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ABSTRACT: Serologic biomarkers for inflammatory bowel
disease (IBD) have yielded variable differentiating ability.
Quantitative analysis of a large number of metabolites is a
promising method to detect IBD biomarkers. Human subjects
with active Crohn’s disease (CD) and active ulcerative colitis
(UC) were identified, and serum, plasma, and urine specimens
were obtained. We characterized 44 serum, 37 plasma, and 71
urine metabolites by use of 1H NMR spectroscopy and “targeted
analysis” to differentiate between diseased and non-diseased
individuals, as well as between the CD and UC cohorts. We used
multiblock principal component analysis and hierarchical OPLS-
DA for comparing several blocks derived from the same “objects”
(e.g., subject) to examine differences in metabolites. In serum and
plasma of IBD patients, methanol, mannose, formate, 3-methyl-2-oxovalerate, and amino acids such as isoleucine were the
metabolites most prominently increased, whereas in urine, maximal increases were observed for mannitol, allantoin, xylose, and
carnitine. Both serum and plasma of UC and CD patients showed significant decreases in urea and citrate, whereas in urine,
decreases were observed, among others, for betaine and hippurate. Quantitative metabolomic profiling of serum, plasma, and
urine discriminates between healthy and IBD subjects. However, our results show that the metabolic differences between the CD
and UC cohorts are less pronounced.
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■ INTRODUCTION
Crohn’s disease (CD) and ulcerative colitis (UC), the two
major subtypes of chronic inflammatory bowel disease (IBD),
cause significant morbidity in affected individuals. The
prevalence ranges from 37 to 249 cases per 100,000 people
for UC and from 26 to 319 cases per 100,000 people for CD in
the North American population, with similar incidences in
other developed countries.1,2 While the pathophysiology of
IBD is not fully understood, it has been widely accepted that
multiple components, including genetic, environmental, and
microbiological factors, contribute to the occurrence and
perpetuation of the disease.3,4

Current therapeutic options consist of anti-inflammatory
medications as well as corticosteroids and immunosuppressive
and novel biological agents. However, some individuals fail to
respond to these therapies, and these agents are associated with
significant side effects. In addition, CD and UC, while sharing
several similar pathologic and clinical features, do have distinct

differences in prognosis and management. Therefore, to
minimize side effects in IBD therapy, appropriate therapeutic
decision-making through accurate diagnosis and regular
surveillance is crucial. Currently, diagnosis relies upon clinical,
endoscopic, histologic, and radiologic techniques that can be
time-consuming and costly. Endoscopy is a technique with
risks,5 including a 1 in 1000 risk of bowel perforation.6

Furthermore, differentiating between the two subtypes of
disease endoscopically and even histologically may be
challenging in certain situations. Less invasive methods for
diagnosis, such as determination of biomarkers from urine,
serum, or feces, however, would be of significant advantage and
useful for primary diagnosis, surveillance, and early detection of
relapses. Additionally, non-invasive biomarkers could be used
by gastroenterologists to triage referral for patients with
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symptoms such as abdominal pain and diarrhea. Several
investigators have addressed this issue by performing non-
targeted analysis of metabolites in animal models of colitis
using mass spectroscopy7−9 as well as 1H NMR spectroscopy.10

The latter method has also been applied to IBD patients to
characterize metabolites in urine,11 fecal extracts,12 and biopsy
samples.13 A recent study employing ion cyclotron resonance-
Fourier transform mass spectrometry to discriminate between
1000 metabolites revealed differences in fecal samples collected
from identical twin pairs, including healthy individuals and CD
patients.14 Another study clearly distinguished between IBD
patients and healthy individuals by use of multivariate indexes
established from plasma aminograms.15 Analysis of metabolites
is therefore rapidly emerging as a powerful method for
characterizing IBD in experimental animal models and humans.
Though various markers or marker panels have been tested

in clinical trials, there is no ideal marker that is able to diagnose
or predict IBD.16 Most useful markers in clinical practice
include acute phase proteins such as C-reactive protein, the
fecal markers calprotectin and lactoferrin, and serologic markers
such as the DNase-sensitive antineutrophil cytoplasmic anti-
body p-ANCA that is present in sera of 60% of UC and 20% of
CD patients.17 However, a recent study concluded that the
predictive values of the latest serological panel for pediatric IBD
screening (Prometheus Inflammatory Bowel Disease Serology 7
[IBD7] panel) were less useful than the routine laboratory
tests,18 suggesting the use of genomic or metabolomic
biomarkers for diagnosis and prediction of IBD.
“Quantitative” analysis of metabolites may significantly

improve the discovery of disease-related biomarkers. This
approach involves analyzing a large group of compounds whose
characteristics (e.g., NMR spectra) are known and stored in a
database library. The complex mixture of individual metabolite
spectra in the biofluid can be analyzed by overlaying spectra
taken from a database to identify and quantify the targeted
metabolites. This approach quantifies a large number of
metabolites in a single specimen in a high-throughput manner
and is highly suitable for studies of polar metabolites.19

Metabolite analysis of serum and plasma in IBD subjects has
not been reported before, and so far only one study has
investigated metabolite profiles in urine of patients with active
UC20 but not in active CD. Another previous urinary
metabolomic study did not restrict enrolment to individuals
with active disease.11 In the current study, we therefore aimed
to investigate the correlation of intestinal inflammation with the
presence or absence of specific metabolites that could
potentially be used as biomarkers in serum, plasma, and urine
of IBD patients. To determine the metabolites, we used 1H
NMR spectroscopy and performed quantitative analysis of
metabolites of the three biofluids from human subjects
identified clinically, endoscopically, and histologically to have
active CD or UC. We were specifically interested to examine all
three biofluids to determine whether all of them could separate
IBD from healthy subjects because it is known that urinary
metabolomic profiles are more affected by environmental
factors21,22 than blood metabolites and because differences in
metabolite profiles between plasma and serum have been
reported.23,24

■ MATERIALS AND METHODS
Experimental Design

Subjects. The study was approved by the Conjoint Health
Research Ethics Board of the University of Calgary (Protocol
no. 18142), and all participants were provided written,
informed consent. Serum, plasma, and urine samples were
collected from adult individuals with confirmed CD (n = 20)
and UC (n = 20) and from healthy control (n = 40) subjects.
All three biofluids were taken from each individual, i.e., serum
and plasma were from the same subject. For collection of
serum, SST vacutainer tubes and for plasma, K2 EDTA
vacutainer tubes from BD Biosciences (Franklin Lakes, NJ,
USA) were used, processed according to the manufacturer’s
instructions and frozen at −80 °C. Urine was collected in sterile
urine containers, pipetted into transport tubes, and also frozen
at −80 °C. Patients included in the study were recruited from
the Foothills Medical Centre, the major tertiary care specialist
center in Calgary, Alberta, (population 1.2 million) and had
been diagnosed by experienced gastroenterologists according to
rigorous criteria on the basis of endoscopic, histologic, and
radiological findings. In addition, details of disease activity
scores, based on the Harvey-Bradshaw Index for CD25 and the
Simple Clinical Colitis Activity Index for UC,26 were calculated
for later subgroup analysis. Patients in whom there was
diagnostic uncertainty (e.g., those with IBD type unclassified)
were excluded from the study. To avoid influence of aging and
gender on metabolomic profiles, subjects in the healthy control
cohort were matched each to corresponding subjects in disease
cohorts by gender and age (age matched within 5 years).

Addressing Potential Confounding Factors of Pa-
tients and Metabolites. Several recent studies have
elucidated the degree of variation in NMR spectroscopic
profiles from urine samples of healthy subjects.21,22,27 Analysis
of serum metabolites, however, demonstrated minimal
variability between subjects and study days. Because different
diets have been shown to influence urinary metabolic profiles,26

we collected fasting samples. To replicate normal circum-
stances, no dietary exclusions were imposed. Details of
chemical contraceptive usage and reproductive status were
obtained in females, to ensure that the groups were similar.
Metabolites related to medication (e.g., acetaminophen,
acetamide) were eliminated from the statistical evaluation.
Subjects with significant comorbidities and individuals with an
intercurrent illness, who were pregnant, or who were taking
antibiotics, biologics, prebiotics, or probiotics were excluded
from the study.
1H NMR Spectroscopy of Serum, Plasma, and Urine
Samples

Metabolite Sample Preparation. Serum, plasma, and
urine samples were thawed on ice. Of each sample, 400 μL was
applied to 3-kDa Nanosep microcentrifuge filters for filtration
to remove proteins and insoluble impurities. D2O (100 μL) was
added during filtration of serum and plasma for filter washing.
The final volume of filtrate ranged from 100 to 400 μL.
Samples were brought to 650 μL by addition of D2O, 130 μL of
sodium phosphate buffer (final concentration 0.1 M)
containing dimethyl-silapentane-sulfonate (final concentration
0.5 mM) for NMR chemical shift reference and concentration
calibration, and 10 μL of 1 M sodium azide to prevent growth
of bacteria. The final sample pH was adjusted to 7 ± 0.01.
Samples from the CD, UC, and healthy control cohorts were
analyzed in a blinded, randomized manner.
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NMR Spectra Acquisition. NMR spectra were acquired
using an automated NMR Case sample changer on a Bruker
Avance 600 spectrometer (Bruker Biospin) operating at 600.22
MHz and equipped with a 5-mm TXI probe at 298 K. Regular
one-dimensional proton NMR spectra were obtained using a
standard pulse sequence (Bruker pulse program prnoesy1d)
that has good water suppression characteristics and is
commonly used for metabolite profiling of serum or plasma
samples.19,28 It utilizes the following pulse sequence RD-90°-t1-
90°-tm-90°-acquire FID; where RD is a relaxation delay of 1 s,
during which the water resonance is selectively irradiated; t1 is
set to 4 μs, and tm has a value of 100 ms, during which the
water resonance was again selectively irradiated. Initial samples
for each batch were shimmed to ensure half-height line width of
<1.1 Hz for the dimethyl-silapentane-sulfonate peak, calibrated
to 0.0 ppm. Spectra were acquired with 1024 scans, then zero
filled and Fourier transformed to 128 k data points. For proper
quantitative fitting of the NMR spectra, it is important that the
spectra are collected under the same conditions as the
metabolite standard spectra in the Chenomx database. Addi-
tional 2-dimensional NMR experiments were performed for the
purpose of confirming chemical shift assignments, including
homonuclear total correlation spectroscopy (2D 1H−1H
TOCSY) and heteronuclear single quantum coherence spec-
troscopy (2D 1H−13C HSQC), using standard Bruker pulse
programs.
Spectra Fitting. Processed spectra were imported into

Chenomx NMR Suite 6.1 software (Chenomx Inc., Edmonton,
Canada) for quantification using the “targeted profiling”
approach,19 where individual NMR resonances of interest are
mathematically modeled from pure standard metabolite
compound spectra stored in an internal database, and this

database is then interrogated to identify and quantify
metabolites in complex spectra of mixtures, such as biofluids.
Overall 71 compounds in urine, 44 compounds in serum, and
37 compounds in plasma spectra were detectable with sufficient
signal-to-noise (Supplementary Table 2S). Spectra were
randomly ordered for profiling. Compounds were profiled in
order of decreasing typical concentration. Each compound
concentration was then normalized to a total concentration of
all metabolites in the sample (excluding glucose and lactate for
serum and plasma samples and urea, creatinine, and citrate for
urine samples because of excessively large volumes that
otherwise would have dominated the normalization).

Data Analysis

To reveal patterns in metabolite concentration shifts, multi-
variate analysis was conducted using SIMCA-P+ 12.0 software
(Umetrics, Sweden). Orthogonal projections to latent
structures discriminant analysis (OPLS-DA), a supervised
pattern recognition approach, were used as a predictive
model to identify differences in metabolite composition in
samples of UC and CD patients and healthy controls.29 The
objective of OPLS-DA is to divide the systematic variation in
the X-block (an input data set of metabolite concentrations)
into two model parts: one part that models the covariation
between the measured data of X variable (metabolite
concentrations) and the response of Y variable (in our case
binary variables of disease status) within the groups, and a
second part which captures systematic variation in X that is
unrelated (orthogonal) to Y. Model components that are
related to Y are called predictive, while those that are unrelated
to Y are called orthogonal. For each OPLS-DA model, 7-fold
cross validation (CV) was used to validate the statistical
significance of each model dimension. To calculate the area

Table 1. Information on Patients and Healthy Persons That Participated in the Study

ulcerative colitisa Crohn’s diseasea healthy controls

number (male/female) 20 (13/7) 20 (18/2) 40 (31/9)
mean age (range) in years 46.2 (21−85) 39.6 (20−57) 53.7
mean weight (range) in kg 81.8 (54−140) 73.9 (50−110) 79.3 (49−100)
height (range) in cm 171 (147−188) 175 (160−191) 174.5 (152−198)
current smoker 1 7
mean activity score - physician (range) 9.7 (6−13) 9.9 (6−19)
mean disease activity index -patient (range) 11.0 (4−22) 8.1 (1−17)
mean disease duration (range) in years 5.5 (0.5−19) 10.6 (0.3−30)
mean age at diagnosis (range) in years 39.6 (16−83) 27.5 (2−56)
earlier bowel resection 1 9
family history of IBD 4 5
disease location A1:1 B1:5

A2:10 B2:6
A3:9 B3:9

disease complications C1:0 C1:7
C2:0 C2:3
C3:0 C3:4
C4:0 C4:3
C5:0 C5:4

extraintestinal manifestations of IBD 4 6
medications within prior 4 weeks M1:15 M1:3

M2:15 M2:14
M3:10 M3:6
M4:5 M4:7

prior use of immunosuppresives 6 10
aA1, proctitis; A2, disease limit to distal splenic flexure; A3, disease proximal to splenic flexure; B1, ileal disease; B2, colonic disease; B3, ileocolonic
disease; C1, stricturing; C2, penetrating; C3, fistula; C4, stenoses; C5, abscess; M1, 5-ASA; M2, Oral Steroids; M3, IV Steroids; M4, 6-MP/AZA.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr300139q | J. Proteome Res. 2012, 11, 3344−33573346



under the ROC curve (AUROC), specificity and sensitivity
were determined on the basis of sample class prediction during
the 7-fold cross validation (Y-predcv, predictive Y variables;
SIMCA-P+ software). Calculation of AUROC was performed
using the GNU R ROCR package.30

Model Generation

We used multiblock principal component analysis (PCA) and
hierarchical OPLS-DA as methods for comparing several blocks
(i.e., several PCA models from multiple biofluids) derived from
the same “objects” (e.g., subject). This method is ideally used
for analyzing variable-rich data sets.31 The idea of hierarchical
modeling is to group the variables for the purpose of improved
clarity and interpretability to reveal how the different blocks
(concentration data from different biofluids) are related, which
blocks provide overlapping or unique information, and which
biofluid measurements are most useful from a predictive
viewpoint. This blocking leads to two model levels: the upper

level where the relationships between blocks are modeled and
the lower level showing the details of each block. Metabolite
concentrations data were divided into three blocks according to
the type of sample biofluids (i.e., serum, plasma, and urine)
obtained from the same subject. A PCA model was constructed
in the lower level for the metabolite concentration data of each
type of biofluid. All meaningful scores (tb) from each PCA
model were combined into a super block, T. In the higher level,
a hierarchical OPLS-DA was performed on T with tb denoted as
variables and samples denoted as observations. The resulting
super scores (tT) plot shows the relationship between
observations, and the super loadings plot (pT) indicates
which scores (tb) are most influential on the hierarchical
OPLS-DA model, and hence facilitates visualization of
differences and/or similarities in the metabolic responses of
multiple biofluids.

Figure 1. Typical 600 MHz 1H NMR spectra of serum from patients with ulcerative colitis (UC) and Crohn’s disease (CD) and from a healthy
control subject. Aromatic region (5.0−9.5 ppm) magnified ×4 compared with the aliphatic region (0.7−4.3 p.p.m). Metabolites: (1) 2-hydroxy-
butyrate, (2) arginine, (3) citrate, (4) glucose, (5) isoleucine, (6) lysine, (7) mannose, (8) methanol, (9) creatinine, (10) tyrosine, (11) urea.
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■ RESULTS

Subject Groups

Participant demographics and disease characteristics in the IBD
cohorts are summarized in Table 1. Patients reported that they
were taking medications including 5-aminosalicylate (5-ASA)
drugs (3 CD and 15 UC), azathiopurine (7 CD and 5 UC), and
corticosteroids (15 CD and 16 UC). As subjects from these
cohorts were studied during an exacerbation of their disease, as
defined by a Harvey-Bradshaw or simplified clinical colitis
activity index ≥5, all participants were on some form of
medication.
1H NMR Spectroscopy of Serum, Plasma, and Urine
Samples

Inspection of the serologic and urinary NMR spectra revealed
the wide variety of metabolite resonances present in the spectra.
Representative 1H NMR spectra of serum samples from UC
and CD patients and healthy control subjects are shown in
Figure 1. A number of metabolites, including a range of amino
acids, saccharides (glucose, maltose, galactose), energy
metabolism related molecules (pyruvate, succinate, citrate,
lactate, creatine, creatinine), and others (cholines, amines and
amides) were identified based on comparison with the
Chenomx metabolite database, as well as 2D 1H−13C HSQC
and 1H−1H TOCSY NMR experiments (see a complete list of
metabolites in the Supporting Information, Table 2S).

Metabolic Profile Related to IBD

Changes in metabolites of each biofluid from UC and CD
patients (with active disease) and from corresponding healthy
control subjects were established using an OPLS-DA strategy,
comparing 1H NMR profiled metabolite concentrations
between IBD patients and healthy subjects, as well as each
disease cohort between each other. Three OPLS-DA models
were built for each sample biofluid comparing metabolites
between UC and matched control cohorts, CD and matched
control cohorts, and between UC and CD cohorts. The quality
of the models were determined by the goodness of fit in the X
(R2X) and Y (R2Y) variables and the predictability based on the
fraction correctly predicted in one-seventh cross-validation
Q2YCV (see Table 2 for the model summary statistics). Clear
separation was achieved between samples obtained from
disease (both UC and CD) and healthy control subjects for
all biofluids examined, as evidenced by the consistently high
Q2Y values for all models (Table 2). Discrimination between
the two IBD groups was not clear enough in urinary spectra;
therefore no model could be built to discriminate metabolic
patterns between CD and UC samples (Table 2). The
metabolites responsible for the separation of the disease groups
(UC and CD) from the control groups (Figures 2, 3, and 5),
and of both disease groups (Figure 4) are summarized by the
OPLS-DA regression coefficients and scores plots in Figures
2−5. Only metabolites with statistically significant differences
(p < 0.05) are shown.
Serum Metabolites in Patients with UC and CD versus

Control Subjects. Serum metabolites were significantly
altered in IBD. In serum of UC patients (Figure 2A), 21
metabolites showed significant changes in concentration versus
control subjects while serum from CD patients (Figure 2C)
revealed significant changes of concentrations in 11 metabo-
lites. In both UC and CD, the metabolite profile showed strong
increases in methanol, mannose, and amino acids, such as

isoleucine. Common to both forms of IBD are decreases in urea
(more prominent in UC than CD), citrate and acetate.

Plasma Metabolites in Patients with UC and CD
versus Control Subjects. Changes in plasma metabolites
differed little from those in serum; this particularly applies for
UC patients (Figure 3A), whereas in CD patients (Figure 3C)
differences to serum can be seen. In plasma of UC patients, 16
metabolites showed significant changes of concentration,
whereas in CD patients, 21 metabolites revealed significantly
altered concentrations. As in serum from UC patients,
significant increases were measured for mannose, formate, 3-
methyl-2-oxovalerate, 2-hydroxybutyrate, creatine, isoleucine,
and lysine, while urea, tau-methylhistidine, valine, tyrosine,
choline and creatinine were decreased in both serum and
plasma as compared to control subjects. Unlike in serum,
changes in metabolite concentrations of plasma samples from
UC patients resembled more the ones from CD patients.
Almost all metabolites that were increased (mannose, 3-methyl-
2-oxovalerate, 2-hydroxybutyrate, creatine, isoleucine, lysine) or
decreased (urea, tyrosine, tau-methylhistidine, valine, creati-
nine, choline, betaine) in samples from UC patients were also
increased and decreased, respectively, in samples from CD
patients as compared to controls. However, there were
differences as to the magnitude in the concentration changes
in some of these metabolites (from serum and plasma) between
samples from CD and UC patients (Figure 4A).

Urine Metabolites in Patients with UC and CD versus
Control Subjects. Urine metabolites showed a largely
different profile from serum and plasma metabolites, especially
in samples of CD patients (Figure 5C). In addition, metabolites
in urine also vastly differed between UC and CD; this applies at
least to those metabolites that had increased. In urine samples
from UC patients (Figure 5A), 23 metabolites showed changes
in concentration, whereas in CD patients (Figure 5C), 26
metabolites had altered concentrations. Only a few metabolites
that were decreased in UC were also decreased in CD patients
(i.e., citrate, succinate, betaine, hippurate, and methanol) as
compared to controls. All other metabolites differed between
UC and CD. Several saccharides, such as lactose, galactose,

Table 2. Summary Statistics of the Models Used to Describe
Changes in Serum, Plasma, and Urine of UC and CD
Patients and Healthy Personsa

data set model Apred Aorth R2X R2Y Q2YCV

serum UC:control 1 1 0.29 0.798 0.53
CD:control 1 4 0.508 0.963 0.84
CD:UC 1 0 0.142 0.39 0.0249

plasma UC:control 1 1 0.312 0.772 0.613
CD:control 1 1 0.381 0.789 0.67
CD:UC 1 0 0.157 0.386 0.115

urine UC:control 1 5 0.466 0.997 0.688
CD:control 1 0 0.143 0.785 0.528
CD:UC 0 0 0 0 0

hierarchical UC:control 1 0 0.221 0.749 0.685
CD:control 1 1 0.366 0.728 0.635
CD:UC 1 0 0.227 0.376 0.23

aApred, number of Y-predictive components; Aorth, number of Y-
orthogonal components; R2X, explained variance of X; R2Y, explained
variance of Y; Q2YCV, predicted variance of Y estimated using cross-
validation. R2X and R2Y show how well the model explains the
variation in X and Y, respectively. Q2Y represents the quality and
predictive power of the model.
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Figure 2. Changes in OPLS-DA coefficients of serum metabolites from patients with (A) ulcerative colitis (UC) and (C) Crohn’s disease (CD) as
compared to control subjects. Positive bars (± SEM) illustrate metabolites significantly increased in UC and CD, whereas negative bars (± SEM)
denote metabolites significantly higher in control subjects. Panels B and D depict the respective OPLS scores plots.
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Figure 3. Changes in OPLS-DA coefficients of plasma metabolites from patients with (A) ulcerative colitis (UC) and (C) Crohn’s disease (CD) as
compared to control subjects. Positive bars (± SEM) illustrate metabolites significantly increased in UC and CD, whereas negative bars (± SEM)
denote metabolites significantly higher in control subjects. Panels B and D depict the respective scores plots demonstrating good separation of
metabolites between IBD patients and control subjects.
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maltose, and xylose, however, which were typically increased in
CD, were not higher in UC patients. On the other hand, as
compared to control subjects, UC patients showed increased
levels of mannitol, allantoin, glycylproline, and tryptophan
levels, which were missing from CD samples.

Model Validation and AUROC

One important aspect of the data-modeling procedures lies in
the predictive ability in terms of specificity and sensitivity in
distinguishing disease (UC and CD) from healthy controls and
from each other. The multivariate OPLS-DA modeling
procedures employed here incorporated a 7-fold cross
validation step. In this case, 7 models were built with exactly
one-seventh of the data excluded from each model and each
sample excluded a single time. The ability of the models to
predict those samples not involved in the modeling provided a
measure of the overall predictive ability of the metabolite
profiling. Using these values (Ypredcv), we were able to generate
a receiver-operating characteristic (ROC) curve and calculated
the area under the ROC curve (AUROC; see Figure 1S in the
Supporting Information for an example). Table 3 shows the

results for the constructed models and demonstrates the ability
of these modeling procedures to distinguish the cohorts.

PCA and Hierarchical OPLS-DA (Figure 6)

In order to assess the nature of the metabolic response during
IBD across several human biofluids, PCA models were
constructed individually for each disease subset in each
biological matrix, and the significant scores from each model
were combined into a single new matrix to include all biofluids
(the number of components and percentages of total variance
in the data matrix explained by the PCA models are
summarized in Table 1S in the Supporting Information). The
scores (tb) values for each model were combined into a “super
block” (T), and then OPLS-DA was performed on the super
block with unit variance-scaled data, which is termed
hierarchical OPLS-DA, to maximize the separation by using
class information as the Y variable. The model summary
statistics of hierarchical OPLS-DA models are presented in
Table 2, and their predictive abilities are in Table 3. The
hierarchical OPLS-DA scores plots (Figure 6A and B) showed
clear discrimination between inflammatory (UC and CD) and

Figure 4. OPLS-DA coefficients (± SEM) obtained from serum and plasma samples compared between CD and UC patients (A) to demonstrate
significant differences in metabolites that could help differenciating between these two diseases. Panels B and C show the respective OPLS scores
plots for CD versus UC in (B) serum and (C) plasma.
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Figure 5. Changes in OPLS-DA coefficients of urine metabolites from patients with (A)ulcerative colitis (UC) and (C) Crohn’s disease (CD) as
compared to control subjects. Positive bars (± SEM) illustrate metabolites significantly increased in UC and CD, whereas negative bars (± SEM)
denote metabolites significantly higher in control subjects. Panels B and C show the respective OPLS scores plots for (B) UC compared to control
subjects and (D) CD compared to control subjects.
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healthy control cohorts (Q2Y = 0.685 and 0.635, respectively,
Table 2; AUROC = 0.9925 for both models, Table 3) and weak
discrimination between two inflammatory cohorts (Q2Y =
0.230, Table 2; AUROC = 0.7675, Table 3; Figure 6C).
Notably, the predictive power of hierarchical UC:CD OPLS-
DA model was superior to any similar model for single biofluid
(the corresponding loading plots are shown in Figure 2S in the
Supporting Information).

■ DISCUSSION

Quantitative metabolite analysis of biofluids on a large scale
offers two important opportunities: first, the chance to discover
metabolites associated with the disease that may eventually
serve as biomarkers and second, the profile obtained may
provide us with an invaluable insight into the pathogenesis of
the disease. In the present study, we used the quantitative NMR

Table 3. Predictive Abilities of the Constructed Modelsa

sensitivity:specificity PPV:NPV ACC AUROC

hierarchical CD:UC 65:65 65:65 65 0.7675
CD:control 95:90 90:95 93 0.9925
UC:control 95:90 90:95 93 0.9925

urine CD:UC 0:0 0:0 0 0
CD:control 43:100 100:83 85 0.9643
UC:control 85:100 100:91 94 0.9923

plasma CD:UC 75:65 68:72 70 0.7325
CD:control 90:90 90:90 90 0.9825
UC:control 90:95 95:90 93 0.985

serum CD:UC 60:50 55:56 55 0.655
CD:control 95:100 100:95 98 1
UC:control 80:95 94:83 88 0.9225

aPPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; AUROC, area under the ROC curve. PPV (NPV) is the proportion
of samples with positive (negative) test results that are correctly predicted with the model. Sensitivity (specificity) measures the proportion of actual
positives (negatives) that are correctly predicted with the model. Accuracy (ACC) is the proportion of true results (both true positives and true
negatives) in all results. The area under curve (AUROC) is equal to the probability that a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one.

Figure 6. Hierarchical orthogonal projection to latent structure-discriminant analysis (hierarchical OPLS-DA) scores plots (A, B, C) obtained from
scores of sub-PCA models that were separately derived from corresponding disease cohorts in the three different biofluids from patients with
Crohn’s disease (CD, red), ulcerative colitis (UC, blue), and matched healthy individuals (control, green).
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“targeted” approach19 to investigate differences in metabolite
concentrations of patients with active IBD in comparison to
healthy control subjects. We collected serum, plasma, and urine
from each patient with either acute UC or CD and from healthy
individuals and determined a set of metabolites in each sample
by 1NMR spectroscopy to discover differences in metabolite
concentration. Multiblock principal component analysis (PCA)
and hierarchical OPLS-DA were used as statistical methods to
discriminate between diseased and non-diseased. As several
articles have already described metabolites from urine and
colonic mucosal extracts in IBD patients,11,20,32,33 we included
metabolites from serum and plasma in our study in addition to
urinary metabolites. Contrary to plasma, urinary metabolites are
highly prone to environmental factors, such as diet, resulting in
great intersubject variability.21,27 For instance, changes in the
bacterial composition of the gut in mice after treatment with
antibiotics may alter urinary metabolites.34 We therefore
reasoned that testing serum and plasma metabolites may
prove as a more reliable approach of quantitative metabolite
analysis.
We were able show that OPLS-DA analysis was sufficient to

discriminate between healthy subjects and IBD patients. The
Q2Y values of the CD and UC versus control models for serum,
plasma, and urine metabolites were between 0.53 and 0.84,
which indicates high reliability and strong predictive power of
the models. The predictability of the models to distinguish
between CD (or UC) and health was also extremely high and
showed an area under the curve (AUROC) of around 0.99.
However, our model only discriminated weakly between CD
and UC on the ground of plasma or serum metabolites, and for
urine, in contrast to other groups,11 no model could actually be
created. The reason for this discrepancy could lie in the
application of different spectral analysis methods but may also
highlight that IBD is a multifactorial disease of unknown
etiology with a high variation in phenotypes and severity,3

suggesting that the pathogenesis of active CD is similar to that
of active UC on the metabolomic level. As a matter of fact,
colonic CD and indeterminate colitis are easily confounded
with UC. On the other hand, the small sample size in our study
may have accounted for the failure to create a model.

Differences in Metabolite Composition between Serum
and Plasma

There were slight differences in the metabolite composition
between serum and plasma samples in our IBD patients. This
was not unexpected because studies have already shown that
metabolites may differ depending on whether they are
measured in serum or plasma.23,24 Serum derives from
coagulated blood, whereas plasma is treated with an
anticoagulant such as EDTA or heparin before removal of
blood cells. One reason for the differences therefore could be,
for example, the release of mediators from platelets during the
coagulation processes.35,36 A recent study by Yu et al.24

suggests that serum may be more sensitive for biomarker
detection compared to plasma, whereas measuring metabolites
in plasma may be more reproducible. Nevertheless, despite
some differences between serum and plasma metabolite
concentrations, both our serum or plasma metabolite-based
statistical models were able to separate well between IBD and
non-diseased subjects revealing a higher Q2Y for UC in plasma
than in serum, but a higher Q2Y for CD in serum than in
plasma.

Differences in Serum and Plasma Metabolite Levels of UC
and CD Patients versus Controls

Amino Acids and Related Metabolites. Both UC and
CD have an impact on amino acid metabolism showing
increased levels of isoleucine (and its first degradation product
3-methyl-2-oxovalerate), methionine, lysine, glycine, arginine,
and proline and decreased levels of valine, tyrosine, and serine
as compared to the control cohort. Some of the increased
amino acids were also reported to be increased in fecal
extracts37 and extracts of colon mucosa32 with the exception of
isoleucine, which has apparently low concentrations in colonic
mucosa of active CD and UC.32 Methionine is an essential
amino acid and a precursor of homocysteine, a metabolite also
shown highly elevated in plasma and colonic mucosa from UC
and CD patients.38 Interestingly, 2-hydroxybutyrate showed
significant increases in serum and plasma of both UC and CD
patients as compared to control subjects. 2-Hydroxybutyrate is
mainly found in the liver and is highly expressed during
oxidative stress when it is needed for the synthesis of the cell
antioxidant glutathione.39 It is a byproduct of the pathway from
methionine to glutathione.39

Metabolites Related to Energy Household. Serum of
UC and plasma of UC and CD patients had elevated levels of
creatine but lower levels of creatinine than in control subjects.
Creatine is normally involved in the energy supply of
mammalian cells. The relatively increased creatine levels that
were also seen in our previously described DSS mouse model of
UC40 may indicate the need of ATP and fatty acids as energy
supply during the states of the disease. Creatine may be
degraded by intestinal bacteria;41 therefore, it is conceivable
that the elevated creatine levels may even result from reduced
bacterial degradation associated with microbial dysbiosis. We
could also see high lactate levels in plasma samples of CD
patients, although high lactate levels have been rather
connected with severe UC.42 The decrease in Krebs cycle
intermediates (such as succinate and citrate) and molecules
involved in energy metabolism (such as acetate) in IBD
patients may indicate the demand and rapid utilization of
metabolites that feed energy producing pathways.

Metabolites of the Urea Cycle. Many similarities exist
between serum and plasma from UC patients, but few in
samples from CD patients with regard to downregulated
metabolites. Urea showed strong decreases in UC as well as in
CD patients, which is in contrast with previous findings of urea
production in IBD patients.43 In plasma from CD patients, we
detected decreased levels of ornithine, which is also part of the
urea cycle. The decrease in urea and ornithine in CD patients as
compared to the control cohort may indicate disturbances in
the urea cycle. In addition, these patients had a higher level of
arginine, another component of the urea cycle, than the control
individuals. High serum arginine levels that correlate with
disease severity have been recently described for UC.44

Monosaccharides and Other Metabolites. Among
monosaccharides, higher levels of mannose and glucose were
detected in IBD patients as compared to control subjects.
Increased mannose was also observed in our DSS colitis mouse
model,40 while another group has found high levels of glucose
in extracts of macroscopically uninvolved colonic mucosa of
IBD patients.33 In both CD and in UC, we noticed, relative to
control subjects, a decrease in choline and its oxidized product
betaine. Also other metabolomic studies of IBD have revealed a
downregulation of choline,20,32 which is an essential nutrient.45

Its deficiency has been connected with the development of
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nonalcoholic fatty liver.46 It is interesting that methanol was
highly increased in both UC and CD. Methanol is produced
endogenously in humans.47 It may be produced in reasonable
amounts in the colon through degradation of fiber pectin
(which is contained in fruit, vegetables, jellies, milk products,
etc.) and taken up by the circulation.48 The human colonic flora
is able to degrade pectins,49,50 and methanol is released into the
blood upon this degradation.51 Since populations of the colonic
microflora are deranged in IBD, either as a cause or a
consequence,52 it is possible that an overgrowth of pectin-
degrading bacteria may contribute to an increased methanol
content. On one hand, increased formate levels (compared to
control subjects) in serum of UC patients are in accordance
with increased methanol levels. Methanol is converted into
formate in the liver via formaldehyde by alcohol dehdrox-
ygenase, a process that also leads to the production of free
radicals.53 On the other hand, formate may be formed by
intestinal bacteria, such as enterobacteria.54 A role for
Enterobacteriaceae in the etiology of IBD has been recently
put forward.55

Differences in Urine Metabolite Levels of UC and CD
Patients versus Controls

We have previously used a metabolite analysis approach40 and
performed 1H NMR spectroscopy to determine whether mice,
which had developed an experimental form of colitis following
DSS administration, could be discriminated from healthy
controls. By multivariate statistical evaluation we were able to
separate between diseased and healthy mice. As we have already
observed in this mouse model of IBD, the metabolite profile of
urine is different to that of serum/plasma and revealed different
sets of metabolites. The origin of many urine metabolites in UC
and CD patients may be related to the intestinal microflora.11,20

In our present study, urine metabolites showed some
differences between CD and UC, however, it was not enough
to create a model for distinguishing between these two forms of
IBD. Similar to serum and plasma of UC and CD patients,
Krebs cycle intermediates (such as citrate and succinate),
betaine and urea levels were lower than in the control cohort.
We also observed low hippurate levels in UC and CD, which is
well in accordance with a study by Williams et al.11 Low
hippurate could indicate disturbances in the gut microbiome of
IBD. For instance, decreases in Clostridia are widely found in
CD patients.55 The gut microbiome structure and the urinary
metabolite profile have been recently investigated by Li et al.,56

and these authors were able to correlate the presence of
Clostridia with hippurate levels. Some similarities of the urine
metabolome also exist with our DSS mouse model.40 As in the
DSS model, we found, relative to the control cohort, higher
levels of allantoin and tryptophan in UC and higher levels of
lactate and carnitine in UC and CD. Allantoin is a metabolite of
uric acid and it is regularly detected in human urine.57 It
correlates with dietary purine uptake,58 indicating disturbances
in the purine metabolism in IBD. Tryptophan, which is the
precursor of serotonin, is a widely expressed metabolite and
transmitter throughout the gut. Tryptophan hydroxylase is
decreased in rectal biopsies from patients with UC,59

highlighting the possibility that tryptophan levels have gone
up because of the reduced levels of its metabolizing enzyme.
High levels of tryptophan could contribute to the role of
serotonin as a pathogenic mediator in IBD. Unlike in serum
and plasma, we noticed a decrease in methanol in both CD and
UC relative to controls, which could be explained by the fact

that most methanol was taken up by the circulation as already
shown.48

Finally, CD patients exhibited an increase in sugars, such as
xylose, maltose, galactose, and lactose compared to the control
cohort. The changes of these metabolites are not quite clear.
Xylose, for instance, can be broken down in the gut from
dietary fiber (e.g., hemicellulose and cellulose) by cellulolytic
microflora in the colon including Enterococcus sp.60 As a fact,
Enterococcus sp. is found in great abundance in CD patients and
could thus contribute to higher xylose production and urine
levels seen in our CD patients.61

■ CONCLUSION
Our study shows that quantitative metabolite analysis of serum,
plasma, and urine from CD and UC patients can be used to
discriminate between healthy and diseased subjects. We were
additionally able to confirm the detection of metabolites
described by other groups, suggesting that these overlapping
results may be very important in the future for the
determination of biomarkers (an overview of metabolite
differences in experimental IBD models and human IBD is
given by Lin et al.62). In order to discriminate between CD
from UC, use of serum and plasma may be of advantage
because no model could be constructed for urine samples. This
points to a possible limitation of this study, which may have
been the small sample size. In summary, however, our study
indicates that metabolic profiling is a powerful tool to identify
intestinal inflammation and may be useful in the management
of IBD and in clinical studies exploring disease pathogenesis.
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C.; Mendes, J.; Wahl, S.; Roemisch-Margl, W.; Ceglarek, U.;
Polonikov, A.; Dahmen, N.; Prokisch, H.; Xie, L.; Li, Y.; Wichmann,
H. E.; Peters, A.; Kronenberg, F.; Suhre, K.; Adamski, J.; Illig, T.;
Wang-Sattler, R. Differences between human plasma and serum
metabolite profiles. PLoS One 2011, 6 (7), e21230.
(25) Harvey, R.; Bradshaw, J. A simple index of Crohn’s-disease
activity. Lancet 1980, 315 (8167), 514.
(26) Walmsley, R. S.; Ayres, R. C.; Pounder, R. E.; Allan, R. N. A
simple clinical colitis activity index. Gut 1998, 43 (1), 29−32.
(27) Stella, C.; Beckwith-Hall, B.; Cloarec, O.; Holmes, E.; Lindon, J.
C.; Powell, J.; van der Ouderaa, F.; Bingham, S.; Cross, A. J.;
Nicholson, J. K. Susceptibility of human metabolic phenotypes to
dietary modulation. J. Proteome Res. 2006, 5 (10), 2780−2788.
(28) Nicholson, J. K.; Foxall, P. J.; Spraul, M.; Farrant, R. D.; Lindon,
J. C. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood
plasma. Anal. Chem. 1995, 67 (5), 793−811.
(29) Trygg, J.; Holmes, E; Lundstedt, T. Chemometrics in
metabolomics. J. Proteome Res. 2007, 6 (2), 469−479.
(30) Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR:
visualizing classifier performance in R. Bioinformatics 2005, 21 (20),
3940−3941.
(31) Wold, S.; Kettaneh, N.; Tjessem, K. Hierarchical multiblock PLS
and PC models for easier model interpretation and as an alternative to
variable selection. J. Chemom. 1996, 10 (5−6), 463−482.
(32) Balasubramanian, K.; Kumar, S.; Singh, R. R.; Sharma, U.;
Ahuja, V.; Makharia, G. K.; Jagannathan, N. R. Metabolism of the
colonic mucosa in patients with inflammatory bowel diseases: an in
vitro proton magnetic resonance spectroscopy study. Magn. Reson.
Imaging 2009, 27 (1), 79−86.
(33) Sharma, U.; Singh, R. R.; Ahuja, V.; Makharia, G. K.;
Jagannathan, N. R. Similarity in the metabolic profile in macroscopi-
cally involved and un-involved colonic mucosa in patients with
inflammatory bowel disease: an in vitro proton (1H)MR spectroscopy
study. Magn. Reson. Imaging 2010, 28 (7), 1022−1029.
(34) Romick-Rosendale, L. E.; Goodpaster, A. M.; Hanwright, P. J.;
Patel, N. B.; Wheeler, E. T.; Chona, D. L.; Kennedy, M. A. NMR-
based metabonomics analysis of mouse urine and fecal extracts
following oral treatment with the broad-spectrum antibiotic
enrofloxacin (Baytril). Magn. Reson. Chem. 2009, 47 (Suppl 1),
S36−46.
(35) Schnabel, R. B.; Baumert, J.; Barbalic, M.; Dupuis, J.; Ellinor, P.
T.; Durda, P.; Dehghan, A.; Bis, J. C.; Illig, T.; Morrison, A. C.; Jenny,
N. S.; Keaney, J. F., Jr; Gieger, C.; Tilley, C.; Yamamoto, J. F.;
Khuseyinova, N.; Heiss, G.; Doyle, M.; Blankenberg, S.; Herder, C.;
Walston, J. D.; Zhu, Y.; Vasan, R. S.; Klopp, N.; Boerwinkle, E.;
Larson, M. G.; Psaty, B. M.; Peters, A.; Ballantyne, C. M.; Witteman, J.
C.; Hoogeveen, R. C.; Benjamin, E. J.; Koenig, W.; Tracy, R. P. Duffy
antigen receptor for chemokines (Darc) polymorphism regulates

Journal of Proteome Research Article

dx.doi.org/10.1021/pr300139q | J. Proteome Res. 2012, 11, 3344−33573356



circulating concentrations of monocyte chemoattractant protein-1 and
other inflammatory mediators. Blood 2010, 115 (26), 5289−5299.
(36) Yatomi, Y.; Igarashi, Y.; Yang, L.; Hisano, N.; Qi, R.; Asazuma,
N.; Satoh, K.; Ozaki, Y.; Kume, S. Sphingosine 1-phosphate, a
bioactive sphingolipid abundantly stored in platelets, is a normal
constituent of human plasma and serum. J. Biochem. 1997, 121 (5),
969−973.
(37) Marchesi, J. R.; Holmes, E.; Khan, F.; Kochhar, S.; Scanlan, P.;
Shanahan, F.; Wilson, I. D.; Wang, Y. Rapid and noninvasive
metabonomic characterization of inflammatory bowel disease. J.
Proteome Res. 2007, 6 (2), 546−551.
(38) Morgenstern, I.; Raijmakers, M. T.; Peters, W. H.; Hoensch, H.;
Kirch, W. Homocysteine, cysteine, and glutathione in human colonic
mucosa: elevated levels of homocysteine in patients with inflammatory
bowel disease. Dig. Dis. Sci. 2003, 48 (10), 2083−2090.
(39) Lord, R. S.; Bralley, J. A. Clinical applications of urinary organic
acids. Part I: Detoxification markers. Altern. Med. Rev. 2008, 13 (3),
205−215.
(40) Schicho, R.; Nazyrova, A.; Shaykhutdinov, R.; Duggan, G.;
Vogel, H. J.; Storr, M. Quantitative metabolomic profiling of serum
and urine in DSS-induced ulcerative colitis of mice by 1H NMR
spectroscopy. J. Proteome Res. 2010, 9 (12), 6265−6273.
(41) Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine
metabolism. Physiol. Rev. 2000, 80 (3), 1107−1213.
(42) Vernia, P.; Caprilli, R.; Latella, G.; Barbetti, F.; Magliocca, F. M.;
Cittadini, M. Fecal lactate and ulcerative colitis. Gastroenterology 1988,
95 (6), 1564−1568.
(43) Lundsgaard, C.; Hamberg, O.; Thomsen, O. O.; Nielsen, O. H.;
Vilstrup, H. Increased hepatic urea synthesis in patients with active
inflammatory bowel disease. J. Hepatol. 1996, 24 (5), 587−593.
(44) Hong, S. K.; Maltz, B. E.; Coburn, L. A.; Slaughter, J. C.;
Chaturvedi, R.; Schwartz, D. A.; Wilson, K. T. Increased serum levels
of L-arginine in ulcerative colitis and correlation with disease severity.
Inflamm. Bowel Dis. 2010, 16 (1), 105−111.
(45) Ueland, P. M. Choline and betaine in health and disease. J.
Inherit. Metab. Dis. 2011, 34 (1), 3−15.
(46) Buchman, A. L.; Dubin, M. D.; Moukarzel, A. A.; Jenden, D. J.;
Roch, M.; Rice, K. M.; Gornbein, J.; Ament, M. E. Choline deficiency:
a cause of hepatic steatosis during parenteral nutrition that can be
reversed with intravenous choline supplementation. Hepatology 1995,
22 (5), 1399−1403.
(47) Eriksen, S. P.; Kulkarni, A. B. Methanol in normal human
breath. Science 1963, 141 (3581), 639−640.
(48) Lindinger, W.; Taucher, J.; Jordan, A.; Hansel, A.; Vogel, W.
Endogenous production of methanol after the consumption of fruit.
Alcohol.: Clin. Exp. Res. 1997, 21 (5), 939−943.
(49) Cummings, J. H.; Southgate, D. A.; Branch, W. J.; Wiggins, H.
S.; Houston, H.; Jenkins, D. J.; Jivraj, T.; Hill, M. J. The digestion of
pectin in the human gut and its effect on calcium absorption and large
bowel function. Br. J. Nutr. 1979, 41 (3), 477−485.
(50) Dongowski, G.; Lorenz, A.; Anger, H. Degradation of pectins
with different degrees of esterification by Bacteroides thetaiotaomicron
isolated from human gut flora. Appl. Environ. Microbiol. 2000, 66 (4),
1321−1327.
(51) Siragusa, R. J.; Cerda, J. J.; Baig, M. M.; Burgin, C. W.; Robbins,
F. L. Methanol production from the degradation of pectin by human
colonic bacteria. Am. J. Clin. Nutr. 1988, 47 (5), 848−851.
(52) Nagalingam, N. A.; Lynch, S. V. Role of the microbiota in
inflammatory bowel diseases. Inflamm. Bowel Dis. 2011, 18, 968−984.
(53) Skrzydlewska, E. Toxicological and metabolic consequences of
methanol poisoning. Toxicol. Mech. Methods 2003, 13 (4), 277−293.
(54) Leonhartsberger, S.; Korsa, I.; Böck, A. The molecular biology
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