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IntroductIon
Stroke is a leading cause of death and acquired adult dis-
ability worldwide. Approximately 80% of all strokes are 
ischemic, which result from obstruction of the cerebral 
arteries. Currently, tissue plasminogen activator (tPA) 
is the only approved drug by the US Food and Drug 
Administration (FDA) for treatment of acute ischemic 
stroke.1 However, encouraging data from recent clinical 
studies have demonstrated that endovascular manage-
ment strategies such as thrombectomy can restore the 
blood flow and, hence, be beneficial for the acute stroke 
treatment.2,3 Although blood supply recovery can rescue 
distant penumbra area, it is inevitable that penumbra cells 
in the rim of infarct core will undergo death triggered by 
complex ischemic cascades.4 These underscore the needs 
of development of additive treatments that are able to 
increase the therapeutic window of advanced reperfusion 
strategies and, on this way, to preserve brain functions 
after stroke.2 

REVIEW

In past decades, neuroprotective abilities of certain 
gases have been observed. Several publications reported 
about neuroprotective effects of oxygen, hydrogen, carbon 
monoxide (CO) and nitric oxide (NO) as well as some 
volatile anesthetics (isoflurane, sevoflurane, xenon and ni-
trous oxide).5-8 Protective properties of inert gases (helium 
and argon) and even gases classically considered as toxic 
(hydrogen sulfide, H2S; CO) have been also investigated 
(Table 1).9 

Among protective medical gases, oxygen, isoflurane, 
H2S and hydrogen are the most studied ones. In this pa-
per, we briefly summarize the newest reports regarding 
application of these medical gases in the stroke treatment 
and discuss their challenges and advantages needed for 
future study.

oxygen
Oxygen can be administrated normobaric (normobaric 
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oxygen therapy, NBOT) or under pressure (hyperbaric 
oxygen therapy, HBOT). Neuroprotective effects of oxy-
gen therapy have been observed in various experimental 
models of brain injury and neurological diseases.11,28-31 

A systematic review and meta-analysis of the literature 
published prior to September 2015 showed hyperbaric 
oxygen (HBO) had a neuroprotective effect and improved 
survival in animal models of middle cerebral artery oc-

clusion (MCAO), especially in animals given more than 
6 hours of HBO and given HBO at 2.0 ATA (101.3 kPa) 
immediately after MCAO.32 In tPA-induced thrombolysis 
in vitro, HBO increased tPA-induced thrombolysis; and 
in rats subjected to thromboembolic MCAO, 5-minute 
HBO reduced infarct volume and brain edema.11 However, 
HBOT in human stroke is still not sufficiently evidence-
based, due to the insufficient randomized double-blind 

Table 1: Original articles of medical gases in stroke from 2015 to 2016   

Medical gases Paradigm Models Effects References

O2

HBOT 2.5 ATA for 1 h daily for 5 days MCAO in rats Improved neurological function Bian et al.10

2.5 ATA for 1.5 h Recombinant tPA-induced 
thrombolysis in vitro

Provided neuroprotection by 
promoting thrombolysis

Chazalvie et al.11 

2.5 ATA for 1 h daily for 2 days Transient cerebral ischemia in 
gerbils

Reduced inflammation and 
inhibited apoptosis

Gamdzyk et al.12

2.8 ATA for 1 h BBB damage model in vitro Protected the integrity of BBB Hao et al.13 
2.5 ATA for 1 h daily for 5 days MCAO in rats Reduced infarct volume ratio 

and neurobehavioral deficit
Xue et al.14 

2.4 ATA for 1.5 h
2.5 ATA for 1 h by four times at 
an interval of 12 h

OGD in cells
MCAO in rats

Decreased infarction area, 
lessened neuronal injury, and 
reduced apoptosis

Zhai et al.15

NBOT 33%, 45% or 61% O2 for either 
3, 6, 12, 24, 48 or 72 h during 
reperfusion

MCAO in rats Reduced apoptosis and 
promoting neurological 
functional recovery

Chen et al.16

> 90% O2 for 1 h daily for 5 days BBB damage ICH in rats Reduced intracerebral edema Fang et al.17 
95% O2 for 2 h MCAO in rats Prevented BBB damage and 

improved the outcome of brain 
injury

Liu et al.18

60% O2 for 3 h 60% O2 for 3 h Decreased infarct volume and 
neurological deficit

Cai et al.19 

Volatile anesthetics 1.5–4.5% ISPOC OGD Provided better neuroprotection Wang et al.7 

1.5–4.5% ISPOC for 1 h MCAO in rats Decreased the neurobehavioral 
deficit scores and infarct volume

Wang et al.7 

2.5% ISPOC for 1 h Embolic stroke model in rabbits Improved neurological outcome Chen et al.20

Hydrogen sulfide Blocking endogenous H2S MCAO in rats Reduced brain edema and 
improved BBB disruption, and 
the neurological outcome

Jiang et al.21 

Hadadha et al.22

40 ppm or 80 ppm H2S inhalation 
for 3 h

MCAO in rats Reduced neurological deficits, 
infarct size, and brain edema

Wei et al.23

H2S donors OGD in cells
MCAO in rats

Reduced tPA-induced cerebral 
hemorrhage

Liu et al.24

Hydrogen Ingestion of HRW SHRSP Improved neurological function 
outcome and attenuated BBB 
disruption

Takeuchi et al.25

Injection of HRW MCAO in rats Reduced brain infarct volume 
and improve neurological 
function

Han et al.26 

Other gas 25–75% helium MCAO in rats Reduced ischemic brain damage 
and brain hemorrhages

Haelewyn et al.27 

Note: HBOT: Hyperbaric oxygen therapy; NBOT: normobaric oxygen therapy; O
2
: oxygen; H

2
S: hydrogen sulfide; OGD: oxygen-glucose deprivation; 

MCAO: middle cerebral artery occlusion; BBB: blood-brain barrier; ICH: intracerebral hemorrhage; ISPOC: isoflurane postconditioning; tPA: tissue 
plasminogen activator; SHRSP: spontaneously hypertensive stroke-prone rats; HRW: hydrogen-rich water; SAH: subarachnoid Hemorrhage; h: 
hour(s). 1 Atmosphere absolute (ATA) = 101.3 kPa.
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volatile anesthetics such as isoflurane and sevoflurane, are 
considered as low risk-bearing gaseous agents. Application 
of commonly used volatile anesthetics after brain ischemia 
onset provides neuroprotection in experimental stroke 
research.43 Wang et al.44 reported that post-conditioning 
with 3.0% isoflurane provided better neuroprotection 
than 1.5% and 4.5% isoflurane. Effects of isoflurane 
post-conditioning were mediated by activation of activin 
A/Smad 2/3 and activin A/extracellular signal-regulated 
kinase (ERK) 1/2 signaling pathway. However, in another 
study, 1.5% isoflurane post-conditioning was showed to 
be more effective than 3.0%, and 4% isoflurane in reduc-
ing infarct volume and improving neurological deficits, 
which were associated with up-regulated expression of 
transforming growth factor beta 1 (TGF-β1) and down-
regulated phosphorylated c-Jun N-terminal kinase (p-JNK) 
expression.45 To determine the translational potential, Chen 
et al.20 used 2.5% isoflurane post-conditioning in rabbit 
model of embolic stroke and confirmed its neuroprotection. 
Rabbit post-conditioned with isoflurane tolerated more 
clots than control animals in the dose-response study, and 
isoflurane post-conditioning reduced infarct volume and 
improved neurological deficit scores in animals received 
intra-carotid injection of 5 mg clots. Although preclinical 
studies provide strong evidences that isoflurane induces 
neuroprotection, clinical results, especially long-term 
neurological outcome, are disappointing. Translation of 
positive animal findings to patients has been hampered 
by the associated clinical comorbidity and concurrent 
medication of patients.46

H2S
H2S is a signaling molecule and exert antioxidant, anti-
inflammatory and vasodilatory actions.47-49 These results 
lend credence to the notion that H2S provide neuropro-
tection in ischemic brain tissue. Wei et al.23 revealed 
that 40 ppm and 80 ppm H2S inhalation reduced brain 
edema and infarct volume through inhibiting the expres-
sion of AQP-4 via activating protein kinase C (PKC) 
in MCAO rats. Co-administration of two H2S donors, 
5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thi-
one (ADT-OH) and sodium hydrosulfide (NaHS) with tPA 
attenuated hemorrhagic transformation following MCAO 
in mice.24 Controversially, Hadadha et al.22 indicated 
that the administration of oxyacetic acid, an inhibitor 
of H2S synthesis, at a low dose significantly reduced the 
infarct volume brain edema and improved the neurologi-
cal outcome in transient MCAO rats. Similarly, Jiang et 
al.21 found that endogenous production of H2S results in 
post-ischemic cerebral vasodilation and early blood-brain 
barrier (BBB) disruption in MCAO mice. These results 

controlled clinical studies.33

HBO has also been investigated as a pre-conditioning 
agent.34 HBO pre-conditioning is neuroprotective and able 
to attenuate hemorrhagic transformation after MCAO by 
upregulation of peroxisome proliferator activated recep-
tor gamma (PPAR-γ), downregulation of aquaporin-4 
(AQP-4) and oxidative stress reduction.10,12-15,17 Yan et 
al.35 reviewed the status of clinical and experimental 
HBOT research in China and concluded that HBOT could 
increase the oxygen supply to ischemic tissue, improve 
blood oxygen partial pressure and reduce irreversible 
tissue damage.

Similar to HBOT, NBOT provides therapeutic benefits 
and is likewise effective in the treatment of stroke.36 NBOT 
can inhibit the apoptotic pathway by reducing the expres-
sion of caspase-3 and -9, thereby promoting neurological 
functional recovery in MCAO rats.16 In transient ischemic 
attack rat model, normobaric oxygen therapy (NBO) ad-
ministered during ischemia nearly completely prevented the 
neuronal death, microglial inflammation and sensorimotor 
impairment.18 Cai et al.19 reported that combining NBO 
(60% for 3 hours) with ethanol (1.0 g/kg) or hypothermia 
(33°C for 3 hours) reduced post-stroke hyperglycolysis in 
thromboembolic stroke rats. NBOT is a promising therapy 
for short-lasting ischemia. Since it can be initiated at 
home in at-risk patients or in the ambulance in subjects 
suspected of transient ischemic attack/early stroke, it is 
clinically very attractive. It may also be a straightforward 
support or combination to reperfusion therapies, and help 
prevent brain damage, attenuating the long-term cogni-
tive and sensorimotor impairment in at-risk populations.37 
The major concern with oxygen therapy in acute ischemic 
stroke is the potential increase of reactive oxygen species 
(ROS), however, the review paper on NBOT in animal 
models of stroke by Weaver and Liu38 showed that NBO 
does not increase ROS or oxidative stress if applied for a 
short duration.

It has been reported recently that chronic hypoxia acti-
vated the hypoxia inducible factor-1α (HIF-1α) response in 
zebrafish embryos and alleviated death caused by mitochon-
drial dysfunction.39 Hypoxia may represent the promising 
therapeutic strategy with vital clinic significance by trig-
gering innate adaptive programs.5 Repetitive intermittent 
hypoxic exposures have been showed protective effects 
against ischemic stroke in pre-clinical models.40,41 The major 
hurdle in translating of hypoxia into the clinical settings is 
the negative attitude of clinicians and patients towards the 
breathing of low levels of oxygen.42

 
Volatile Anesthetics
Volatile anesthetics routinely used in clinic. Hence, the 
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settings. H2S, hydrogen and helium are more popular than 
other medical gases due to numerous pre-clinical stud-
ies demonstrating benefits of these gases. Even though 
NBO and HBO has been studied in clinical trials, the 
usage of therapeutic gases in clinic has received little 
attention.35,54-57 Given the complex pathophysiology of 
stroke, it is unlikely that a single intervention strategy will 
result in clinical relevant protection. Medical gases have 
distinct advantages over pharmaceutical drugs such as the 
ease of diffusibility across the BBB and the mechanism 
of action may be via multiple pathways. Medical gases 
might be a valuable support therapy to the tPA therapy or 
thrombectomy after stroke. However, timing and dosing 
of gas administration investigated in animal studies not 
necessarily extrapolate with clinical settings.58 These facts 
represent the major challenge for development of stroke 
related medical gas treatments and point the direction for 
the future studies. 
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