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Simple Summary: Our study found that miR-152 functions in bovine myoblasts to inhibit prolifera-
tion. Our prediction and experimental verification revealed that Kruppel-Like Factor 6 (KLF6) is a
direct target gene of miR-152. Therefore, miR-152 and its target gene KLF6 have certain effects on the
development of bovine skeletal muscles.

Abstract: Though miRNAs have been reported to regulate bovine myoblast proliferation, but many
miRNAs still need to be further explored. Specifically, miR-152 is a highly expressed miRNA in cattle
skeletal muscle tissues, but its function in skeletal muscle development is unknown. Herein, we
aimed to investigate the role of miR-152 in regulating bovine myoblast proliferation. Functionally,
RT-qPCR, Western blotting, EdU assay, and flow cytometry detection results showed that miR-152
inhibited bovine myoblast proliferation. Mechanistically, we demonstrated transcription factor KLF6
was a target gene of miR-152 by means of bioinformatics software prediction and dual-luciferase
report analysis, which had been demonstrated to be favorable for myoblast proliferation. Collectively,
our research suggested that miR-152 inhibits bovine myoblast proliferation via targeting KLF6.

Keywords: miR-152; skeletal muscle; KLF6; proliferation

1. Introduction

Skeletal muscle development is a complex multistage process, which is directed ini-
tially from pluripotent stem cells to myogenic progenitor cells and then to mononuclear
myoblasts [1,2]. Then, mononuclear myoblasts further proliferate and fuse to form multi-
nucleated myotubes, which fuse to form muscle fibers, and finally develop into skeletal
muscles with the contraction function. After birth, the number of muscle fibers generally
does not increase anymore [3]. For livestock animals, the muscle cells count is the pre-
requisite to determine meat production. Therefore, it is of great significance to study the
regulatory mechanism of myoblast proliferation. This process could be regulated by posi-
tive cell cycle regulators Proliferating cell nuclear antigen (PCNA) [4], cyclin-dependent
kinases2 (CDK2) [5] and cyclin members. In addition, some non-coding RNAs like mi-
croRNAs (miRNAs) directly or indirectly regulate the expression of these genes, thereby
affecting myoblast proliferation [6–8].

MiRNAs are a kind of small non-coding endogenous RNA with a length of about
22 nucleotides, which are evolutionally conserved, mainly binding to the 3′-UTR (untrans-

Animals 2021, 11, 3001. https://doi.org/10.3390/ani11103001 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://doi.org/10.3390/ani11103001
https://doi.org/10.3390/ani11103001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11103001
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11103001?type=check_update&version=2


Animals 2021, 11, 3001 2 of 8

lated region) region of the target genes, thereby inhibiting translation or degradation of the
target gene at the posttranscriptional level [9]. Recently, some reports have confirmed that
miRNAs play a vital regulatory role in myoblast proliferation. Muscle-specific miRNA miR-
133 can promote myoblast proliferation by targeting the serum response factor (SRF) [10];
miR-128a inhibits myoblast proliferation through targeting the insulin receptor substrate
1 (IRS1)-dependent insulin signaling [11]; miR-499 promotes myoblast proliferation via
targeting transforming growth factor β receptor 1 (TGFβR1) [12]. Besides these muscle-
specific miRNAs, some non-muscle-specific miRNAs are also involved in the regulation
of myoblast proliferation. For example, the miR-17-92 cluster (miR-17, -20a, and -92a)
promotes myoblast proliferation by targeting actin-associated protein enigma homolog 1
(ENH1) [13]. miR-27a has been confirmed to promote myoblast proliferation via targeting
myostatin [14]. Up to now, numerous studies on the regulation of miRNA for myoblast
proliferation have been reported [15]. Nevertheless, there is still large space for research on
the regulation of myoblast proliferation by miRNAs, especially in livestock animals.

In this study, we aimed to investigate additional potential miRNAs for bovine my-
oblast proliferation. We further analyzed the miRNA expression feature in skeletal muscles
of cattle at different growth stages [16]. Among these miRNAs, miR-152 caught our atten-
tion, which is a differentially expressed miRNA in skeletal muscles of cattle at different
growth stages, and its role in bovine skeletal muscle myogenesis remains undetermined.
After a series of experiments, we demonstrated that miR-152 inhibits bovine myoblast
proliferation by targeting KLF6, which is an important transcription factor for skeletal
muscle development. The results will be helpful for further studies of skeletal muscle
development in cattle.

2. Materials and Methods
2.1. Tissue Samples Collection

Ninety days of gestation fetal calf and 24-month-old cattle (Shaanxi Kingbull Livestock,
Baoji, China) heart, liver, spleen, lung, kidney and skeletal muscle samples were collected.
The tissue samples were used for RNA extraction and cell isolation. Animal care and study
protocols were approved by the Animal Care Commission of School of Life Science, Jiangsu
Normal University (permit number JSNUSK20200922-01).

2.2. Cell Culture and Transfection

The bovine myoblast cells were isolated from the longissimus or hind limb muscles
of fetal bovine samples (Shaanxi Kingbull Livestock, Baoji, China). For detailed isolation
methods, please refer to our previous research paper [17]. The isolated cell suspensions
were inoculated into Petri dishes and cultured in a high-sugar medium containing 20%
FBS and 1% penicillin/streptomycin at 37 ◦C in 5% CO2; miR-152 mimic and inhibitor
were synthesized by RiboBio (Guangzhou, China). Lipofectamine 3000 transfection reagent
(Thermo Fisher Scientific, Waltham, MA, USA) was used for mimic or inhibitor transfection
according to the transfection reagent instructions.

2.3. RNA Extraction and Quantitative Real-Time PCR

The total RNA of tissues or cells was extracted with the Trizol reagent. Total RNAs
were reverse-transcribed into cDNA by using a reverse transcription kit (AG, Accurate
Biology, Changsha, China). For miR-152 expression analysis, the stem–loop RT primer
containing partial complementary sequences of the miR-152 mature sequence was reverse-
transcribed with a reverse transcriptase (AG, Accurate Biology). RT-qPCR was performed
with a SYBR Green Kit (AG, Accurate Biology). The 2−∆∆Ct method was used to calculate
the relative expression level of mRNA or miRNA. The primer sequences are listed in
Table S1.
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2.4. Western Blotting

Bovine myoblast cell proteins were extracted using the RIPA buffer with 1% PMSF
(KeyGEN BioTECH, Nanjing, China). The protein concentration was evaluated using
a BCA kit (Beyotime, Shanghai, China). The proteins were separated with 12% SDS-
PAGE and transferred to PVDF membranes. According to the manufacturer’s instructions,
the membrane was incubated with the primary antibody and the secondary antibody
successively. The membranes were exposed to the ECL kit(Solarbio, Beijing, China). The
detailed process was performed as previously described. The primary antibody and the
secondary antibody are listed in Table S2.

2.5. EdU Assay

Twenty hours after transfection of the miR-152 mimic or inhibitor, the circumstances
of bovine myoblasts at the S stage were detected using a Cell-Light EdU Apollo 567 in vitro
imaging kit (RiboBio, Guangzhou, China). The detailed operation process was performed
according to the manufacturer’s instructions.

2.6. Cell Cycle Assay

Twenty-four hours after transfection of the miR-152 mimic or inhibitor, bovine my-
oblasts were processed using a cell cycle testing kit (Multisciences, Hangzhou, China), and
flow cytometry was used to analyze the cell cycle. The detailed operation process was
performed according to the manufacturer’s instructions.

2.7. Dual-Luciferase Reporter Assay

The KLF6 3′-UTR sequence containing the miR-152 binding site (wild-type or mutant-
type) was inserted into the psi-CHECK-2 luciferase reporter plasmid according to our
previous study. The wild-type or mutant type plasmid was co-transfected with the miR-
152 mimic into HEK293T cell lines using the Lipofectamine 3000 transfection reagent.
A Dual Luciferase Assay Kit (Promega, Madison, WI, USA) was used to detect firefly
luciferase activity and Renilla luciferase activity successively according to the manufac-
turer’s instructions.

2.8. Statistical Analyses

The data are presented as the means ± SEM; p-values were calculated by means of
a two-tailed Student’s t-test; p < 0.05 was considered statistically significant (* p < 0.05,
** p < 0.01).

3. Results
3.1. The Expression Characteristics of miR-152 in Cattle Tissues

MiR-152 belongs to the miR-148/152 family [18] and is often involved in a variety of
cellular processes, including cell growth [19], apoptosis, and invasion [20]. In this study,
the purpose of our experiment was to investigate the role of miR-152 in bovine muscle
cell proliferation. Firstly, we performed a sequence conservative analysis of miR-152 in
different species. There was no difference in the mature sequence of miR-152 between
humans, cattle, mice, pigs, and rats (Figure 1A). Next, we investigated the expression
features of miR-152 in different fetal calf tissues. The data showed that miR-152 is highly
expressed in muscle tissues (Figure 1B). In addition, the expression level of miR-152 in
fetal skeletal muscles was lower than in adult skeletal muscles (Figure 1C). Based on the
above studies, we speculated that miR-152 might play a certain regulatory role in the
development of bovine skeletal muscles.
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Figure 1. The expression characteristics of miR-152 in cattle. (A) The mature sequence of miR-152 in different species, hsa:
human; bta: cattle; mmu: mouse; ssc: pig; rno: rat. The right letters shows miRNA seed sequence. (B) The expression
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of miR-152 in fetal and adult bovine muscle tissues. N = 3.

3.2. miR-152 Regulates Bovine Myoblast Proliferation

Muscle cell growth is the basis of meat yield, so it is of great significance to study
the regulation of muscle cell proliferation. To investigate the biological role of miR-152 in
bovine muscle cell proliferation, an exogenous miR-152 mimic was transfected into the cells
to enhance its expression level. The expression level of miR-152 was significantly increased
compared to the control group (Figure 2A). Meanwhile, we detected the mRNA and protein
levels of PCNA and CDK2, which are key genes for cell proliferation. Compared to the
control group, overexpression of miR-152 reduced the expression level of these genes
(Figure 2B,C). In addition, we also examined the number of EdU-staining cells, and the
data showed that the number of EdU-positive cells in the same field was significantly
reduced compared with the control group (Figure 2D). Furthermore, cell cycle analysis by
flow cytometry showed that the number of cells in the G1 phase was increased compared
with the control group (Figure 2E,F).
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Figure 2. Overexpression of miR-152 inhibits bovine myoblast proliferation. (A) The expression level of miR-152 was
detected by RT-qPCR after transfection of the miR-152 mimic. (B) The expression levels of PCNA and CDK2 were detected
after transfection of the miR-152 mimic. (C) The protein expression levels of PCNA and CDK2 were detected by means
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transfection of the miR-152 mimic. (F) Statistical results of the flow cytometry assay. The data are represented as the means
± SEM (n = 3); ** p < 0.01.
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In order to verify the regulatory role of endogenous miR-152, we conducted a func-
tional loss experiment with the miR-152 inhibitor. A synthetic miR-152 inhibitor was
transfected into the cells to reduce its expression level significantly (Figure 3A). After the
loss of miR-152, the mRNA expression level and the protein level of PCNA and CDK2 were
increased (Figure 3B,C). The number of EdU-positive cells in the same field was signifi-
cantly increased compared to the control group (Figure 3D). Cell cycle analysis by means of
flow cytometry showed that the number of the G1 phase cells declined (Figure 3E,F). Taken
together, these results suggested that endogenous miR-152 could inhibit bovine muscle
cell proliferation.
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after transfection of the miR-152 inhibitor. (F) Statistical results of the flow cytometry assay. The data are represented as the
means ± SEM (n = 3); * p < 0.05.

3.3. KLF6 Is a Target Gene of miR-152

To further explore the target gene of miR-152 in bovine muscle cells proliferation,
online software Targetscan was used to target gene prediction, and the final results showed
that KLF6 might be a potential target gene of miR-152 (Figure 4A). The prediction showed
that the seed region sequence of miR-152 targets the 3’-UTR region of KLF6 and is highly
conserved in different species. To further identify the targeting relationship between miR-
152 and KLF6, firstly, we constructed a dual-luciferase reporter vector containing the 3’-
UTR sequence (wild-type or mutant-type) of KLF6, respectively. Then, the dual-luciferase
reporter vector (wild-type or mutant-type) and the miR-152 mimic were co-transfected into
293T cells, respectively. The results showed that the luciferase activity of the wild-type
plasmid in the miR-152 group was decreased, but that of the mutant plasmid was increased
(Figure 4B). Next, we detected the protein levels of KLF6 in bovine muscle cells after the
gain or loss of miR-152. Compared with the control group, the protein level of KLF6 was
decreased after the gain of miR-152 and increased after the loss of miR-152 (Figure 4C,D).
Together, these results suggested that KLF6 is a target gene of miR-152.
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4. Discussion

As previously mentioned, numerous studies on skeletal muscle cell proliferation have
been reported, certainly including the regulation of miRNAs as shown in the review. In
addition to these miRNAs, there are still many miRNAs the functions and mechanisms
whereof regarding regulation of the skeletal muscle development remain to be elucidated.
In this study, we investigated the expression characteristics of miR-152 in bovine tissues,
and the results showed that miR-152 was highly expressed in muscle tissues. Further
functional and mechanism studies showed that miR-152 inhibited bovine muscle cell
proliferation by targeting KLF6.

This miRNA, miR-152, has the same “seed region” as miR-148a, a tumor-associated
miRNA which was reported to be involved in tumorigenesis [18]. In endometrial cancer,
miR-152 inhibited tumor cell growth via targeting novel candidate targets E2F transcription
factor 3 (E2F3), tyrosine kinase receptor (MET), and rapamycin-insensitive companion of
mTOR (Rictor) [21]. In epithelial ovarian cancer, miR-152 functioned through suppressing
DNA methyltransferase 1 (DNMT1) to inhibit ovarian cancer cell proliferation and promote
apoptosis [22]. In glioblastoma (GBM), overexpression of miR-152 reduced glioblastoma
stem cell proliferation, migration, and invasion, as well as induced apoptosis via targeting
Krüppel-like factor 4 (KLF4) [23]. In prostate cancer, miR-152 reduced the prostate cancer
cells’ migratory and invasive capabilities through directly targeting TGFα [20]. In addition,
the expression level of miR-152 in serum can act as a novel biomarker in non-small-
cell lung cancer screening [24]. Most of the previous studies focused on miR-152 as
a tumor-suppressive microRNA, and detailed literature reports were reviewed [18]. As
mentioned above, miR-152 mainly participates in tumorigenesis through targeting different
target genes.

During the mammary gland development, miR-152 enhances cow mammary epithe-
lial cell proliferation, inhibits apoptosis, and increases triglyceride production through
downregulating the mRNA and protein levels of acetyl-CoA acyltransferase 2 (ACAA2)
and hydroxysteroid 17-beta dehydrogenase 12 (HSD17B12) [25]. RNA sequencing results
showed that miR-152 is highly expressed in porcine skeletal muscles [26]. A previous study
reported that miR-152 inhibits C2C12 myoblast proliferation through targeting E2F3 [27].
However, there are few reports about the function of miR-152 in livestock animal skeletal
muscle development. In this study, we found that miR-152 is highly expressed in bovine
skeletal muscle tissues. Functionally, through RT-qPCR, Western blotting, EdU assay, and
cell cycle assay, the results show that miR-152 inhibits bovine muscle cell proliferation.
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Mechanically, through the dual-luciferase reporter assay and the Western blot analysis, the
data indicated that KLF6 is a direct target gene of miR-152. KLF6 is a zinc finger transcrip-
tion factor involved in a variety of biological processes [28,29], including skeletal muscle
development. In a previous study, knockdown of KLF6 was reported to inhibit C2C12
cell proliferation [30]. We also demonstrated that KLF6 could promote bovine myoblast
proliferation [31]. The function of KLF6 for myoblast proliferation was opposite to that of
miR-152, which is consistent with this research.

5. Conclusions

In conclusion, our study found that miR-152 functions in bovine myoblasts to inhibit
proliferation. Our prediction and experimental verification revealed that KLF6 is a direct
target gene of miR-152. Therefore, miR-152 and its target gene KLF6 had certain effects on
the development of bovine skeletal muscles.
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