Maximum 26
Mean 6.18 Mean 13.51
Median 6.40 Median 14.15

Hough transform [25] 8.8205 per pixel —
MIPAV [26] 63.78 —
RANSAC [21] 22.54 5000
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Figure 10: Evolution of the average fitness through generations
using the database of human plantar arch images.

where the heel and plantar arch were parameterized with the
proposed method.

In addition, the comparative results in Table 8 show that
the proposed method outperforms the HT algorithm from
Sanchez and the algorithm from theMIPAV software in terms
of computational time. Figure 9 presents the results of the
proposed method in different plantar arch images, where the
rows, from (a) to (d), show the real images, the binary images,
the edge images with the detected parabolas, and the output
of the proposed method.

Finally, Figure 10 shows the average fitness value through
the generations of UMDA over the 30 runs of the pro-
posed method. This graph represents the iterations that were
required by the UMDA method to find the two parabolas in
the image.

4. Conclusion

In this paper, a new method based on the Estimation of
Distribution Algorithms (EDAs) has been proposed to detect
parabolic shapes. The method computes the constant values
of the generic parabola equation by selecting three random
pixels from the input image. The proposed method was
evaluated in terms of computational time and compared
with freely available implementations of the parabola Hough

transform. According to experimental results, the average
time of the proposed method is significantly better (0.0036
seconds) compared to those obtained by the Hough trans-
form, since this method takes an average of 6.14 seconds
to compute the accumulator for one single boundary pixel.
In addition, experimental results have also shown that the
proposedmethod outperforms the two comparativemethods
in terms of execution time saving 93.61%on synthetic images
and 89% on the medical images of retinal fundus and human
plantar arch.
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