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SUMMARY

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and

sufficient to support exosomal delivery have not been established. Here we connect biochemical

composition and activity of exosomes to optimize exosome-mediated delivery of small interfering

RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that

serum-deprivedmesenchymal stem cells produce exosomes up to 22-fold more effective at delivering

siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops

siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic

and lipidomic analyses show that exosomes derived in serum-deprived conditions are enriched in

six protein pathways and one lipid class, dilysocardiolipin. Inspired by these findings, we engineer

an ‘‘artificial exosome,’’ in which the incorporation of one lipid (dilysocardiolipin) and three proteins

(Rab7, Desmoplakin, and AHSG) into conventional neutral liposomes produces vesicles that mimic

cargo delivering activity of natural exosomes.

INTRODUCTION

Extracellular vesicles (EVs), including exosomes (small EVs) and microvesicles (large EVs), transfer mole-

cules, such as therapeutic RNAs (Lener et al., 2015; Kramer-Albers, 2017; Kamerkar et al., 2017), to induce

phenotype change in recipient cells (Valadi et al., 2007; Zomer et al., 2015; Fruhbeis et al., 2013; Monguio-

Tortajada et al., 2017; Zhang et al., 2018). The following critical issues have impeded the use of exosomes

for clinical applications: (1) production of exosomes from cells is tedious, has low yield, and is difficult to

control; (2) the essential components of active exosomes are not established; and (3) the fundamental

mechanisms of exosomal delivery need to be clarified to produce artificial exosomes in bulk. We optimized

conditions to improve the delivery of exosomal cargo (small interfering RNA [siRNAs]) and used these opti-

mized exosomes to find molecules that may affect exosomal activity. We constructed artificial exosomes

inspired by these findings. Our strategy aims to substitute natural exosomes with artificial exosomes appro-

priate for large-scale production.

Cellular stress increases the activity of EVs (Han et al., 2018; Mleczko et al., 2018; Guitart et al., 2016), possibly by

altering their protein (Xie et al., 2018; Guitart et al., 2016; Sun et al., 2014; Li et al., 2015) and RNA composition

(King et al., 2012; Pope and Lasser, 2013). Therefore relating the change in composition of EVs to the change in

their activity under stressed and control conditions can establish a composition-activity relationship. Serum

deprivation is a commonmeans of inducing cellular stress (Oskowitz et al., 2011), is widely used in extracellular

vesicle production, and has been found to alter EV number (Aubertin et al., 2016; Sun et al., 2014; Taverna et al.,

2003), activity (Sun et al., 2014;Oskowitz et al., 2011; Taverna et al., 2003), and composition (Kowal et al., 2016; Li

et al., 2015). Surface (Sun et al., 2014) and intravesicular proteins (Taverna et al., 2003) have been linked to

improved EV activity upon serum deprivation. We speculated that the membrane composition (proteins and

lipids) of EVs is responsible for EV intercellular trafficking activity.We showed that upon serumdeprivation, pro-

ducer cells release exosomes that are more efficient at delivering siRNAs to neurons (a model for intercellular

trafficking). This activity change was accompanied by substantial protein and lipid composition changes. We

then screened several proteins and lipids, which were enriched in stressed exosomes, for enhancement in
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vesicle-mediated siRNA delivery to neurons. Subsequently we combined a candidate lipid (dilysocardiolipin)

and three candidate proteins (Rab7, AHSG, and Desmoplakin) from the screen into liposomes to construct

‘‘artificial exosomes.’’ These artificial exosomes mimicked the siRNA delivery activity of natural stressed

exosomes both in vitro and in vivo.
RESULTS

Characterization of Extracellular Vesicles Produced from Control and Serum-Deprived

Mesenchymal Stem Cells

We incubatedmesenchymal stem cells derived from umbilical cord, adipose tissue, and bone marrow in either

the recommended stem cell medium depleted of EVs (Control) or serum-free RPMImedium for 24 h (Stressed).

We used differential ultracentrifugation to generate two EV populations, small and large EVs, enriched based

on their sedimentation properties (Thery et al., 2006). We refer to the EVs from the 10,0003 g pellet as micro-

vesicles and EVs from the 100,0003 g pellet as exosomes. Throughout this study we compare stressed condi-

tions with control conditions within the same sample type: stressed cells versus control cells, microvesicles from

stressed versus from control cells, and exosomes from stressed versus from control cells.

Mesenchymal stem cells tolerated serum deprivation for up to 4 days (Figure S1A) without loss of viability. EVs

showed homogeneous size distribution (Figure S1B). Exosomes and microvesicles isolated from both the con-

trol and stressed (serum deprived for 24 h) conditions displayed positive protein markers and were devoid of

negative proteinmarkers of EVs (Figure S1C) and appeared as lipid bilayer-surrounded vesicles on transmission

electron microscopy (Figure S1D). Serum deprivation did not affect the exosome yield from umbilical cord-

derived cells (p = 0.3), but significantly decreased the exosome yield from both adipose- and bone marrow-

derived cells (6-fold, p = 0.04, and 10-fold, p = 0.002, respectively, Figure S2A). Serum deprivation did not alter

the amount of microvesicles (Figure S2B). Exosomes derived from umbilical cordmesenchymal stem cells were

slightly larger than exosomes from either adipose tissue or bonemarrow cells (142G 14 nm, 110G 19 nm, and

117G 10 nm, respectively). Serum deprivation did not affect EV size (Figures S2C and S2D). Protein-to-particle

ratio varied substantially between vesicles from different sources and was affected by serum deprivation for

some EV populations (Figures S2E and S2F). Umbilical cord-derived exosomes had the lowest protein-to-par-

ticle ratio, which remained unchanged upon serum deprivation (Figures S2E and S2F).
Serum Deprivation of Mesenchymal Stem Cells Improves Exosome Activity but Impairs

Microvesicle Activity

Extracellular vesicles transport RNA between cells (Valadi et al., 2007; Zomer et al., 2015; Yang et al., 2017).

We previously have shown that exosomes can productively transfer loaded cholesterol-conjugated siRNAs

to neurons (Didiot et al., 2016). We loaded Huntingtin-targeting, cholesterol-conjugated siRNA (Alterman

et al., 2015) to exosomes and treated primary neurons as amodel for exosome trafficking.We evaluated the

rates of exosome uptake to neurons using confocal microscopy and quantified the level of guide strand

accumulation and target mRNA silencing in neurons.

First, exosomes isolated from serum-deprived cells (ExosomesStressed) could be loaded with equal amount of

siRNA as ExosomesControl (Figure S3). Second, ExosomesStressed delivered more siRNA to target neurons

than ExosomesControl across all mesenchymal stem cell origins tested (Figures 1A–1C). Third, when loaded

with fluorescently labeled siRNA, ExosomesStressed showed an approximately 2-fold faster neuronal uptake ki-

netic (half-time 1.7 h versus 3.8 h, p < 0.0001) (Figures S4A and S4B). Finally, siRNA-containing ExosomesStressed

were 5- to 22-fold more efficient at inducingHuntingtinmRNA silencing than ExosomesControl (Figures 1D–1F).

A similar effect was observed with siRNAs targeting Ppib mRNA (Figure S4C).

Stress-dependent enhancement in activity was characteristic of exosomes and not of microvesicles, where

serum deprivation impaired activity (Figures 1A–1F). These data pointed toward specific characteristics be-

tween exosomes and microvesicles that may be related to different vesicle trafficking: protein composition

(Haraszti et al., 2016; Kowal et al., 2016).
Serum Deprivation of Mesenchymal Stem Cells Substantially Alters Protein Composition of

Exosomes

To evaluate serum deprivation-induced changes in the protein composition of exosomes, we performed

liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis. We collected data
iScience 16, 230–241, June 28, 2019 231



Figure 1. Serum Deprivation of Mesenchymal Stem Cells Improves Exosome Activity but Impairs Microvesicle

Activity

Primary neurons were treated with fluorescent siRNA-containing exosomes or microvesicles derived from control or

stressed (serum deprived) cells. After 7 days of incubation, siRNA levels and target mRNA levels were quantified in

neurons. mRNA levels were normalized to housekeeping gene and to untreated control. N = 3, meanG SEM, curves were

compared using two-way ANOVA.

(A–C) Uptake of siRNA into neurons delivered via exosomes and microvesicle.

(D–F) mRNA silencing induced by treatment of siRNA-containing exosomes and microvesicles.

(A and D) EVs enriched from umbilical cord-derived mesenchymal stem cells. (B and E) EVs enriched from adipose tissue-

derived mesenchymal stem cells. (C and F) EVs enriched from bone marrow-derived mesenchymal stem cells.
from three independent repeats of (1) control or serum-deprived mesenchymal stem cells (derived from

umbilical cord, adipose tissue, or bone marrow), (2) microvesicles from control or serum-deprived cells,

and (3) exosomes from control or serum-deprived cells.

As expected, serum deprivation had a profound effect on the proteome of cells, microvesicles, and exosomes,

consistent in biological replicates (Figures 2A–2C and S5–S8). Protein composition differed substantially

between exosomes and microvesicles (Figures S5–S8). Proteins enriched in stressed exosomes were either

unchanged or depleted in corresponding microvesicles and source cells (Figures S5–S8 and 2D–2F).

Gene Ontology analysis showed enrichment of extracellular exosome, proteasome, membrane, desmo-

some, cell-cell adhesion, ribosome, and Golgi protein pathways in ExosomesStressed fractions throughout

all cell sources tested (Figures 2G–2I). We hypothesized that proteins involved in membrane, desmosome,

and cell-cell adhesion may be related to vesicle trafficking. In addition, categories frequently found in

exosomes (multivesicular body, endosome, histone, tetraspanins) as well as categories non-canonical to

exosomes (endoplasmic reticulum [ER], ER-to-Golgi transport, and chaperone proteins) were enriched

in ExosomesStressed derived from at least two of three cell sources tested (Figures 2G–2I).
Several Proteins Enriched in Stressed Exosomes Contribute to Improved siRNA Transfer to

Neurons

Altered protein compositionmay explain the enhanced activity of ExosomesStressed. Proteinase K treatment

(degrades surface proteins) impaired the exosome-mediated siRNA transfer and resulted in lessHuntingtin
232 iScience 16, 230–241, June 28, 2019



Figure 2. Serum Deprivation of Source Cells Alters Protein Content of Released Exosomes

Exosomes, microvesicles, and cells derived from control conditions or stress conditions (serum deprivation) underwent

liquid chromatography-MS/MS proteomics analysis. N = 3 biological replicates were analyzed and label-free

quantification carried out using intensity-based absolute quantification method.

(A–C) Volcano plots of proteins detected in exosome. Orange dots represent proteins enriched at least 2-fold in

ExosomesStressed, and blue dots represent proteins enriched at least 2-fold in ExosomesControl. Dashed line marks the

threshold of significance (p = 0.05, t test with Benjamini-Hochberg correction for multiple comparison). Proteins above

the dashed line significantly differ between ExosomesStressed and ExosomesControl. Proteins detected in one group and

absent in the other group were arbitrarily assigned a fold change of 20 or -20.

(D–F) Heatmaps of proteins different (p < 0.1) in ExosomesStressed versus ExosomesControl. Orange represents enrichment

in stressed conditions versus control conditions (ExosomesStressed versus ExosomesControl, MicrovesiclesStressed versus

MicrovesiclesControl, and CellsStressed versus CellsControl), whereas blue represents enrichment in control conditions versus

stress conditions.
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Figure 2. Continued

(G–I) Gene Ontology analysis of proteins at least 2-fold enriched in ExosomesStressed or ExosomesControl (e.g., proteins

labeled orange or blue in panels A–C).

(A, D, and G) Umbilical cord-derived mesenchymal stem cells. (B, E, and H) Adipose tissue-derived mesenchymal stem

cells. (C, F, and I) Bone marrow-derived mesenchymal stem cells.
silencing (Figures 3A and 3B), confirming that exosomes’ surface proteins are essential for the delivery of

cargo into neurons. The difference in the activity of ExosomesStressed over ExosomesControl is not related to

potential inhibition by serum proteins present, as incubation with serum-containing (EV-depleted) media

had no effect on ExosomesStressed activity (Figure 3A).

To establish a protein composition-activity relationship in exosomes, we selected proteins that (1) have an

established role in vesicle trafficking or membrane adhesion and (2) were enriched in stressed exosomes

derived from at least two of three mesenchymal stem cell sources. Based on these criteria, the shortlist

included proteins from endosomal pathways (Rab5 and Rab7; Kummel and Ungermann, 2014), plasma

membrane budding (ARRDC1; Nabhan et al., 2012), secreted proteins interacting with membranes

(dermcidin; Paulmann et al., 2012), desmosome (Desmocollin, Desmoplakin; Delva et al., 2009), and nucle-

oextracellular shuttles (AHSG and histone 1; Watson et al., 2012) (Figure 3C). AHSG has been reported to

shuttle histones from the nucleus to exosomes (Watson et al., 2012) and was consistently enriched

in stressed cells (not present in EVs) (Figure 3C), whereas histones were specifically enriched in stressed

exosomes (Figures 2G–2I and 3C).

Purified proteins were chemically palmitoylated and co-incubated with neutral liposomes (dioleoyl-phos-

phatidylcholine: cholesterol, 7:3) to promote association with the liposome membrane. Palmitoylation has

been reported as a strategy to enrich proteins associated with exosomal membranes (Lai et al., 2015). Incor-

poration of Rab7, Desmoplakin, and AHSG improved liposome-mediated siRNA transfer to neurons and

improved Huntingtin mRNA silencing (p < 0.0001 two-way ANOVA, Figure 3D). Incorporation of Rab5,

Desmocollin, ARRDC1, Dermcidin, and histone 1 had no effect (Figure 3D). Thus incorporation of at least

three candidate proteins from the proteomic analysis to the liposome surface affected the efficiency of

vesicle transfer to neurons.
Dilysocardiolipin Enrichment in Stressed Exosomes Contributes to Improved Trafficking to

Neurons

Membrane composition is a likely contributor to the enhanced trafficking activity of stressed exosomes.

Membrane trafficking is regulated by both proteins and lipids (Ikonen, 2001; Huijbregts et al., 2000). To

evaluate the effect of serum deprivation on the lipid composition of exosomes, we performed MS/MSALL

lipidomic analysis. Among all lipid classes detected, only cardiolipins showed significant enrichment in

exosomes derived from serum-deprived cells (p = 0.004, two-way ANOVA) (Figures 4A and S8A). Similar

to protein enrichment, cardiolipin enrichment was specific to stressed exosomes and did not occur in

corresponding cells and microvesicles (Figure 4A). In addition, we have observed a modest but statistically

significant enrichment in unsaturated and long-tailed cardiolipins in stressed exosomes (Figures S8B

and S8C).

Cardiolipin is a diphosphatidylglycerol lipid with four fatty acid tails (Figure 4B). Hydrolytic removal of one

or two fatty acid tails results in the formation of monolysocardiolipin (Figure 4C) or dilysocardiolipin

(Figure 4D), known intermediates in cardiolipin remodeling (Cao et al., 2004). Cardiolipin remodeling

has been associated with highly curved membranes (Schlame et al., 2012).

Among different cardiolipin subclasses, dilysocardiolipins showed the highest enrichment in stressed

exosomes (16-fold, p < 0.0001), followed by intact cardiolipins (9-fold, p < 0.0001) and monolysocardioli-

pins (6-fold, p < 0.0001) (Figure 4E), compared with control exosomes. Cardiolipin subclass enrichment

was specific to stressed exosomes and was not observed in corresponding microvesicles and cells

(Figure 4E).

To test whether cardiolipins play a role in vesicle trafficking to neurons, we incorporated intact cardiolipin,

monolysocardiolipin, or dilysocardiolipin (30% of total lipid amount) in conventional liposomes (dioleoyl-

phosphatidylcholine, cholesterol). Incorporation of dilysocardiolipin, but not other variants, into liposomes
234 iScience 16, 230–241, June 28, 2019



Figure 3. Proteins Enriched in Stressed Exosomes Contribute to Improved siRNA Transfer to Neurons

(A and B) Exosomes were enriched from serum-starved (A) or control (B) umbilical cord-derived mesenchymal stem

cells and either not further treated or treated with proteinase K or EV-depleted serum-containing medium (serum).

Primary neurons were then treated with the above exosome variants containing siRNAs, and mRNA levels in neurons

were quantified after 7 days of incubation. N = 5, mean G SEM, curves compared using two-way ANOVA.

(C) Enrichment of selected proteins in ExosomesStressed versus ExosomesControl (orange) or in CellsStressed versus

CellsControl (gray). Proteins detected in stressed conditions but absent in control conditions were arbitrarily assigned the

fold change of 20. N = 3, mean G SEM. Two-way ANOVA, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

(D) Primary neurons were treated with siRNA containing liposomes alone or liposomes incorporating purified proteins

from (C), and target mRNA levels in neurons were quantified after 7 days of incubation. N = 4, mean G SEM, two-way

ANOVA.
improved siRNA transfer to neurons and resulted in enhanced Huntingtin silencing (p = 0.007, two-way

ANOVA) (Figure 4F). Thus dilysocardiolipin enrichment in stressed exosomes might be a contributing fac-

tor to enhanced neuronal uptake.
Artificial Exosomes Are Equally Active at siRNA Delivery as Natural Exosomes In Vitro and

In Vivo

Having identified three proteins and one lipid class to be enriched in ExosomesStressed and improve vesicle

uptake into neurons, we explored whether we can engineer an artificial exosome displaying similar activity
iScience 16, 230–241, June 28, 2019 235



Figure 4. Dilysocardiolipin Enrichment in Stressed Exosomes Contributes to Improved Trafficking to Neurons

Exosomes purified from umbilical cord-derived mesenchymal stem cells under control conditions or stress conditions

(serum deprivation) underwent MS/MSALL lipidomics analysis. N = 2–5 biological replicates were analyzed per group.

(A) Heatmap of lipid classes in stressed conditions versus control conditions. Orange represents enrichment in

ExosomesStressed versus ExosomesControl, MicrovesiclesStressed versus MicrovesiclesControl, and CellsStressed versus

CellsControl, whereas blue represents enrichment in control conditions versus stress conditions.

(B) Scheme of cardiolipin. Length and saturation of fatty acid tails depicted is representative only and varies between

natural cardiolipin species.

(C) Scheme of monolysocardiolipin. Differences to cardiolipin are shown in red. Length and saturation of fatty acid tails

depicted are representative only and vary between natural monolysocardiolipin species.

(D) Scheme of dilysocardiolipin. Differences to cardiolipin are shown in red. Length and saturation of fatty acid tails

depicted are representative only and vary between natural dilysocardiolipin species.

(E) Enrichmentof cardiolipin subclasses from(B–D) inExosomesStressed versusExosomesControl (darkorange),MicrovesiclesStressed

versus MicrovesiclesControl (light orange), and in CellsStressed versus CellsControl (gray). Two-way ANOVA, ****p < 0.0001. N = 3,

meanG SEM.

(F) Primary neurons were treated with siRNA containing liposomes alone or liposomes incorporating lipids from panel (E)

and target mRNA levels in neurons quantified after 7 days of incubation. N = 4, mean G SEM, two-way ANOVA.
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Figure 5. Artificial Exosomes Recapitulate the Activity of Stressed Exosomes

(A) Primary neurons were treated with siRNA containing ExosomesStressed, ExosomeLarge-Scale, or ExosomesArticial and

target mRNA levels in neurons quantified after 7 days of incubation. ExosomesStressed and ExosomeLarge-Scale were

enriched from umbilical cord-derived mesenchymal stem cells via differential ultracentrifugation or tangential flow

filtration, respectively. ExosomesArticial consisted of dioleoylphosphatidylcholine, cholesterol, dilysocardiolipin, Rab7,

Desmoplakin, and AHSG. N = 5, mean G SEM, two-way ANOVA.

(B and C) Huntingtin (HTT)-targeting or non-targeting control (NTC) siRNAs were infused into the lateral ventricle of mice

either alone or in liposomes, ExosomeLarge-Scale, or ExosomesArticial. Huntingtin mRNA were quantified 4 weeks after

infusion in striatum (B) and motor cortex (C). N = 5–7, mean G SD, one-way ANOVA.
to that of ExosomesStressed. We combined common liposome components (dioleoylphosphatidylcholine

and cholesterol) with dilysocardiolipin and palmitoylated Rab7, Desmoplakin, and AHSG in a proteolipo-

some (ExosomeArtificial). Incorporation of three proteins and one lipid to liposomes significantly improved

liposome-mediated siRNA transfer to neurons (p < 0.0001, two-way ANOVA) (Figure 5A). The efficiency of

siRNA-containing artificial exosomes in Huntingtin silencing was indistinguishable from that of stressed

exosomes (Figure 5A).

To evaluate if siRNA-containing artificial exosomes will support Huntingtin silencing in vivo, we compared

siRNA-containing natural exosomes and artificial exosomes infused into mouse brain. For the in vivo study,

natural exosomes were produced using a combination of three-dimensional xenofree mesenchymal stem cell

culture and tangential flow filtration-based exosome isolation (ExosomesLarge-Scale) (Haraszti et al., 2018).

This method enabled us to collect a sufficient number of exosomes necessary to power the in vivo studies.

Natural exosomes (ExosomesLarge-Scale) showed an activity indistinguishable from that of ExosomesStressed and

ExosomesArtificial in vitro in primary neurons (Figure 5A). When infused to the lateral ventricle of the mouse

brain, both ExosomesLarge-Scale and ExosomeArtifical loaded with siRNAs induced Huntingtin mRNA (Figures

5B and 5C) silencing, whereas control liposomes, non-targeting-control siRNA containing vesicles, and

non-formulated siRNA were inactive (Figures 5B and 5C).
DISCUSSION

EVs exhibit specific and efficient intercellular trafficking activity (Valadi et al., 2007; Zomer et al., 2015;

Fruhbeis et al., 2013; Monguio-Tortajada et al., 2017; Zhang et al., 2018) and therefore are promising de-

livery vehicles of various classes of therapeutic proteins and RNAs (Lener et al., 2015; Kramer-Albers, 2017;

Kamerkar et al., 2017). However, the mechanisms imparting specific trafficking activity to EVs are unknown.

The identification of components necessary and sufficient to make a vesicle behave like an EV would open

a new chapter to overcome the delivery challenge of protein- and nucleic acid-based advanced

therapeutics.

Serum deprivation of source cells may differentially influence the yield and activity of released EVs. Here we

find that serum deprivation of mesenchymal stem cells increases the activity but decreases the yield of exo-

somes. In contrast, serum deprivation decreases the activity, but does not change the yield of
iScience 16, 230–241, June 28, 2019 237



microvesicles. The concept that serum deprivation may alter the yield of different EV subclasses into

different directions has been raised before (Kowal et al., 2016). However, the notion that serum deprivation

may increase the activity of one EV subclass but decrease the activity of another EV subclass produced from

the same cells has not been described before. This observation indicates that exosome and microvesicle

production pathways are differentially regulated in stress conditions.

Exosomes released from stressed cells exhibit a specific enhancement in activity and a specific protein

composition. Therefore, stressed exosomes are ideally suited for composition-activity relationship studies.

The protein content of EVs from serum-deprived and control cells has been shown to differ (Kowal et al.,

2016; Li et al., 2015). The functional 20S proteasome, all subunits of which we find specifically enriched in

stressed exosomes, has been detected in EVs before (Bochmann et al., 2014; Kowal et al., 2016) and has

been proposed to be of therapeutic value (Lai et al., 2012). We also observe enrichment in desmosomal pro-

teins, ribosomal proteins, histones, and endosomal proteins, all of which have been reported in EVs and are

proposed to play a role in an EV release mechanism (Choi et al., 2012; Overmiller et al., 2017; Dozio and

Sanchez, 2017; Keerthikumar et al., 2015; Willms et al., 2016; Nemeth et al., 2017; Watson et al., 2012).

Several strategies have been successfully applied tomodulate the surface of EVs: expressing proteins fused

to palmitoylation signals (Lai et al., 2014), transmembrane domains (Lai et al., 2014), or exosomal marker

proteins (Yim et al., 2016; Alvarez-Erviti et al., 2011) in producer cells; CLICK chemistry-based conjugation

(Smyth et al., 2014); fusing EVs with liposomes (Lee et al., 2015; Sato et al., 2016); and loading cholesterol-

conjugated aptamers onto the surface of EVs (Pi et al., 2018). Here we show that three of eight proteins

(Desmoplakin, AHSG, and Rab7) enhance vesicle trafficking to neurons. We used chemical palmitoylation

to enable protein loading into the vesicle membrane. Different proteins may have different sensitivity to

this treatment (i.e., high pH and palmitoylation on lysine residues instead of the naturally occurring cysteine,

serine, and threonine residues). Thus the lack of enhancement in liposome neuronal uptake may not

indicate a lack of contribution to vesicle trafficking. Further advancement of the technology presented

here will require combinatorial optimization of protein loading to membrane as well as lipid-to-protein

ratios.

Amain finding of this study is the identification of dilysocardiolipin as an essential component of exosomes.

We previously have reported on cardiolipin enrichment in exosomes compared with cells andmicrovesicles

(Haraszti et al., 2016). Lysocardiolipins are substrates of a cardiolipin-remodeling enzyme residing in the ER

(acyl-coA:lysocardiolipin acyltransferase 1) (Cao et al., 2004). The ER-Golgi secretory pathway (also

enriched in stressed exosomes) may overlap with the release of exosomes from the multivesicular body

(Friend, 1969; Kolesnikova et al., 2004; Nilsson et al., 2015). Thus dilysocardiolipin may use this overlapping

secretory pathway to enter exosomes under stress conditions.

Artificial exosomes constructed from purified lipid and protein components would have several advan-

tages over natural exosomes. First, the manufacture of proteoliposomes is an easily scalable process

and may be more cost-effective than manufacturing cell-derived exosomes. Second, the quality control

of cell-free artificial exosomes could follow established guidelines from the liposome field, whereas the

quality control requirements of natural therapeutic exosomes remain unclear (Lener et al., 2015; Reiner

et al., 2017). Third, loading therapeutic cargo (proteins or RNA) into or onto artificial exosomes could be

a simple step added to the manufacturing process, whereas efficient loading of therapeutic cargo to nat-

ural exosomes is still challenging.

Limitations of the Study

The activity of artificial exosome composition identified heremight be limited to neuronal uptake and alter-

ation or optimization of this composition likely is necessary to tune artificial exosomes for delivery to other

cell types. The mechanism of action of dilysocardiolipin, Rab7, Desmoplakin, and AHSG may differ in

natural and artificial exosomes. The method used here to load proteins onto liposomes (chemical palmi-

toylation) may have different efficiency for different proteins andmay not be suited for all proteins. Loading

proteins on the surface of neutral liposomes may alter the surface charge, which in turn may influence

cellular uptake. Optimization of the loading method is needed to control the protein-to-lipid ratio in

artificial exosomes.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figure 1. Characterization of cell culture conditions and extracellular 

vesicles. Related to Figures 1, 2 and 4 A. Umbilical cord derived mesenchymal stem cells were 

cultured in either the recommended stem cell medium or in RPMI for differing times. Alamar 

Blue® was added an incubated at 37℃ for 12 hours, and fluorescence measured at 570 nm 

excitation, 585 nm emission. Signal is normalized to not serum deprived samples. N = 8, mean ± 

SD, one-way ANOVA. B. Representative size distribution curves of EVs enriched from 

umbilical cord derived mesenchymal stem cells, N=3, mean, Nanoparticle Tracking Analysis. C. 

Western blots of cells, microvesicles and exosomes derived under control or serum deprived 

conditions from umbilical cord, adipose tissue or bone marrow derived mesenchymal stem cells. 

Negative marker: calnexin. Positive markers: Tsg101, CD81. D. Representative transmission 

electron microscopy images of EVs derived under control or serum deprived conditions from 

umbilical cord, adipose tissue or bone marrow derived mesenchymal stem cells. 
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Supplemental Figure 2. Serum deprivation of source cells alters yield and protein-to-vesicle 

ratio of extracellular vesicles. Related to Figures 1,2, and 4. Extracellular vesicles (EVs) were 

purified from umbilical cord, adipose tissue or bone marrow derived mesenchymal stem cells via 

differential ultracentrifugation. Cells were cultured under control condition or serum deprived for 

24 hours. N=7, lines represent mean, boxes represent 25-75 percentile range and whiskers 

represent the minimum and maximum value in each group. n.s. = non-significant (p>0.05), 

Mann-Whitney test A. Yield, C. Size, and E. Protein-to-particle ratio of exosomes enriched from 

conditioned media of control or stressed mesenchymal stem cells via differential 

ultracentrifugation (100 000 g fraction). B. Yield, D. Size, and F. Protein-to-particle ratio of 

microvesicles enriched from conditioned media of control or stressed mesenchymal stem cells 

via differential ultracentrifugation (10 000 g fraction).  
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Supplemental Figure 3. Serum deprivation of source cells does not alter the siRNA 

loading capacity of extracellular vesicles. Related to Figure 1. Exosomes isolated from 3000 cm2 

mesenchymal stem cell culture were quantified and subsequently co-incubated with 150 pmol 

cholesterol-conjugated fluorescent siRNAs at 37°C for one hour. Then the exosome-siRNA 

mixture was centrifuged at 100 000 g for 90 min supernatant containing unloaded siRNA removed. 

Pellet was taken up in PBS for quantification of loading.  Percent of loaded siRNA was calculated 

as follows: pellet / (pellet + supernatant). To estimate siRNA copy number per exosome, the 

following formula was used: (percent of loaded siRNA) * (amount of siRNA initially mixed in 

with EVs (mol)) * (Avogadro number) / (number of EVs initially mixed in). Liposomes (grey) had 

similar siRNA loading capacity to that of natural exosomes. N=3, mean ±SD 
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Supplemental Figure 4. Neuronal uptakes of control and stressed exosomes. Related to 

Figure 1. Primary cortical neurons were cultures on glass bottom plates and treated with 

fluorescent siRNA containing ExosomesControl or ExosomesStressed. A. Fluorescence was 

monitored over time using confocal microscopy. Red: siRNA, Blue: nuclei. B. Red signal in 

images were quantified in ImageJ software, N= 39-50 cells per timepoint and kinetic curves 

compared using two-way ANOVA. C. Primary neurons were treated with fluorescent siRNA-

containing exosomes derived from control or stressed (serum deprived) cells. After 7 days of 

incubation, target mRNA levels (Ppib) were quantified in neurons. mRNA levels were 

normalized to housekeeping gene and to untreated control. N=3, mean ± SEM.  
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Supplemental Figure 5. Proteomics analysis of umbilical cord derived mesenchymal cells 

and EVs under control or stressed conditions. Related to Figure 2. Label-free quantification 

was carried out using the intensity-base absolute quantification method. Heatmap was then 

generated in R, using “pheatmap” package, hierarchical clustering of rows, scaling method: 

“row”. 
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Supplemental Figure 6. Proteomics analysis of adipose tissue derived mesenchymal cells 

and EVs under control or stressed conditions. Related to Figure 2. Label-free quantification 

was carried out using the intensity-base absolute quantification method. Heatmap was then 

generated in R, using “pheatmap” package, hierarchical clustering of rows, scaling method: 

“row”. 
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Supplemental Figure 7. Proteomics analysis of bone marrow derived mesenchymal cells 

and EVs under control or stressed conditions. Related to Figure 2. Label-free quantification 

was carried out using the intensity-base absolute quantification method. Heatmap was then 

generated in R, using “pheatmap” package, hierarchical clustering of rows, scaling method: 

“row”. 
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Supplemental Figure 8. Serum deprivation of umbilical cord derived mesenchymal stem 

cells alters lipid composition of exosomes. Related to Figure 4. Umbilical cord derived 

mesenchymal stem cells and EVs from control or stress conditions (serum deprivation) 

underwent MS/MSALL lipidomics analysis. A. Bar graph shows of lipid classes in stressed 

conditions versus control conditions. ExosomesStressed versus ExosomesControl (dark orange), 

MicrovesiclesStressed versus MicrovesiclesControl (light orange), and CellsStressed versus CellsControl 

(grey). N = 2-5, mean ± SD, two-way ANOVA. B. Correlation of enrichment in ExosomesStressed 

versus ExosomesControl with the cumulative number of double bonds in the fatty acid tails of a 

cardiolipin species (N = 149). Each dot represents a cardiolipin species. C. Correlation of 

enrichment in ExosomesStressed versus ExosomesControl with the cumulative length of the fatty acid 

tails of a cardiolipin species (N = 149). Each dot represents a cardiolipin species. 
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Transparent Methods 

 

Oligonucleotides 

siRNAs were conjugated to cholesterol at the 3′end of the passenger strand via a TEG 

linker and were fully chemically modified with 5′-vinylphosphonate on the guide strand and an 

alternating pattern of 2′-O-methyls and 2′- fluoros on both strands1. PNA oligos were purchased 

from PNA Bio (PNA Bio, Newbury Park, CA). siRNA and PNA sequences and chemical 

modification patterns used in this study are described in Supplementary Table 1.  

siRNAs used in this manuscript were synthesized in house using standard 

phosphoramidite chemistry and an Expedite ABI DNA/RNA Synthesizer. Each synthesis was 

done at a 10-µmole scale using a cholesterol-conjugated CPG for the sense strand and a 

Unylinker® terminus (ChemGenes, Wilmington, MA) for the antisense strand. 

Phosphoramidites were prepared as 0.15 M solutions for 2´-O-methyl (ChemGenes, 

Wilmington, MA) and 0.13 M for 2´-fluoro (BioAutomation, Irving, Texas) in anhydrous 

acetonitrile. 0.25 M5-(Benzylthio)-1H-tetrazole in anhydrous acetonitrile was used as 

coupling activator. Detritylations were performed using 3% dichloroacetic acid in 

dichloromethane for 80 seconds and capping was performed mixing 16% N-

methylimidazole in tetrehydrofurane (CAP A) and 80:10:10 (v/v/v) tetrhydrofurane:acetic 

anhydride:2,6-lutidine (CAP B) for 15 s. Sulfurizations were carried out with 0.1 M 3-

((Dimethylamino-methylidene)amino)-3H-1,2,4-dithiazole-3-thione in (9:1) 

pyridine:acetonitrile for 3 minutes. Oxidation was performed using 0.02 M iodine in 

THF:pyridine:water (70:20:10, v/v/v) for 80 s. Phosphoramidite coupling times were 250 s 

for all amidites. Vinylphosphonate phosphoramidite was dissolved in 40% 

dichloromethane in acetonitrile to a final concentration of 0.15 sM. For the coupling step, a 
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4-fold excess of phosphoramidite was loaded on the solid support, and phosphoramidite 

condensation was carried out for 20 min. A solution of 3% trichloroacetic acid in 

dichloromethane was used to remove the dimethoxytrityl group from the 5’ hydroxyl 

group of the nucleotide. A solution of 0.25 M 5-(Ethylthio)-1H-tetrazole in anhydrous 

acetonitrile was used as an activator for the coupling step.  Phosphorothioate linkages were 

introduced using a 0.05 M solution of 3-((dimethylaminomethylene)amino)-3H-1,2,4-

dithiazole-5-thione in pyridine:CH3CN (1:1) and a 5 min contact. Solid support was washed 

with anhydrous acetonitrile then anhydrous dichloromethane and flushed with argon.  

 

Cell culture 

Umbilical cord, Wharton’s jelly-derived mesenchymal stem cells (PCS -500-010, ATCC, 

Manassas, VA), adipose tissue derived mesenchymal stem cells (PCS-500-011, ATCC, 

Manassas, VA), and bone marrow derived mesenchymal stem cells (Poetics™, PT-2501, Lonza, 

Basel, Switzerland) were cultured in appropriate stem cell medium (PCS-500-030, ATCC, 

Manassas, VA, for umbilical cord and adipose tissue derived cells, and MSCGM™, PT-3238, , 

Lonza, Basel, Switzerland for bone marrow derived cells) in the presence of supplements 

containing serum and growth factors (PCS-500-040, ATCC, Manassas, VA and PT-3001, Lonza, 

Basel, Switzerland) at 37°C, 5% CO2. Medium was changed every three days, and cells 

expanded until passage 12, to reach a total of 3000 cm2 surface in T500 triple flasks. For serum 

deprivation medium was changed to RPMI (GIBCO™ RPMI 1640, Thermo Fisher Scientific) 

with no FBS or other supplements added for 24 hours. 

 

EV isolation and characterization 
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Medium on umbilical cord-derived mesenchymal stem cells was changed to EV-depleted 

medium (centrifuged at 100 000 g for at least 17 hours) or to RPMI (GIBCO™ RPMI 1640, 

Thermo Fisher Scientific) with no FBS or other supplements added and incubated for 24 hours. 

EVs were then isolated from this conditioned medium via differential ultracentrifugation2,3. Cell 

debris was pelleted at 300 g (10 min). Larger EVs or microvesicles were pelleted at 10 000 g (30 

min), then supernatant filtered through a 0.2 µm membrane (Nalgene® aPES, Thermo Fisher 

Scientific, Waltham, MA) and small EVs or exosomes pelleted at 100 000 g (90 min) using 70 ml 

polycarbonate bottles (Beckman Coulter, Brea, CA; #355622) and Type 45 Ti rotor (Beckman 

Coulter, Brea, CA; #339160). Microvesicles and exosome pellets were then washed once in 1 ml 

sterile PBS and centrifuged again for 30 min at 10 000 g or for 90 min at 100 000 g, respectively. 

For Western blot analyses, EVs or cell pellets were suspended in RIPA buffer (Pierce® 

899000, Thermo Fisher Scientific, Waltham, MA) containing PMSF (36978, Thermo Fisher 

Scientific) and protease inhibitor cocktail (cOmplete Mini, 11836153001, Roche, Indianapolis, 

IN), and samples were sonicated for 15 min. Insoluble material was pelleted by centrifugation for 

15 minutes at 10 000 g, 4°C. Proteins (50µg) were loaded onto NuPAGE 4–12% Bis-Tris gels 

(Thermo Fisher Scientific, Waltham, MA). After transfer to PVDF (BioRad, Hercules, CA), 

membranes were incubated with antibodies, washed, and images captured using an Odyssey® 

system (Li-Cor, Bad Homburg, Germany) according to manufacturer’s instructions. Primary 

antibodies used were Calnexin (C5C9, Cell Signaling, Danvers, MA), Tsg101 (4A10, Abcam, 

Cambridge, MA), CD81 (B11, Santa Cruz Biotechnology, Dallas, TX). 

Concentration and size distribution of exosomes were measured by Nanoparticle 

Tracking Analysis (NanoSight NS300, Malvern). Briefly, samples were diluted in PBS 1:100 – 

1:1000, manually injected into the instrument and videos acquired at ambient temperature at 
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camera level 9 for 1 minute per sample, N=3. EVs were then frozen at -80°C in 0.1M sucrose 

and protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, #P8340) until further use. 

Transmission Electron Microscopy of EVs was conducted at Mass General Hospital using a 

JEOL 1100 transmission electron microscope (JEOL, Peabody, MA) at 60 kV and AMT digital 

camera (Advanced Microscopy Techniques, Woburn, MA). Samples and grids for were prepared 

at room temperature. An equal volume of 4% paraformaldehyde was added to the exosome 

samples and incubated for 2 hours. Aliquots of exosomes (3 μl) were dropped onto grids and 

incubated in 2% paraformaldehyde for 20 minutes. The grids were transferred to a wax strip and 

washed with 100 μl PBS. The grids were then incubated in 50 mmol/l glycine/PBS for 5 minutes 

and blocked in 5% bovine serum albumin/PBS for 10 minutes. The grids were then washed twice 

in PBS and incubated in 1% glutaraldehyde for 5 minutes. Following eight washes with water of 

2 minutes each, the grids were incubated in uranyl oxalate for 5 minutes, and then in a 9:1 

solution of 1% methyl cellulose and 4% uranyl acetate for 10 minutes on ice. Excess liquid was 

removed with a filter paper and the grids were air-dried 

for 5–10 minutes.  

 

For large-scale exosome production4, umbilical cord-derived mesenchymal stem cells 

were cultured in spinner flasks (250-ml) containing on Star-Plus Microcarriers (SoloHill®, Pall 

Life Sciences, Port Washington, NY) in serum-free and xenofree StemPro® medium was added 

(A1067501, Life Technologies, Carlsbad,CA). Conditioned medium was collected after 48 hours. 

Collection was performed four times; conditioned medium was stored at 4℃ and subsequently 

pooled together (final volume 1L). The conditioned medium was filtered through a 0.2 µm 

polyethersulfone (PES) membrane. Conditioned medium was then subjected to ultrafiltration (9-
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fold concentration) in a tangential flow filtration system using a 500 kDa cutoff TFF cartridge 

(MidiKros® mPES 115 cm2, D02-E500-05-S, Spectrum Labs, Rancho Dominguez, CA) and 

buffer exchanged with 6x volume of PBS. The exosomes were 0.2 µm filtered (PES membrane) 

and stored in 0.1M sucrose at -80℃ until further use.  

 

siRNA loading to EVs and liposomes 

EVs isolated from 3000 cm2 mesenchymal stem cell culture were quantified (see above) 

and subsequently co-incubated with 150 pmol cholesterol-conjugated fluorescent (Cy3-

conjugated) siRNAs at 37°C for one hour in 500 µl PBS (loading mixture). Then the EV-siRNA 

mixture was centrifuged at 100 000 g for 90 min (for exosomes) or at 10 000 g for 30 min (for 

microvesicles) and supernatant containing unloaded siRNA removed (supernatant). Pellet was 

taken up in 50 µl PBS for quantification of loading.  Fluorescence was assessed at 550 nm 

excitation, 570 nm emission on TECAN instrument. Percent of loaded siRNA was calculated as 

follows: pellet / (pellet + supernatant). To estimate siRNA copy number per EV, the following 

formula was used: (percent of loaded siRNA) * (amount of siRNA initially mixed in with EVs 

(mol)) * (Avogadro number) / (number of EVs initially mixed in).  

Following quantification of loading loaded exosomes were further diluted in 250 µl 

Neural Q medium for treatment of primary neurons and 50 µl PBS per mouse for mouse 

infusions. Liposomes were loaded identical to exosomes, e.g. post-synthesis.  mRNA silencing 

experiments were normalized to the amount of siRNA loaded in each individual EV sample. 

 

 

Proteomics 
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Protein extraction followed the same protocol as for Western blotting. Total protein 

(50µg) was applied to an SDS-PAGE gel. Once the entire protein sample entered the stacking 

gel, electrophoresis was stopped, and the portion of gel containing proteins was excised and 

stained with Coomassie brilliant blue. The fixed gel fragments were processed by University of 

Massachusetts Medical School Mass Spectrometry Core5. Proteins underwent in-gel trypsin 

digestion for 21 hours at 37°C, extracted from gels using 80:20 solution of acetonitrile: 1% 

formic acid, dried in a Speed Vac and pellets redissolved in 5% acetonitrile in 0.1% trifluroacetic 

acid. Digested protein aliquots were injected into a custom packed 2cm x 100µm C18 Magic 5µm 

particle trap column and samples sprayed on a Waters Nano Acquity UPLC system. Data 

dependent acquisitions were performed on a Q Exactive mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA), full MS scans from 300-1750 m/z were acquired at a resolution of 

70,000 followed by 10 MS/MS scans acquired under HCD fragmentation at a resolution of 

17,500 and an isolation width of 1.6 Da. Raw data files were processed with Proteome 

Discoverer (version 1.4) before using Mascot Server (version 2.5) to search against the 

Uniprot_Human protein database. Applied search parameters were fully tryptic with 2 missed 

cleavages, parent mass tolerances of 10 ppm and fragment mass tolerances of 0.05 Da. Search 

results were loaded into the Scaffold Viewer (Proteome Software, Inc.) to quantify and analyze 

peptides.   

 

Lipidomics 

Frozen EV pellets were transferred to BERG LLC (Framingham, MA) on dry ice for lipid 

composition analysis as described before6. Briefly, aliquots of each sample were combined with 

a cocktail of deuterium-labeled and odd chain fatty acid standards. Standards were chosen that 

represent each lipid class and were at designated concentrations expected to provide the most 
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accurate quantitation of each lipid species. Lipids were extracted with 4 mL of a 1:1 (v/v) 

solution of chloroform:methanol7, using an automated custom sequence routine on a Star 

Hamilton Robotics system (Hamilton, Reno, NV). Lipid extracts were dried under nitrogen and 

pellets were dissolved in 300 µl of a 1:1 (v/v) solution of chloroform:methanol per mg of protein. 

Samples were flushed with nitrogen and stored at -20°C. For MS analysis, samples were diluted 

50-fold in 3:3:3:1 (v/v/v/v) isopropanol:methanol:acetonitrile:water containing 2mM ammonium 

acetate to enhance ionization efficiency in positive and negative modes. Electrospray ionization-

MS was performed on a SCIEX TripleTOF® 5600+ (SCIEX) coupled to a customized direct 

injection loop system on an Ekspert microLC200 system. 50µl of sample was injected at a 

flowrate of 6µl/min. Lipids were analyzed using a customized data independent analysis strategy 

on the TripleTOF® 5600+ allowing for MS/MSALL high resolution and high mass accuracy 

analysis8. Lipids were quantified using an in-house library on MultiQuant™ software. 

 

Liposome and artificial exosome preparation 

Conventional liposomes: Dioleoyl-phosphatidylcholine (DOPC) (#850375, Avanti Polar 

Lipids, Alabaster, AL) and cholesterol (, #700000, Avanti Polar Lipids, Alabaster, AL) were 

diluted in chloroform at a concentration of 50 mg/ml. 35 µl of DOPC and 15 µl of cholesterol 

was transferred into a glass vial and chloroform was evaporated under argon flow. The resulting 

lipid film was rehydrated in 500 µl of PBS (#21-031-CV, Dulbecco’s Phosphate Buffered Saline, 

Corning, Manassas, VA), sonicated for 15 minutes in water bath (#BB5510, Branson ultrasonic 

cleaner 40 kHz, Cleanosonic, Richmond VA), and the extruded using Mini-Extruder 

(#610000,Avanti Polar Lipids, Alabaster, AL) through a 50 nm pore sized polycarbonate 

membrane (#WHA800308, Whatman® Nucleopore™, MilliporeSigma, St Louis, MO). 

Liposomes were always used fresh, never frozen. 

Cardiolipin containing liposomes: Cariolipin (#840012, Avanti Polar Lipids, Alabaster, 

AL), monolysocardiolipin (#850081, Avanti Polar Lipids, Alabaster, AL) and dilysocardiolipin 
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(#850082, Avanti Polar Lipids, Alabaster, AL) were diluted in chloroform at a concentration of 

10 mg/m. 20 µl DOPC, 15 µl cholesterol and 75 µl cardiolipin, or monolyoscariolipin or 

dilysocardiolipin were mixed together and liposomes prepared as for conventional liposomes. 

This composition is equivalent to 40:30:30 w/w ratio of DOPC:cholesterol: 

cardiolipin/monolysocardiolipins/dilysocardiolipin. 

Proteoliposomes; Purified proteins were purchased as follows: Rab7 (TP301776, 

OriGene, Rockville, MD), AHSG (TP723089, OriGene, Rockville, MD), Rab5 (TP303873, 

OriGene, Rockville, MD ), Desmocollin (TP322207, OriGene, Rockville, MD), ARRDC1 

(TP307160, OriGene, Rockville, MD), Dermcidin (TP309352, OriGene, Rockville, MD), Histone 

1 (TP301249, OriGene, Rockville, MD), Desmoplakin (RPU51172, Biomatik, Wilmington, DE). 

Lyophilized proteins (AHSG and Desmoplakin) were dissolved in 0.1M sodium bicarbonate in 

PBS (pH=8.5). Proteins delivered in Tris-based buffers (Rab5, Desmocollin, ARRDC1, 

Dermcidin and Histone 1) underwent buffer exchange using 2K MWCO cutoff membrane 

dialysis devices (Slide-A-Lyzer™ Mini, #69553, Thermo Fisher Scientific, Waltham, MA) 10 µl 

of sample against 1 l of 0.1M sodium bicarbonate in PBS (pH=8.5) at 4℃ overnight. Palmitic 

acid N-hydroxysuccinimide ester (palmitoyl-NHS) (P1162, Sigma-Aldrich, St. Louis, MO) was 

added to protein samples in a 1:1 molar ratio to the amount of lysines (lysine frequency was 

estimated to be 7%) and incubated on a rotating wheel at 4℃ overnight. Palmitoyl-NHS – 

protein reaction mixture (equivalent of 1 µg protein) was then incubated with preformed 

conventional liposomes or dilysocardiolipin liposomes for 1 hour at 37℃ and proteoliposome 

samples centrifuged at 100 000 g for 70 min to remove non-loaded proteins. To prepare artificial 

exosomes, palmitoylated Rab7, AHSG and Desmoplakin were combined and loaded together to 

dilysocardiolipin liposomes.  

 

Data and Software Availability 

The accession number for the proteomics data reported in this paper is EVPedia: 153144. 
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Both proteomics data and lipidomics data are available as Supplementary Tables 1 through 5. 

 

Primary neuron culture 

All animal procedures were approved by the University of Massachusetts Medical School 

Institutional Animal Care and Use Committee (IACUC, protocol number A-2411).  

Primary cortical neurons were isolated from E15.5 mouse embryos of wild-type FVBNj 

mice. Pregnant females were anesthetized by intraperitoneal injection of Ketamine (100 mg/kg, 

KETASET®, Zoetis, Kalamazoo, MI) - Xylazine (10 mg/kg, AnaSed®, AKORN, Laker Forest, 

IL, #NDC59399-111-50) followed by cervical dislocation. Embryos were removed and 

transferred to ice-cold DMEM/F12 medium (Invitrogen, Carlsbad, CA; #11320). Brains were 

removed and meninges were carefully detached. Cortices were isolated and transferred into pre-

warmed papain solution for 25 min at 37˚C, 5% CO2 to dissolve the tissue. Papain (Worthington, 

Lakewood, NJ; #54N15251) was dissolved in 2 ml Hibernate E (Brainbits, Springfield, IL; #HE) 

and supplemented with 0.25 ml of 10 mg/ml DNase1 (Worthington, Lakewood, NJ; #54M15168) 

in Hibernate E. After 30 min incubation, the papain solution was removed and 1 ml NeuralQ 

(Sigma-Aldrich, St. Louis, MO, #N3100) supplemented with 2.5% FBS was added to the tissue. 

Tissues were then dissociated by trituration through a fire-polished, glass Pasteur pipet. Neurons 

were counted and diluted at 106 cells/ml. 105 neurons per well were plated on 96-well plates pre-

coated with poly-L-lysine (BD BIOCOAT, Corning, NY; #356515). Neurons originating from all 

embryos (independently of gender) from one pregnant female were pooled, resulting in mixed-

gender neuronal cultures. After overnight incubation at 37˚C, 5% CO2, an equal volume of 

NeuralQ supplemented with anti-mitotics, 0.484 µl/ml of 5'UtP (Sigma, St Louis, MO; #U6625) 

and 0.2402 µl/ml of 5'FdU (Sigma, St Louis, MO; #F3503) was added to prevent the growth of 
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non-neuronal cells. Half of the volume of media was replaced with fresh NeuralQ containing 

anti-mitotic every 48 hours until the experiments were performed. Neurons were treated with 

siRNA-loaded EVs or liposomes (resuspended in NeuralQ medium) and incubated for 7 days at 

37°C, 5% CO2 post treatment. 

 

Confocal microscopy 

For the analysis of siRNA- loaded exosome uptake in vitro, primary neurons were plated 

in poly-L-lysine (Sigma, St Louis, MO; #P4707) coated 35 mm glass bottom dishes (MatTek, 

Ashland, MA, #P35G-1.5-10-C) were stained with NucBlue™ live cell stain (Thermo Fisher 

Scientific, Waltham, MA, #R37605) and neurons were treated with exosomes conatining 

fluorescently labeled siRNA targeting Huntingtin gene (Suppl. Table 1). Images were acquired 

with a Leica DM IRE2 (Leica Microsystems Inc., Buffalo Grove, IL) confocal microscope using a 

40x oil-immersion objective and Dapi channel (exposure time 50 ms) as well as mCherry channel 

(exposure time 200 ms). Images were processed using ImageJ software9 (NIH, Bethesda, MD). 

The relative uptake of siRNA, loaded in control exosomes or stressed exosomes, was estimated 

based on pixel integrated density of 5 images for each timepoint, and normalized to the number of 

nuclei per image (nuclei counted manually).  

 

Mouse surgery 

All animal procedures were approved by the University of Massachusetts Medical School 

Institutional Animal Care and Use Committee (IACUC, protocol number A-2411). ALZET® 

osmotic pumps (ALZET Osmotic Pump, Cupertino, CA; #1003D) were prefilled with 100 µl of 

sample following manufacturer instructions and primed overnight at 37°C in a water bath. 

Osmotic pumps were loaded with either PBS (100 µl per pump), or 6.6 x 1010 vesicles loaded 

with cholesterol-siRNA (3000 copies per vesicle, total dose 0.33 nmol) (100 µl per pump), or 
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equivalent amount of cholesterol-siRNA only (0.33 nmol, 100 µl per pump). Wild-type FVBNj 

(female, 7-10 weeks old) mice were deeply anesthetized with 1.2% Avertin (Sigma, St Louis, 

MO; #T48402). ALZET® osmotic pumps were then placed using a stereotactic device (World 

Precision Instruments, Sarasota, FL, #502610) into the right lateral ventricle (coordinates 

relative to bregma: 0.2 mm posterior, 0.8 mm lateral, 2.5 mm ventral). Pumps delivered their 

content for 3 days at 1 µl / hour rate. Mice were administered 4 mg/kg of meloxicam SR 

subcutaneously for pain management. Osmotic pumps were removed 5 days after infusion ended 

(8 days after placement) and wound closed with 7mm wound clips. Animals were euthanized 4 

weeks after pump placement using isoflurane overdose. Brains were cut in 300 µm thick coronal 

sections at 4℃ on a vibrotome, and 2 mm punches taken from striatum and motor cortex 

ipsilateral to the infusion. 3 punches were collected for mRNA quantification (immediately 

placed in RNAlater® (Thermo Fisher Scientific, Waltham, MA, #AM7021), and 3 punches were 

collected for protein quantification (immediately frozen in liquid nitrogen).  

 

Measurement of mRNA levels 

Primary neurons or brain punches were lysed in QuantiGene Lysis Mixture (part of 

QuantiGene Sample Processing Kit for cultured cells, Affymetrix, Thermo Fisher Scientific, 

Waltham, MA, #QS0103) or QuantiGene Homogenizing solution (Affymetrix, Thermo Fisher 

Scientific, Waltham, MA, #QG0517), respectively. mRNA quantification was performed using 

the QuantiGene 2.0 assay kit (Affymetrix, Thermo Fisher Scientific, Waltham, MA,, #QS0103)10. 

Catalog numbers for probes used in QuantiGene 2.0 assay were as follows: mouse Htt 

(Affymetrix, #SB-14150), mouse Hprt (Affymetrix, #SB-15463). Data sets were normalized to 

housekeeping gene Hprt.  
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Measurement of siRNA levels 

siRNA guide strands in neuron cell lysates were quantified using a peptide-nucleic acid 

(PNA) hybridization assay 28-1,11-13. PNAs are oligonucleotides, where the sugar-phosphate 

backbone is replaced with a charge-neutral polyamide backbone. PNAs have therefore a high 

hybridization energy to RNA. SDS from leftover neuron lysates after mRNA quantification was 

precipitated with 3 M KCl and pelleted at 4,000 × g for 15 min. siRNA guide strands in cleared 

supernatant were hybridized to fully complementary Cy3-labeled PNA strands (PNABio, 

Thousand Oaks, CA). siRNA guide strand-PNA duplexes were injected into HPLC DNAPac® 

PA100 anion exchange column (Thermo Scientific, Carlsbad, CA) and Cy3 fluorescence was 

monitored and peaks integrated. The mobile phase for HPLC was 50% water 50% acetonitrile, 

25 mM Tris-HCl (pH 8.5), 1 mM EDTA and the salt gradient was 0 to 800 mM NaClO4. For the 

calibration curve, a known amount of siRNA duplex was spiked into cell lysis solution.  

 

Statistical Analysis 

siRNA uptake, mRNA silencing, cell viability, and Lipidomics data were analyzed using 

GraphPad Prism 7, version 7.04 (GraphPad Software Inc., La Jolla, CA). In in vitro siRNA 

uptake experiments curves were fitted using “exponential growth equation” (PNA hybridization 

assay data) or “one phase association” (confocal microscopy data). In in vitro silencing 

experiments dose-response curves were fitted using “log(inhibitor) vs. response – variable slope 

(three parameters)” equation. Curves were compared using two-way ANOVA with Tukey 

multiple comparison for main column effect. In in vivo silencing experiments and cell viability 

assay groups were compared using one-way ANOVA with Tukey multiple comparison test. 

When comparing candidate proteins between control and stressed conditions two-way ANOVA 
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with multiple comparison for row effect according to the original FDR method of Benjamini and 

Hochberg. During lipidomics the amount of lipids were normalized to protein content of 

samples. Lipid classes in control versus stressed EVs or cells were compared using two-way 

ANOVA with Tukey multiple comparison for compare rows within columns. Fatty acid tail 

properties were correlated with enrichment score using linear regression. 

Label-free quantification of proteins was performed via the iBAQ (intensity-based 

absolute quantification14) method in Scaffold Viewer (Proteome Software Inc.). Briefly, this 

method normalizes signal to the number of tryptic sites in a protein. Gene Ontology was 

performed using DAVID version 6.7 15,16 (NIH). Volcano plots and heatmaps were generated in 

R2 using “ggplot2” and “pheatmap” packages.  

Differences in all comparisons were considered significant at p-values < 0.05.  
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