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Abstract

Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the
past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in
causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants
that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene
discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology
exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the
genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential
contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic
etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare
VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental
for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open
avenues for effective personalized therapies.
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Background
Neurodegenerative brain diseases (NBD) are progressive
and irreversible fatal conditions primarily affecting the
neurons of the central nervous system (CNS). At the cel-
lular level, NBD are characterized by cytoplasmic or nu-
clear protein aggregations [1]. Dementia symptoms are
typical features of NBD and imply a great burden for pa-
tients and caregivers [2]. The most frequent NBD sub-
types are Alzheimer’s disease (AD) and Parkinson’s
disease (PD), followed by the less frequent frontotemporal

dementia (FTD) and amyotrophic lateral sclerosis (ALS).
The disease characteristics of the NBD subtypes are sum-
marized in Table 1.
In the last three decades, linkage studies in extended

NBD families with a Mendelian inheritance of NBD
identified high-penetrant mutations in causal genes and
co-segregation with NBD [3, 4]. Causal genes, routinely
tested in medical genetic centers for AD, PD, FTD, and
ALS, are listed together with mutation spectrum and in-
heritance patterin in Table 2.
International genome-wide association studies

(GWAS) in large cohorts of NBD patients or healthy in-
dividuals identified common variants in novel genes
showing significant associations to NBD, but with a
modest increase in disease risk [20–23]. GWAS NBD
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risk genes for AD, PD, FTD, and ALS are listed in
Table 3.
The genetic discoveries in NBD, i.e., AD, PD, FTD,

and ALS contributed to a better understanding of the
biological mechanisms underlying CNS neurodegenera-
tion. But, they were not able to adequately disclose the
entire genetic background of these complex NBD disor-
ders [37], since NBD is not yet genetically explained in
numerous patients [38]. NGS tools, like whole-exome
(WES) or whole-genome sequencing (WGS), played a
critical role in understanding the pathogenic mecha-
nisms leading to NBD, due to the identification of vari-
ous novel genes [39–41]. These studies shed a new light
on the specific pathways that contribute to NBD patho-
physiology. A non-exhaustive list, includes microglia-
mediated pathway in AD [20], mitochondrial dysfunc-
tion in PD [39], RNA stress response in ALS [40], and
lysosomal disruption in FTD [42].
A challenge of these sequencing technologies is the

identification of countless rare variants, specifically vari-
ants of uncertain significance (VUS) [43, 44]. For a long
time, these rare variants were considered non-
contributing genetic background without effect on the
NBD disease. Consequently, these VUS were ignored,

resulting in a lack of supportive genetic and functional
data. The rare VUS can be classified based on their like-
lihood of pathogenicity by using in silico bioinformatic
prediction tools [45], but these predictions are insuffi-
cient particularly in the situation of a genetic diagnosis
of patients [46].
In this review, we focus on rare variant interpret-

ation in NBD phenotypes such as AD, FTD, PD, and
ALS. We describe discoveries from WES and WGS
studies, including the novel pathways involved in
these disorders. We suggest modes of action and
strategies for the interpretation of VUS, providing ex-
amples of rare variants in established causal genes
and GWAS risk genes. We address the impact of im-
proved understanding of rare variants for patients and
families and for therapy development. Finally, we de-
liberate on the potential of omics technologies in un-
raveling of the genetic etiology and molecular
pathways leading to neurodegeneration.

WES and WGS reveal novel genes and pathways
WES and WGS are mainly used in NBD genetic research
to uncover novel genes and pathways [47]. Hand in
hand, specific statistical approaches are developed for

Table 1 Main characteristics of NBD subtypes

NBD Brain location Pathology Main symptoms

AD Tempo-parietal lobes β-Amyloid, tau Progressive memory loss, cognitive decline

FTD Frontotemporal lobe TDP43, tau, FUS Behavioral changes, language deficits

PD Midbrain α-Synuclein, Lewy bodies Bradykinesia, muscle rigidity, resting tremor. Dementia features in 30–80%

ALS Motor cortex, spinal cord TDP-43 Muscle weakness, impaired voluntary movements. Dementia features in 50%

Table 2 Causal genes, mutation spectrum, and mode of inheritance

NBD Causal gene Type of mutation* Inheritance Reference

AD Amyloid precursor protein (APP) Missense, gene dosage Autosomal dominant, recessive [5]

Presenilin 1 (PSEN1) Missense, indels Autosomal dominant [3]

Presenilin 2 (PSEN2) Missense, indels Autosomal dominant
de novo

[6]

Prion protein (PRNP) Missense, indels Dominant [7]

PD α-Synuclein (SNCA) Missense, gene dosage Autosomal dominant [4]

Parkin 2 (PARK2) Missense, gene dosage Autosomal recessive [8]

Leucine-rich repeat kinase 2 (LRRK2) Missense Autosomal dominant [9]

FTD Granulin (GRN) PTC Autosomal dominant [10]

Microtubule-binding protein tau (MAPT) Missense, gene dosage Autosomal dominant [11]

ALS Fused in sarcoma (FUS) Missense Autosomal dominant [12]

Cu/Zn superoxide dismutase (SOD1) Missense Autosomal dominant [13]

Transactive response DNA-binding protein (TARDBP) Missense Autosomal dominant [14]

FTD and ALS Chromosome 9 open reading frame 72 (C9orf72) G4C2 repeat expansions Autosomal dominant [15]

TANK-binding kinase 1 gene (TBK1) PTC Autosomal dominant [16–18]

Valosin-containing protein gene (VCP) Missense Autosomal dominant [19]

*Abbrevations: indel, insertion/deletion; PTC, premature termination codon
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accurate data analysis and rare variant identification [47,
48]. These tests, analyzing the contribution of multiple
variants across candidate gene(s), have increased the
power to detect disease association signals [48], often
disclosing the clustering of genes in specific pathways.
Examples of recently discovered pathways by applica-

tion of NGS include microglia alterations in AD, mito-
chondrial dysfunction in PD, RNA stress response in
ALS, and lysosomal disruption in FTD [20, 40, 42, 49].
In AD, besides amyloid processing [50], it is demon-

strated that the microglia-mediated pathway is a crucial
contributor to the pathogenesis of AD [20]. Rare variants
in the triggering receptor expressed on myeloid cells
2 (TREM2) were discovered by WGS, showing an in-
creased risk for developing AD [51]. TREM2 encodes a
receptor expressed in myeloid cells that mediates inflam-
matory responses. The relevance of TREM2 in brain
functioning is highlighted by recessive mutations in
TREM2 causing Nasu Hakola disease, and FTD in some
patients [51]. Rare heterozygous TREM2 mutations that
increase the risk for developing disease have been de-
scribed in AD, FTD, ALS, and PD [51], though their role
in disease pathogenesis needs further follow-up. The im-
plication of microglial-mediated inflammation in NBD is
confirmed by the identification of rare variants in
phospholipase C gamma 2 (PLCG2) in AD and ABI fam-
ily member 3 (ABI3) [52].
A wide range of evidence indicates mitochondrial

dysfunction and mitophagy as important players in
PD pathology [53]. A WES study in autosomal-
recessive early-onset PD patients identified rare
homozygous or compound heterozygous PTC muta-
tions in the vacuolar protein sorting-associated pro-
tein 13C gene (VPS13C) [54]. VPS13C belongs to a
family of vacuolar sorting proteins that are crucial for
vesicular transport. VPS13C depletion in neuronal
cells leads to the upregulation of the PTEN-induced
kinase 1 (PINK1)/parkin (PARK2) gene-dependent
mitophagy, where PINK1 normally accumulates on
the mitochondria and recruits parkin to initiate mito-
phagy in response to mitochondrial dysfunction.
Moreover, VPS13C loss is associated with lower

mitochondrial membrane potential, mitochondrial
fragmentation, and increased respiration rates [54].
In ALS, several disease-related genes encode for RNA-

binding proteins that interfere with the formation of
stress granules [40]. One gene, coding for cytotoxic
granule-associated RNA-binding protein (TIA1), was
identified by WES in a family with both FTD and ALS
patients [55]. Mutations in TIA1 were previously linked
to autosomal dominant Welander distal myopathy [56],
a muscular dystrophy disease characterized by TAR
DNA-binding protein 43 (TDP-43) brain pathology as
present in FTD and ALS. TIA1 RNA-binding protein
forms stress granules in the cytoplasm upon cellular
stress [40]. Rare TIA1 mutations, linked to FTD and
ALS, alter the biophysical properties of TIA1 promoting
nucleation of the stress granules and hindering disas-
sembly as the stress stimulus passes [40]. Specific to
FTD is that the lysosomal pathway is involved in the
pathogenic events leading to disease [18]. This pathway
has a role in the degradation of long-lived proteins. Defi-
cits in this pathway result in protein aggregation and
generating toxic protein species and accumulation of
dysfunctional organelles [57].
Rare PTC mutations were identified by WES in the

TANK-binding kinase 1 gene (TBK1) leading to the
loss-of-function (LOF) of TBK1 and causing FTD or
ALS [58]. TBK1 codes for a serine/threonine kinase,
phosphorylating a wide range of substrates involved in
several cellular processes, including autophagy. Sub-
strates of TBK1 are optineurin (OPTN) and p62/seques-
tosome 1 (SQSTM1), which are autophagy adapters
controlling protein degradation by selective autophagy.
In both genes (OPTN and SQSTM1), rare mutations
were found associated with FTD or ALS. The valosin-
containing protein gene (VCP) is another gene contrib-
uting to FTD and ALS genetic etiology and is also in-
volved in autophagy, emphasizing the major role of
autophagic defects in neurodegeneration [58].
Progresses in NGS technologies drastically improved

our knowledge of the multiple pathways involved in
NBD, including microglia, mitochondrial dysfunction,
RNA stress response, and lysosomal disruption. These

Table 3 NBD risk genes identified in GWAS

NBD Risk genes References

AD ABCA7, ACE, ADAM10, ADAMTS1, APOE, BIN1, BCKDK, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, HLA-
DRB5, INPP5D, IQCK, KAT8CR1, MEF2C, MS4A6A, NME8, PICALM, PTK2B, SLC24A4, SORL1, WWOX, ZCWPW1

[24–30]

PD ACMSD, ASXL3, BCKDK, BRIP1, BST1, C5orf24, CAB39L, CCDC62, CD19, CHRNB1, CLCN3, CRLS1, DDRGK1, DGKQ, DNAH17, DYRK1A,
FAM171A2, FAM47E, FAM49B, FBRSL1, FCGR2A, FGF20, FYN, GAK, GBA, GBF1, GPNMB, HIP1, HLA-DQB1, HLA-DRA, HLA-DRB5, INPP5F,
KCNIP3, KCNS3, KPNA1, LAMP, LCORL, LINC00693, MAPT, MBNL2, MCCC1/3, MED12L, MEX3C, MIPOL1, NOD2, NUCKS, PAM, RAB29,
RAB7L1, RAI1, RIMS1, RIT2, RNF141, RPS12, RPS6KL1, SCAF11, SCARB2, SIPA1L2, SNCA, SPTSSB, SREBF1, STBD1, STK39,STX1B, SYT11,
TMEM163, TMEM175, TRIM40, UBAP2, UBTF, VAMP4, VPS13C

[22, 31–33]

FTD BTNL2, C4orf27, CTSC, DPP6, HLA-DRA, HLA-DRB5, HLA-DQA2, IMMP2L, IRF2, MIR548AP, OLFM1, RAB38, RERG, TMEM106B, UNC13A [21, 34]

ALS C21orf2, DPP6, FGGY, ITPR2, KIF5A, MOBP, SARM, SCFD1, UNC13A [23, 35, 36]
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NGS-driven gene discoveries have also intensified the
identification of various rare variants which have an un-
clear contribution to disease. Statistical association of
novel genes with NBD is insufficient to establish patho-
genicity. Causal genes and genes functionally associated
with a specific NBD subtype are not obligatory showing
a significant statistical enrichment in patients [16], as ex-
posed by the ATPase phospholipid transporting 10B
gene (ATP10B) [49] and the CYLD Lysine 63 deubiquiti-
nase gene (CYLD) [59]. The application of WES or WGS
and tailored statistics analyses [47] are fruitful to en-
hance our understanding of the NBD pathogenesis,
when the majority of NBD patients remain genetically
unexplained [21].

Genetic, clinical, and pathological heterogeneity
in NBD
NBD are complex diseases with a high degree of hetero-
geneity at the level of genetics, clinical phenotypes, and
brain pathology. Besides the distinguishing clinical
symptoms, brain pathologies, causal genes, and path-
ways, NBD present with substantial clinical, genetic, and
pathological overlap [60, 61] which may lead to misdiag-
noses of the NBD subtypes and erroneous medical treat-
ment or result in grouping of patients for clinical trials
that have different underlying pathologies.
Overlapping symptoms of clinical phenotypes, for ex-

ample, AD and FTD, can affect the diagnosis of the pa-
tient at the initiate stage of disease [60].
Loss of short- and long-term memory and cognitive

deficits are the classical characteristics of AD, but some
AD patients also present with pronounced behavioral
changes reminiscent of FTD [62], highlighting the het-
erogeneity in a single phenotype [63]. Parkinsonism can
be present in both AD and FTD patients [26, 27]. The
pathological hallmarks in the autopsy brains of AD pa-
tients are aggregated amyloid-beta (Aβ) plaques and
hyperphosphorylated tau tangles. Yet, among elderly
people with definite AD pathology, up to 90% displayed
TDP-43 proteinopathy [64], typical of FTD or ALS. Sev-
eral genetic studies documented the overlap between
NBD subtypes, and examples can be found in the well-
known disease genes. In the microtubule (MT)-binding
protein tau gene (MAPT), the missense mutation
p.R406W segregates in families of patients with a clinical
AD diagnosis and a brain neuropathological of tauopa-
thy [65], while the MAPT p.A152T mutation is a risk
modifier in other NBD subtypes including AD and de-
mentia with Lewy bodies (DLB) [66]. Mutations in
PARK2 in familial early-onset PD patients are also ob-
served in sporadic early-onset AD patients [67]. In a Bel-
gian founder pedigree, patients carry a LOF mutation in
the progranulin gene (PGRN), GRN IVS1+5G>C and
present at autopsy with TDP-43 type A pathology [68].

Yet, in this extended family, some patient carriers re-
ceived a clinical diagnosis of PD or AD [68]. In light of
heterogeneity in clinical diagnoses, a profound investiga-
tion of the presence of rare variants in known causal
genes and newly identified genes is of paramount im-
portance to improve differential diagnosis [69].

Relevance of understanding the role of rare
variants
In diagnostic genetic testing, WGS, WES, and gene
panels are common tools for the identification of muta-
tions in known NBD genes. Identification of rare vari-
ants is moving at a faster pace than functional biological
interpretation. The data generated by these NGS tech-
nologies comprise large numbers of VUS in established
disease genes which can create uncertainties as to
whether rare variants contribute to disease. For example,
in the known AD genes, 68 coding rare variants were re-
ported in the amyloid precursor protein gene (APP), 321
in the presenilin 1 gene (PSEN1), and 63 in the preseni-
lin 2 gene (PSEN2). Yet, a significant fraction of these
rare variants has not been functionally investigated:
32.35% in APP, 12.77% in PSEN1, and 55.55% in PSEN2;
percentages were calculated from the data in the Alz-
forum Database, https://www.alzforum.org/mutations, a
repository of published mutations in APP, PSEN1,
PSEN2, MAPT, and TREM2. Knowing the contribution
of rare variants to disease etiology is highly valuable for
patients and their relatives, even if there are no disease-
modifying treatments for NBD [70]. In the case of a fam-
ily with a pathogenic mutation, information can be pro-
vided to relatives about genetic testing. In clinical
research, mutation carriers can be included in clinical
trials, as in the study “Dominantly Inherited Alzheimer
Network Trials Unit (DIAN-TU)” in AD [71]. For clin-
ical trials, the knowledge of the role of rare variants in
NBD will become a critical aspect to compose homoge-
neous patient groups for clinical trials, based on a
complete genetic profile [72]. In previous studies, pa-
tients shared the same clinical diagnosis but often dif-
fered in NBD subtype biasing the trial outcomes [73].
Difficulties in clinical differential diagnosis hampered
the grouping of patients for research studies [74]. Strati-
fication of patients can be improved by in-depth know-
ledge of the clinical, pathological, and genetics that are
contributing to the NBD of the patient. Variant inter-
pretation is critical for new therapeutic developments.
Large families with a high variability in onset age,
asymptomatic carriers of pathogenic mutations, and
healthy control individuals with control-specific rare var-
iants can be extremely valuable for uncovering possible
modifying cellular mechanisms of neurodegeneration.
Induced pluripotent stem cells (iPSCs) can be gener-

ated from symptomatic and asymptomatic carriers of a
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specific variant and differentiated into specific cell types
(e.g., neurons) to investigate the effect of the mutations
[75]. Alternatively, genome editing technologies (e.g.,
CRISPR/Cas) can be applied to introduce specific muta-
tions in iPSCs or to generate isogenic control lines [76].
Experiments on iPSCs expressing different pathogenic
mutations in the PD gene, leucine-rich repeat kinase 2
(LRRK2), e.g., p.G2019S, showed disrupted mechanisms
including aggregation of α-synuclein, mitochondrial
transport, and lysosomal autophagy [77]. These iPSCs
are also beneficial to measure the resulting cellular phe-
notypes to allow the identification of new therapeutics
[78]. For instance, a library including 1258 pharmaceut-
ical compounds was applied to iPSC-derived AD neu-
rons, measuring the secretion of Aβ species (e.g., toxic
Aβ42), as an output. In this way, it was possible to iden-
tify potential therapeutic compounds able to reduce
Aβ42 levels [78].
Three-dimensional (3D) brain organoids derived from

human PSCs (hPSCs) and iPSCs can recapitulate the
brain’s 3D cytoarchitectural arrangements and provide
new opportunities to explore disease pathogenesis [79]. In
a recent study, the classical AD phenotypes were recapitu-
lated in familial AD patient-derived 3D brain organoids
obtained from familial early-onset AD patients carrying an
APP duplication [80]. The application of these methodolo-
gies can be extended to VUS to verify their possible impli-
cation in pathogenic mechanisms underlying an NBD
phenotype. In addition, supplementary omics tools are

being developed and will provide new opportunities to en-
hance our understanding of disease mechanisms and in-
vestigate how rare variants contribute to NBD
pathogenesis.

Possible modes of action of rare variants in
known genes: the penetrance spectrum
We speculate that rare variants can use different modes
of action to contribute to NBD and report some key ex-
amples of rare variants in known causal and risk genes
that recapitulate these modes of action. In-depth NGS
re-sequencing of known causal and GWAS risk genes in
large study populations led to the detection of huge
numbers of rare variants. There is increasing evidence
that rare variants of high to intermediate penetrance,
and common risk variants with minor effect, are contrib-
uting to NBD genetic complexity via different modes of
action (Fig. 1).
Haploinsufficiency caused by LOF due to a PTC muta-

tion resulting from a frameshift, nonsense, or splice site
mutation is the pathogenic mechanism associated with
GRN in FTD and with TBK1 in ALS, FTD, and ALS plus
FTD. In addition to PTC mutations, genetic studies re-
ported rare missense variants in both GRN and TBK1,
but their contribution to disease is not yet clear due to
limited functional data. In cerebrospinal fluid (CSF) and
plasma or serum of GRN PTC carriers, GRN levels are
reduced to 50%, in line with haploinsufficiency of patho-
genic GRN PTC mutations [81]. Additionally, few GRN

Fig. 1 The figure illustrates the penetrance continuum of disease mutations at the extremes, high penetrance (left) and low penetrance (right).
The missense mutations in autosomal dominant disease genes (e.g., PSEN1) are highly pathogenic (extreme left) while the role of rare PTC
variants needs to be addressed (extreme right). In dosage-sensitive genes (e.g., GRN), PTC mutations are highly pathogenic (extreme left), but rare
missense mutations have variable effects on protein function (right). Oligogenic inheritance might explain the reduced penetrance of some
pathogenic mutations, in both dominant and dosage-sensitive genes, since one single variant is not penetrant enough to cause the disease on
itself. Combinations of multiple rare variants in disease genes increase the effect on gene expression and disease penetrance (extreme left). In risk
genes (e.g., ABCA7), common rare single-nucleotide polymorphisms (SNPs) result in a modest increase of disease risk (extreme right), while rare
variants can be highly pathogenic and resemble autosomal dominant inheritance in families (left)
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missense variants also reduced GRN to intermediate
levels in GRN PTC carriers and control individuals [81].
The observation of GRN missense variants highlights
their possible involvement in disease pathogenesis. Fur-
ther, in vitro studies showed that the GRN p.P248L and
p.R432C variants affect GRN secretion and degradation
[82, 83]. A direct link between disease and biological
mechanisms triggered by missense variants is yet to be
demonstrated. Deciphering the role of GRN in FTD
pathogenesis can reveal additional insight into the po-
tential pathogenicity of GRN missense mutations. Simi-
larly, rare missense mutations in TBK1 are identified in
both FTD, FTD plus ALS, and ALS patients and healthy
controls [84, 85]. In vitro studies demonstrated that spe-
cific TBK1 missense mutations affect TBK1 homodimer-
ization, which is essential for TBK1 activation and
function, for its kinase activity and its interaction with
OPTN [85, 86]. GRN and TBK1 missense mutations
were also observed in early-onset [87] and late-onset AD
[88] patients, but they were not functionally investigated
in vitro or in vivo in relation to AD. These missense var-
iants are important to investigate because they may im-
pair the normal protein function to some extent. Some
missense mutations are present only in healthy controls
[89] and are a powerful tool to investigate protective
biological processes that might slow disease progression
and in developing new therapeutic strategies.
Rare PTC variants are also present in other NBD

genes, but the majority are not characterized or incor-
rectly interpreted [60]. For example, in the AD gene
PSEN2, four potential frameshift mutations were ob-
served in patients [60, 90, 91], while only one is labeled
pathogenic in the Alzforum Database, nonetheless, it
lacks functional investigation [90]. One frameshift muta-
tion, p.G359Lfs89*, showed a nearly 50% reduction of
PSEN2 protein [60]. The same study reported two
PSEN2 frameshift mutations, one in an ALS and one in
a FTD patient, two different clinical NBD phenotypes,
suggesting that the frameshift variants are unlikely
pathogenic. LOF mechanism is proposed for PSEN1 and
PSEN2 mutations in AD, showing that total PSEN1 and
PSEN2 LOF in mouse brain caused progressive cognitive
decline and neurodegeneration [92]. For instance, the
PSEN1 p.L435F and p.C410Y mutations produced al-
most complete loss of γ-secretase-dependent processing
of APP, without Aβ generation [92]. Newer evidence op-
posed the hypothesis of LOF for PSEN1 and PSEN2 mu-
tations [93]. It is shown that familial PSEN1 mutations
affect the endoproteolytic activities of γ-secretase in a
variable way, though no examples of full inactivation
have been reported [93]. Patients carrying a familial
PSEN1 mutation express one normal allele of PSEN1
and two normal alleles of PSEN2 and can compensate
for the loss of normal activity of the mutated allele [93].

PSEN1 and PSEN2 are the catalytic subunits of the γ-
secretase complex, mainly involved in APP cleavage.
Other functions are proposed, for example, PSEN2 se-
lectively cleaves late endosomal/lysosomal localized sub-
strates [94]. The contribution of PTC mutations in
dominant genes warrants further investigation since they
might interfere with secondary functions of the encoded
proteins.

Variable expression: age-related reduced
penetrance and genetic modifiers
To ensure accurate NBD genetic diagnoses, identifica-
tion of pathogenic mutations causing disease is of major
importance, but a few features may complicate their in-
terpretation. Carriers of the same pathogenic mutation
often show a wide range of variation in disease onset age
and in clinical phenotype [68]. Some pathogenic muta-
tions are also present in asymptomatic carriers aged
above the average onset age in the family and in healthy
participants. These observations are challenging our in-
terpretation of rare variants and their role in disease,
pointing at how crucial it is to decipher their patho-
logical effects. For example, the APP p.A713T mutation
is identified in 24 carriers, including asymptomatic car-
riers, of 11 Italian families who present with highly vari-
able onset ages ranging from 52 to 82 years [60, 95].
Variable onset ages are also observed in members of the
same family and unrelated carriers of the same PSEN2
mutation, p.A85V, p.N141I (Volga German mutation),
p.M239V, with a difference of onset age of ≥20 years
[96]. In the Volga German AD families, there is evidence
that the variable onset age might be explained by the in-
fluence of apolipoprotein E (APOE) ε4 alleles, a major
risk factor for AD [97].
In the world’s largest autosomal dominant AD pedi-

gree of about 5000 living members, spanning five to
seven generations and carrying the pathogenic PSEN1
p.E280A mutation, one carrier had no signs of cognitive
impairment until the seventies, three decades after the
expected onset age. This carrier had high levels of amyl-
oid β in the brain and was homozygous for the APOE ε3
Christchurch (p.R136S) mutation [98]. These findings
demonstrate how strong a genetic variant can modify
disease onset also in the presence of highly penetrant
pathogenic mutations, supporting the role of APOE ge-
notypes in AD. Genetic modifiers are proposed to be as-
sociated with onset age variability in the Belgian FTD
founder pedigree, segregating the GRN IVS1+5G>C LOF
mutation [68]. The transmembrane protein 106B gene
(TMEM106B) genotypes are shown to explain part of
onset age variability in carriers of different PTC muta-
tions in GRN leading to LOF [99].
In PD, the p.G2019S missense mutation in LRRK2 is

the most common missense mutation and one of few
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LRRK2 missense mutations considered to be pathogenic
based on co-segregation with disease [100]. The LRRK2
p.G2019S carriers have an onset age range from 59 to
79 years, though some carriers remain asymptomatic till
80 or 90 years [101]. Several studies searched modifiers
for LRRK2 p.G20129S and identified dynamin-3 (DNM3)
as a candidate, however with significant heterogeneity
across studies [102].
The interpretation of pathogenic mutations is unfortu-

nately not always straightforward. Some of the mutations
show variable penetrance. The presence of genetic modi-
fiers is a plausible explanation for the reduced pene-
trance of these mutations. Alternatively, the effects of
these pathogenic mutations may not be sufficient to trig-
ger disease on their own, since they may need additional
rare mutations in the same or other genes [103].
Rare variants can function as genetic modifiers influen-

cing onset age, clinical phenotype, and disease penetrance,
explaining part of the frequently observed variability
among unrelated patients and affected relatives in one
family [68]. It is possible to identify rare variants in disease
genes that are protective, for example, the Icelandic APP
mutation p.A673T [89]. This APP mutation is within the
codon of the pathogenic APP p.A673V mutation. In
Iceland, this protective p.A673T mutation is five times
more frequent in healthy people than in AD patients and
is associated with a minimal deposition of Aβ in the brain.
Rare variants might influence disease onset age in a way
comparable to the allelic effects of the APOE ε4 allele
[104]. Carriers of one or two APOE ε4 alleles have a 3- to
15-fold higher risk of developing late-onset AD [105] and
are higher in early-onset AD patients (age at onset < 65
years) with a positive family history [106]. Studies have
suggested a similar role for the sortilin-related receptor 1
gene (SORL1). Some studies reported that rare SORL1
PTC variants are associated with a fivefold increased risk
for early-onset AD, suggesting a comparable risk effect for
AD as for carriers of one APOE ε4 allele [107]. Identifying
risk alleles and modifiers and understanding the role of
rare VUS can be relevant to develop effective disease-
modifying therapies. Several risk genes have known drug-
gable properties (e.g., sialic acid-binding Ig-like lectin
(CD33) in AD [108]) and a translational potential to be
targeted and to modify the phenotype, not only in patients
but also in individuals at risk. This can help in the selec-
tion of patients for clinical trials. For instance, in AD, poly-
genic risk scores can be calculated to identify individuals
at high risk who may benefit from specific therapies [107].
Observations of rare variants in multiple genes belong-

ing to the same or similar biological pathway(s) have led
to the concept of oligogenic inheritance to explain the
complexity of NBD [103]. For many years, WES and
WGS allowed the simultaneous analysis of multiple
genes and the identification of multiple variants.

In ALS patients, carrying a pathogenic repeat expansion
in the chromosome 9 open reading frame 72 gene
(C9orf72), the concurrence of multiple variants in several
ALS-associated genes is documented [103]. This explains
in part why there are asymptomatic carriers of pathogenic
C9orf72 expansions in ALS families [103] and might sug-
gest that other mutated genes may be needed to fully ex-
press the disease. In the pathogenic C9orf72 expanded
repeat allele, it is not easy to determine the exact number
of repeats which play a role by themselves.
Different studies have shown that in ALS patients and

families, carrying two or more mutations in ALS-
associated genes [103], some patients are developing the
disease 10 years earlier than patients carrying a single
ALS gene mutation [109]. This oligogenic concept is ex-
tendable to FTD. GRN PTC mutation carriers were de-
scribed to carry an additional mutation in TAR DNA-
binding protein (TARDBP) or a pathogenic C9orf72 ex-
pansion [68]. The MAPT p.A152T mutation is unique in
individuals in the Basque country and was found in 71%
of FTD patients carrying the pathogenic GRN c.709-
1G>A mutation [110]. In AD, the presence of more than
one variant in causal genes in the same patient carrier
has been observed. In a Belgian AD cohort, a patient
with a pathological AD diagnosis carried both the known
PSEN1 p.G183V variant and the novel PSEN1 p.P49L
[111]. Another AD patient was reported carrying the
VUS PSEN1 p.P355S and APP p.G625_S628del [111].
However, since the number of identified double muta-
tion carriers in FTD and AD is limited, the role of these
double mutations remains unclear. In PD, there is also
evidence that multiple rare variants in causal genes
could influence disease, as PD patients, with more than
one mutation in PD genes, have an onset age lower than
patients carrying only one pathogenic PD mutation [39].
The most frequently reported double mutations are
LRRK2 p.Gly2019Ser together with homozygous PARK2
mutations [39]. A study investigated oligogenic inherit-
ance by performing WES in 980 neuropathologically
characterized human brains from AD, PD, and FTD-
ALS patients and age-matched controls [112]. The au-
thors identified in FTD-ALS, AD, and PD, oligogenic
cases defined by the presence of more than one variant
in the list of NBD genes selected for the study, with
minor allele frequency below 1% in the Exome Aggrega-
tion Consortium (ExAc) database [112]. The impact of
oligogenic mutations on disease expression is currently
unclear due to the limited number of oligogenic muta-
tion carriers identified so far and the lack of large fam-
ilies to investigate co-segregation with disease.
Deciphering the contribution of rare variants to disease
is therefore essential to understand these disorders.
GWAS revealed a wealth of risk genes in NBD. In

these risk genes, the variants explaining the association
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have often remained elusive. Post-GWAS studies aim to
decipher the functional variants in these risk loci, but
they also reveal a more complex genetic picture. In the
ATP-binding cassette sub-family A member 7gene
(ABCA7), both common and rare variants are reported
to affect AD risk [113]. Rare ABCA7 PTC variants of
intermediate to high penetrance are observed with a
1.5–4-fold increased frequency in AD patients across
populations [113]. Transcripts containing PTC variants
are degraded by nonsense-mediated mRNA decay to
avoid the formation of truncated proteins, resulting in
LOF. A few pedigrees have been reported in which
ABCA7 PTC variants mimicking co-segregating with dis-
ease in an autosomal dominant inheritance [114, 115].
For this reason, it is still debatable to consider these var-
iants as high-penetrant mutations like APP, PSEN1, and
PSEN2 mutations in AD. A few rare variants in GWAS-
associated genes are high-penetrant mutations, com-
pared to the common single nucleotide polymorphisms
(SNPs) detected in the association studies. Functional
characterization of these rare variants is of major im-
portance, because they exert a pathogenic effect on dis-
ease progression. Importantly, patients carrying these
variants need genetic counseling as well as effective
treatments.

The potential of additional omics tools to provide
insights into disease etiology
Advances in other omics tools are contributing to increase
understanding of unknown genetic causes, post-genomic
effects, and molecular pathways of NBD. Among them,
long-read sequencing (e.g., Oxford Nanopore Technology)
enables the detection of structural variants [116], short
tandem repeats (STR) [117], and variable number of tan-
dem repeats (VNTRs) [118]. High-throughput RNA se-
quencing (RNA-seq) transcriptomics (e.g., single-cell and
single-nuclei RNA-seq) can identify expression signatures
potentially associated with disease pathology, providing
important insights into potential subpopulations of cells
directly involved in disease [119]. A study showed that the
brain of carriers of rare pathogenic APP, PSEN1, or PSEN2
mutations presented with lower neuron and higher astro-
cyte relative proportions compared to sporadic AD pa-
tients [120]. Similarly, the APOE ε4 allele also showed
decreased neuronal and increased astrocyte relative pro-
portions compared to AD non-carriers, while carriers of
rare TREM2 risk variants showed a lower degree of neur-
onal loss [120]. Proteomics approaches (e.g., spatial prote-
omics) also contributed to the unraveling of NBD
pathogenesis, enabling localizations of proteins and their
dynamics at the subcellular level [121]. Epigenetic changes
also implicated in NBD pathogenesis have shown an in-
creased methylation state in the promoter region of
C9orf72 repeat expansion carriers [122]. Evidence suggests

that metabolomic perturbations in different pathways may
mediate the occurrence of NBD, as demonstrated by one
of the largest metabolomics studies conducted by re-
searchers from the Alzheimer’s Disease Metabolomics
Consortium [123]. These achievements demonstrate the
potential of these alternative omics technologies to reveal
complex events in relation to NBD.

Conclusions and future directions
NBD are devastating disorders with yet no current ef-
fective treatments. Advances in omics technologies facil-
itated an increased knowledge of the biological
mechanisms underlying CNS neurodegeneration, based
on the identification of novel genes and specific path-
ways contributing to NBD pathophysiology. These ad-
vances also increased the detection of rare VUS, of
which functional analysis did not keep pace with the de-
velopment of these methodologies. Understanding the
post-genomic consequences of rare variants has direct
implications in clinical practice. WGS is predicted to
convert to the standard diagnostic tool in medical gen-
etic testing within 5 years [124]. Considering the com-
plexity of NBD, a profound understanding of the role of
rare variants will be essential for the design of clinical
trials, identifying people at high risk, personalized pre-
vention, and treatment. Recent work demonstrated the
potential of patient-derived iPSCs, in combination with
genome editing technology and 3D brain organoids, in
recapitulating the NBD phenotypes, which are present-
ing powerful tools for rare variant interpretation. The
data generated from WES and WGS, in combination
with the information provided by transcriptomics, prote-
omics, epigenomics, and metabolomics, will expand our
understanding of the post-genomic effects of rare gen-
etic variants and the disrupted pathways in NBD. Rare
genetic variants in disease genes have received increased
attention and their functional interpretation will provide
a better understanding of disease pathogenesis, improve-
ment of genetic diagnostic testing, clinical diagnosis, and
development of therapeutics for personalized medicine
in the future.
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