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Quantum optical measurements 
with undetected photons through 
vacuum field indistinguishability
Sun Kyung Lee1, Tai Hyun Yoon   1,2 & Minhaeng Cho   1,3

Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by 
measuring one-photon interference between the corresponding entangled signal fields from two 
spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum 
optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither 
the detection of the idler photons which interact with materials of interest nor their conjugate signal 
photons which do not interact with the sample is required. The coherence of signal beams in a single 
photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler 
beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or 
objects interacting with the idler beam from the first SPDC crystal can be measured by detecting 
second-order interference between the signal beams generated by the other two SPDC crystals 
further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum 
fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical 
measurements.

Conventionally, spectroscopy measurements are described in a semi-classical manner where the light-matter 
interaction leading to transitions between quantized atomic or molecular energy levels use classical incident fields 
to ascertain the transition probabilities1, 2. Crucially, fields that interact with the sample must be detected directly 
at the intensity level so practical limitations may exist for measurements depending on, for example, photon 
energy due to frequency dependent detector sensitivity. Recently, quantum spectroscopy with quantum entangled 
photons has been proven to overcome various limits of the classical spectroscopy3, 4. In addition, sub-shot-noise 
quantum imaging is possible even with sub-Rayleigh resolution5. Such quantum spectroscopy and imaging are 
possible through detection of temporal correlation or coincidence counting rate of the entangled pair of signal 
and idler photons generated by spontaneous parametric down conversion (SPDC)6, 7. Since the early investi-
gations8–10 on spatial and temporal correlations between signal and idler photons from a single SPDC process, 
variations on this single SPDC scheme, such as quantum correlations of frequency non-degenerate signal and 
idler photons or degenerate twin photons, have been used to test the fundamental tenets of quantum mechanics11.

Description of triple-SPDC scheme
In an experiment using single-SPDC crystal (Fig. 1a), pumping of a nonlinear (NL) crystal lacking an inver-
sion symmetry results in the parametric generation of a low intensity signal and idler photon pair that are in a 
correlated (quantum entangled) state. A two-photon interference, i.e., fourth-order (in the field) interference, 
between signal and idler photons, manifested by coincidence counting rate measurements12, results from quan-
tum correlation between the two, even though the signal and idler beams are mutually incoherent13. If the idler 
beam interacts with atoms or molecules that absorb idler photons, the measured coincidence counting rate is 
accordingly attenuated. This is the basis of quantum spectroscopy that requires temporal correlation detections 
(or two-photon interference measurements) of both signal and idler photons14, 15.

Mandel and coworkers further considered an interesting double-SPDC scheme, where two NL crystals are 
arranged in a cascading geometry (Fig. 1b)16. Since the idler beam, i1, from the first NL crystal, NL1, is aligned to 
traverse the second NL crystal in a collinear way, the two idler beams i1 and i2 are indistinguishable, which in turn 
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induces a quantum coherence between two conjugate signal beams17. This scheme is closely related to quantum 
eraser experiment in that it recovers the interference fringe from the signal photons by erasing “which-way” 
information of the idler photons18, 19. However, the need for coincidence detection between signal and idler pho-
tons is removed by perfect overlap of the two idler modes20. Optical component such as a beam splitter, neutral 
density filter, phase object, absorbing material or sample, placed between the two NL crystals would attenuate the 
degree of coherence of the two signal beams (s1 and s2) or their second-order interference as the transmissivity 
amplitude decreases. For the non-degenerate case (idler and signal photons in different wavelengths), this exper-
imental scheme enables one to measure spectral or spatial phase property of materials beyond the detection limit 
of idler detector that might have lower quantum efficiency compared to the signal detector usually operating in 
the visible or near infrared region. This is the principle used in recent quantum imaging, where phase object is 
illuminated with photons that are ultimately not detected and the detected photons have not directly interacted 
with the sample21, 22. Similarly, in an IR spectroscopy measurements, instead of detecting IR photons which inter-
acted directly with the sample, the conjugate visible photons were detected instead that carried the information 
of the IR absorption23. From a spectroscopy viewpoint, the interferometer involving two SPDC crystals generates 
path-entangled photon pairs and the photon pair from the first crystal can be considered as a radiation source. 
The idler photon generated from NL1, i1, is allowed to interact with the material of interest (Fig. 1b), but the 
conjugate signal photon s1 is in a second-order interference with a reference signal beam s2 generated from NL2. 
Thus, the one-photon interference between s1 and s2 reflects the degree of coherence between the conjugate i1 and 
i2 beams and it is modulated by the partially transmitting slab of material, i.e., the optical sample (OS) or beam 
splitter.

Now, let us consider the triple-SPDC configuration with three SPDC crystals aligned in a cascading geometry 
(Fig. 1c), where two partially reflecting planar materials (or dielectric slabs), OS1 and OS2, form a resonator in 
which optical sample cells are oriented such that surfaces are normal to the incident idler beams. Here, we show 

Figure 1.  Schematic representations of single-, double-, and triple-SPDC experiments. Pump, signal, and idler 
beams are shown in green, red, and yellow in color, respectively. NL, OS, D, M, and C.C. represent nonlinear 
crystal, optical sample, detector, mirror, and coincidence counter, respectively. (a) Single-SPDC experimental 
setup with coincidence counting rate measurements with Ds and Di. (b) Double-SPDC experimental setup with 
two NL crystals. One-photon interference (second-order interference) between s1 and s2 is detected by ′Ds . (c) 
Triple-SPDC gedankenexperimental setup with three NL crystals. One-photon interference (second-order 
interference) between s1 and s2, between s1 and s3, and between s2 and s3 are detected by D12, D13, and D23, 
respectively. The inset figures of (b and c) represent a one-dimensional representation of idler beam pathway 
along its propagation axis.
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that a quantum optical measurement of OS1 under interaction with the idler beam from the radiation source, 
NL1, is made possible through a second-order interference measurement of the two signal beams from NL2 and 
NL3. This is highly counter-intuitive because none of the idler photons, i1, i2, and i3, is detected and the signal 
photons s2 and s3 are seemingly not in direct correlation with the i1 photon from NL1. This is achieved by taking 
full advantage of the quantum nature of both tripartite entanglement and vacuum modulation; the same cannot 
be said about the double-SPDC configuration or the ordinary triple-SPDC configuration proposed recently24, 25 
(see Supplementary Information).

Induced Coherence via vacuum indistinguishability
According to the theory of SPDC26, 27, the quantum state of the down-converted signal and idler photon pair 
generated from classical pump fields in the scheme illustrated in Fig. 1, is described by the interaction 
Hamiltonian ω ω= ∑ + . .ˆ ˆ† †H gA t a a h c( , ) ( )j p p s i ij j j

  with phase matching conditions ωp =  ω s +  ω i and 
→

=
→

+
→

k k kp s i, where âs i( )j j
 is the annihilation operator of the signal (idler) field on NLj. The time-dependent 

state, when it is initially in a vacuum state |vac〉, is given by ψ| = |∫− ′ ′
⟩ ⟩t e vac( ) i dt H t

0
( )/  and approximated in the 

weak coupling regime as
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where gj is the coupling constant, Fs(i)(ωs(i)) is the filter spectral distribution, ωA t( , )p pj
 is the classical amplitude of 

the pump beam on NLj, and ωs  ( ωi ) is the single photon state in signal (idler) mode at frequency ωs (ωi). The 
signal (idler) electric field operator is given as ∫ ω ω∝ ∈ω−† ^E t d a e k s i( ) ( ) ( , )k k k k

i t
j j

k . For the sake of clarity, we shall 
consider monochromatic fields here (see Supplementary Information for detailed calculation results for multi-
mode cases).

As the proposed triple-SPDC scheme in Fig. 1c shows two partially transmitting slabs referred to as optical 
samples, OS1 and OS2, are placed on the idler beam path and the three idler beams, (i1, i2 and i3), are perfectly 
aligned. The OS1 is used to modulate the degree of indistinguishability between i1 and i2 beams, which, in turn, 
affects the degree of coherence between s1 and s2 beams at detector D12. The OS2 changes the degree of indistin-
guishability among the three idler beams but also among the two vacuum fields, denoted as i01 and i02, at the 
unused ports of the beam splitters, OS1 and OS2, that together form a planar resonator. In fact, we shall show that 
a resonator effect determining the complex amplitude of round-trip attenuation factor is evident in the 
second-order interference at D13. Since the presence of two slabs further modifies modal structures of transverse 
vacuum field along the idler beam pathway, a second-order interference between two signal beams s2 and s3, 
which is mediated by quantum vacuum field, can be observed at D23. This is the critical difference in our scheme 
compared to the other triple-SPDC schemes investigated before24, 25. The relations among the annihilation oper-
ators (amplitudes) of input modes (ˆ ˆa a,i i1 02

), internal cavity modes ˆ ˆa a( , )i i2 01
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where transmission (reflection) coefficients of symmetric dielectric slabs OS1 and OS2 are T1 and T2 (R1 and R2), 
and δ denotes the phase gained from the beam propagation between OS1 and OS2. Here, we neglect the phase 
shifts gained by beam propagation through nonlinear crystals, since they do not affect the main results. If we 
assume = − =R i T j1 ( 1, 2)j j

2  for simplicity, the quantum state for the field in Fig. 1c is given by
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where ϕ0(ϕ1) and τ0(τ1) are the phase factor and time delay gained, respectively, when it propagates from NL1 to NL2 
(from NL2 to NL3), and N is the normalization factor defined as = +B BN 11

2
12

2. We note that equation (4) is 
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obtained via the transformation ω ω ω| = | = | + |∗ ∗⟩ ⟩ ⟩ ⟩†a vac B B( )/ Ni i i i i i i11 122 2 1 02
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The three second-order interference fringe visibilities detected at D12, D13, and D23 thus can be obtained 
from the photon counting rate defined as ψ ψ∝ − †R t E E t( ) ( )s ij s ij s ij, 3 ,D ,D 3  and are given by
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The visibilities in equation (6) at each detector are simplified as
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where T1 and T2 are not to be zero simultaneously. We note that the fringe visibility at D13 depends on the cavity 
resonance whereas the other two visibilities at D12 and D23 do not depend on the cavity phase δ due to the can-
cellation of phase-dependent term in the normalization factor. We find that the visibility of each interference 
fringe of a pair of signal beams is determined by the degree of overlap between the corresponding pair of idler 
states, i.e., V i i ii12 21

ω ω= | 〈 | 〉 |, ω ω= | 〈 | 〉 |V i i ii13 31
, and ω ω= | 〈 | 〉 |V i i ii23 32

 as shown in equation (7). Interestingly, the 
indistinguishability of vacuum modes, i01 and i02, at the two vacuum (unused) ports of OS1 and OS2, ω ω| 〈 | 〉 |i i ii 0201

, 
is exactly the same with ω ω| 〈 | 〉 |i i ii 32

.

Discussions
To understand the underlying physics of this triple-SPDC scheme, it is helpful to consider limiting cases first. If 
OS2 is removed, we have T2 = 1 and R2 = 0, i2 and i3 beams are fully indistinguishable due to the perfect alignment 
of the corresponding idler beams. On the other hand, the degrees of indistinguishability between i1 and i2 and 
between i1 and i3 are modulated by the factor |T1| as V12 = V13 = |T1| and V23 = 1. Similarly, if OS1 is removed, 
i.e., T1 = 1 and R1 = 0, we find V12 = 1 and V13 = V23 = |T2|. These results are identical to the case of double-SPDC 
scheme (see Methods equation (9)) since the resonator and vacuum indistinguishability effects vanish in these 
cases.

The other limiting case is when one of the OS1 and OS2 is a perfect two-way mirror with unit reflectivity, i.e., 
either T1 = 0(R1 = i) or T2 = 0(R2 = i). When T1 = 0 and R1 = i, one can immediately find V12 = V13 = 0 from Eq. 
(7), which results from the complete destruction of coherences between i1 and i2 and between i1 and i3 because the 
idler 1 is totally reflected by the OS1. However, the second-order interference between s2 and s3 does not vanish 
and even becomes unity, (V23 = 1), regardless of the transmissivity (T2) of OS2; this is because i2 and i3 are maxi-
mally indistinguishable, that is ω ω = 1ii i i2 3

, in the presence of such perfectly reflecting two-way mirror at OS1. 
Similarly, if a two-way planar mirror replaces the OS2, then T2 = 0 and R2 = i, so indistinguishability between i1(i2) 
and i3 will be destroyed; this, in turn, makes the second-order interference between s1(s2) and s3 to vanish, i.e., 
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V13 = V23 = 0, and V12 = 1. We note that the second-order interference visibility is always unity and independent 
of the transmissivity of optical sample with one side of resonator having the perfect reflectivity.

A more interesting and highly counter-intuitive case is when both OS1 and OS2 are neither perfectly reflecting 
nor transmitting materials. The degree of coherence between s1 and s3 can be measured by detecting the 
second-order interference at D13 as shown in Fig. 2a and the visibility V13 is found to be dependent on the distin-
guishability of the input and output idler modes of the cavity formed by OS1 and OS2. Surprisingly, the visibility 
at D23 does depend on T1 (see equation (7)), which means that the optical property of a target sample at OS1 can 
be extracted from second-order interference measurements involving s2 and s3. For example, when T2 = 0.1, the 
visibility at D23 becomes larger as the transparency of sample OS1 decreases, i.e., → →T R i0 ( )1 1  (see Fig. 2b). 
This is a counter-intuitive result, because it indicates that an increasing disturbance by OS1 (decreasing transmis-
sivity of OS1) causes the coherence between s2 and s3 to increase. However, this becomes understandable if it is 
noted that the OS1 with T1 ≠ 1 plays not only the role of a decoherence material but also as a mirror forming a 
resonator together with OS2. For a finite T2, the visibility at D23 approaches to its maximum value of 1 at T1 = 0 
(see Supplementary Information). Thus, a coherence between s2 and s3 is critically induced when the vacuum 
mode at the unused port of OS1 becomes indistinguishable with OS2 in place to form a resonator due to the cavity 
effect. In particular, pathway distinguishabilities of the three idler beams are effectively erased by forming an 
optical resonator with NL2 inside on the idler beam pathway by two slabs. Thereby, a full quantum optical meas-
urement of spectral (or phase) property of the OS1 is possible by detecting the second-order interference between 
s2 and s3 that are not affected by the SPDC process at NL1 located outside of the resonator cavity.

To gain a deeper insight into the proposed triple-SPDC quantum optical measurement, it is necessary to 
understand how OS2, a planar boundary object, alters both idler and vacuum mode structures. Coherences of the 
three signal modes are induced by two different mechanisms. In equation (4), the second term describes the 
induced coherence of signal beams s1, s2, and s3 via indistinguishabilities of their entangled idler states i1, i2, and 
i3. It is the third term in equation (4) that describes a further induced coherence between s2 and s3 via the indistin-
guishability of i2, i3, and i02. Note that, when the idler beams are perfectly aligned and OS1 and OS2 are absent, the 
one-photon signal state is nothing but a maximally superposed state of three signal modes, i.e., 
ψ ω ω ω| 〉 + | 〉 + | 〉~ ( , 0, 0 0, , 0 0, 0, )s s s s s s s, ,1 2 3

, which is a W-type path-entangled single photon state. For a 
W-type entanglement as opposed to a GHZ (Greenberger-Horne-Zeilinger) state, it is well known that a distur-
bance on one of the three modes does not affect the remaining two-mode entanglement29. Here, even in the case 

Figure 2.  Numerical calculation results. (a) Visibility of interference fringe at D13, V13, with respect to 
amplitude phase gained by a round trip in cavity, κ = 2δ, for varying transmissivity (T1) of OS1 with T2 = 0.1. We 
note that transmission becomes 1 on resonance for T2 = T1 due to the cavity input-output relation. (b) Visibility 
of interference fringe at D12 (blue) and D23 (red), V23 and V12, with respect to amplitude transmissivity of OS1, 
when T2 = 0.1.
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that one of idler beams is disturbed by either OS1 or OS2, the remaining idler beams can still be indistinguishable 
leading to the coherence between the corresponding signal modes. In the presence of OS1, an additional insertion 
of OS2 between NL2 and NL3 causes two intriguing effects: (i) it reduces the degree of coherence between i2 and 
i3 and (ii) it changes the modal structure of the vacuum since the partially transparent OS2 forms an optical cavity 
with OS1 and makes the vacuum modes, i02 and i01, at unused ports of OS1 and OS2 indistinguishable. The latter 
is the essential and unique feature of our proposed experimental scheme for detecting T1 by means of measuring 
the fringe visibility at D23.

Experimental feasibility.  Now, let us discuss about the critical issues in experimental feasibility. First, the 
spectral overlap of all idler beams between input mode i1, inside cavity mode i2, and output mode i3 is required. 
If we consider the multimode spectral distribution of single photons generated from SPDC, the spectral overlap 
between input, internal cavity, and output modes would be decreased. Thus, all narrowband single photons are 
preferred to increase spectral overlap. Second, temporal overlaps of all idler beams are required. The time delay 
due to the round trip of cavity mode will cause temporal overlaps mismatches of idler photons. This can be 
solved by either using a phase-coherent optical frequency comb30 for the pump beam to ensure long coherence 
time or compensating delay by putting Fabry-Pérot cavities on an appropriate path in the interferometer (see 
Supplementary Information). Third, almost perfectly reflective material along longitudinal axis is required. Here, 
we treated OS1 and OS2 as lossless beam splitters. However, one should be careful about treating absorption of 
light by a given material for practical applications of our proposed triple-SPDC scheme to quantum spectros-
copy. For such circumstances, our theoretical description needs to be generalized to include the input-output 
relationships in a lossy beam splitter by treating the light absorption as a loss in field amplitude31. Fourth, the 
second-order interference measurement is usually affected intrinsic dark noise, whereas the coincident counting 
shows zero dark noise in principle. Our scheme would work well for the case of weak transparent resonance 
signal, e.g., electromagnetically induced transparency32, because small T1 sample probed by i1 would give a high 
visibility for the second-order interference detection of signals s2 and s3 at D23.

Conclusion
The single-SPDC scheme for spectroscopic or imaging application requires coincidence detections of both signal 
idler photons, where either one of the two interacts with absorptive material or phase object, via two-photon 
interference measurement or fourth-order (in the field) interference. In contrast, the double-SPDC scheme needs 
no detection of idler photons, but it still requires a measurement of a second-order interference between conju-
gate signal beams from the radiation source. In this Letter, we have shown that the proposed triple-SPDC scheme 
requires detections of neither idler photons interacting with material (or phase object) nor their conjugate sig-
nal photons, due to the indistinguishability of the vacuum fields. This scheme is the first of its kind that shows 
how vacuum field indistiguishability plays a role in spectroscopy (or imaging) and clearly differentiates from the 
previous quantum spectroscopy or imaging studies with just one or two SPDC crystals. We anticipate that the 
proposed triple-SPDC scheme involving three down-converters arranged in a cascading geometry will be of great 
interest and use for quantum spectroscopy, quantum imaging, and potential applications to quantum information 
technology with tripartite entangled state.

Methods
Induced Coherence via idler indistinguishability.  For a double-SPDC experiment with two NL crystals 
arranged in a cascading configuration as depicted in Fig. 1b, two idler paths are indistinguishable as i1 and i2 are 
perfectly aligned. At the optical sample (OS) placed in the idler beam path, the amplitudes of i1 and i2 are related 
to each other: = + ′ˆ ˆ ˆa Ta R ai i i2 1 0

33, 34, where T(R) and T′(R′) with |T|2 + |R′|2 = 1, are the transmission (reflection) 
coefficients of the front and rear sides of the OS, respectively, âi1

 and âi2
 are the annihilation operators of i1 and i2, 

and âi0
 is that of the vacuum field at the unused port of OS. The initial path-entangled state is then disturbed by 

the OS (e.g., a beam splitter), so that the time-dependent state becomes
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where ϕ0 is the phase factor gained due to the time delay τ0 by beam propagation from NL1 to NL2. As shown in 
Eq. (8), one photon coherence of a signal photon is induced as much as the transmissivity T. One-photon inter-
ference or second-order interference for two signal beams is to measure average photon count rate Rs at the detec-
tor ′Ds and it is related to the corresponding second-order correlation function ψ ψ∼ | |−

′ ′⟨ ⟩†R t E E t( ) ( )s s s2 ,D ,D 2
s s

 where 

= +ϕ ϕ
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† ^ ^E a e a e
s s

i
s

i
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1
2

2 and ϕ1(ϕ2) is the phase gained by beam propagation from NL1 (NL2) to ′Ds. Since the 
second-order coherence of signal beams is induced by the idler beam indistinguishability, the fringe visibility at 

′Ds is linearly proportional to the material transmissivity |T| as
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Thus, one can measure the spectroscopic property, i.e., the frequency-dependent transmissivity T(ωi), of the 
material under interaction with the idler i1 via detection of the second-order interference of its conjugate signal 
s1 with the reference signal s2, by tuning the pump frequency ωp. This is the essential feature of the previous quan-
tum spectroscopy and imaging that makes use of the double-SPDC scheme23, 35.
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