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Abstract
People living within the same household as someone ill with influenza are at
increased risk of infection. Here, we use Markov chain Monte Carlo methods to
partition the hazard of influenza illness within a cohort into the hazard from the
community and the hazard from the household. During the 2013-2014 influenza
season, 49 (4.7%) of the 1044 people enrolled in a community surveillance
cohort had an acute respiratory illness (ARI) attributable to influenza. During
the 2014-2015 influenza season, 50 (4.7%) of the 1063 people in the cohort had
an ARI attributable to influenza. The secondary attack rate from a household
member was 2.3% for influenza A (H1) during 2013-2014, 5.3% for influenza
B during 2013-2014, and 7.6% for influenza A (H3) during 2014-2015. Living
in a household with a person ill with influenza increased the risk of an ARI
attributable to influenza up to 350%, depending on the season and the influenza
virus circulating within the household.
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1 INTRODUCTION

In accepting the family as a semiclosed group one must believe that infections in successive family members
within a short period of time are more likely to be related to each other than to have been separately acquired
from outside sources. This is essentially an act of faith and nearly impossible to establish in terms of exact
probability. –Carol Buck, 19561

For almost a century, researchers have prospectively followed households to elucidate many of the intricacies of the
natural history of influenza and other respiratory illnesses: the range of severity, the collection of symptoms, the diversity
Abbreviations: ARI, acute respiratory illness; CAR, community attack rate; MoSAIC, Mobile Surveillance for Acute Respiratory and Influenza-like
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of etiologies, the spatiotemporal trends, the incidence within subgroups, and the transmission within the household.1-64

Additionally, case-ascertained household studies have sought to also answer similar questions about influenza by fol-
lowing the household contacts of a case series.65-133 To summarize the transmissibility of influenza, studies of both types
often report the secondary attack rate (SAR), a descriptive statistic that quantifies the risk of an exposed person becom-
ing ill from an infectious person living within the same household.1-24,65-72,73-104,105-124 The SAR is the de facto measure
of transmissibility of influenza, and trials of antivirals have used SAR to quantify changes in the transmissibility of
influenza attributable to a therapeutic regimen given to infectious household members or a prophylactic regimen given
to susceptible household members.13,14,21,66,71,72,111 Here, we estimate the SAR of influenza A and B virus using data from
a prospective cohort in New York City during the 2013-2014 and 2014-2015 seasons.55 Counting the number of cases
within a household following the index case may overestimate the SAR of seasonal influenza, as household members
may be infected outside the home, for example, at work or at school.37,79,81,93,96,134-139 To avoid overcounting, we fit a
compartmental model that quantifies both community transmission and household transmission of influenza.

2 METHODS

The Mobile Surveillance for Acute Respiratory and Influenza like Illness in the Community (MoSAIC) study was a
prospective cohort study enrolling households in New York City to investigate the incidence, etiology, and risk factors for
acute respiratory infections.55 Inclusion in the study required a household with at least three people, of whom at least 1
was a child under 18 years old. Investigators defined an episode of an acute respiratory illness (ARI) as the presence of at
least two of the following symptoms: rhinorrhea, congestion, sore throat, cough, and fever. Investigators also included rhi-
norrhea among children under 1 year of age as an episode of ARI. Enrollees reported possible ARI within their household
via text message. After confirming an episode of ARI over the telephone, researchers collected mid-turbinate nasal swabs
from enrollees with an ARI and tested swabs for a panel of 20 viral and bacterial respiratory pathogens using PCR.140

The institutional review boards of the Columbia University Medical Center (New York, NY) and the Centers for Disease
Control and Prevention (Atlanta, GA) approved this study.

Here, we investigated a secondary objective of the study: to characterize the transmission of influenza within
households enrolled in the study. We defined a case as an enrollee

1. who had a confirmed episode of ARI with onset of symptoms between October 5, 2013 and October 5, 2015 and
2. whose nasal swab was positive for influenza A, influenza A (H1), influenza A (H3), or influenza B by RT-PCR.

We divided the study period into two influenza seasons. The 2013-2014 influenza season started October 5, 2013 and
ended September 27, 2014, and the 2014-2015 influenza season started September 28, 2014 and ended October 5, 2015.
For the 2013-2014 and 2014-2015 seasons, we tabulated the number of households with 0, 1, 2, 3, 4, or 5 cases for

• influenza A (H1);
• influenza A (H3);
• influenza A (H1) or A (H3);
• influenza B; and,
• influenza A (H1), A (H3), or B.

For each of these season-virus combination, we considered enrollees at risk of influenza if they (1) were enrolled on or
before the onset date of the first case for that season and (2) remained enrolled by the onset date of the last case of the sea-
son. Because investigators enrolled households into the cohort on a rolling basis, this time frame ensured all cases were
included while also including as many households as possible. As this time frame was different for each season-virus com-
bination, a different number of households was at risk for each analysis. The attack rate of influenza was the proportion
of cases among those at risk. We used Wilson’s interval to compute 95% confidence intervals for the attack rate.141

For the primary analysis of household transmission, we only considered pairs of cases both PCR-positive for the same
type or subtype of influenza. As a secondary analysis of household transmission, we included additional episodes of ARI
up to 10 days after the onset date of a PCR-positive case within the household, regardless of the test results for these
additional episodes of ARI. The results from this secondary analysis simplify comparison of our results to previous work
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which used a syndromic case definition for secondary cases. For both analyses, we separately analyzed cases of influenza
A (H1), influenza A (H3), and influenza B to reduce spurious household transmission in the data. We computed 3-, 5-, and
7-day SARs by counting the number of apparent secondary cases among those at risk, as follows. For each household, we
defined the index case (or index cases) as the enrollee(s) who met the case definition with the earliest onset date within
that household. The enrollees at risk of secondary transmission were those enrollees who were not index cases but lived
in a household with at least 1 case. We denoted the length of time at risk in days as r and consider r = 3, 5, or 7. For our
primary analysis, the r-day secondary cases were those cases with an onset date at least 1 day and at most r days following
the date of onset of the index case within their household. For our secondary analysis, we also counted the episodes of
ARI regardless of test result within 10 days of the onset of a case when counting secondary cases. The r-day SAR was the
proportion of r-day secondary cases among those enrollees at risk of secondary transmission. We used Wilson’s interval
to compute 95% confidence intervals for the r-day SAR.141

We continued our analysis of SAR using Markov chain Monte Carlo methods. We modeled the transmission of
influenza within our cohort using a transmission model—built on a susceptible-infectious-recovered (SIR) compartmen-
tal model—modified from the work of Cauchemez and colleagues.125 Details follow in the remainder of this section.

2.1 Household transmission model

We built a compartmental SIR model for the transmission of influenza into and within a cohort of households. We used
the framework that Cauchemez and colleagues developed to analyze data from a case-ascertained study.125 They assumed
the length of the infectious period followed a gamma distribution and imputed the start and end of each case’s infectious
period. Additionally, they allowed for different susceptibility and infectiousness for children and adults. However, we
needed to reduce the number of parameters in our model because cohort data have substantially fewer cases, and we
wanted to avoid technical issues when imputing sparse data which leads to implausible results.142 So, we assumed the
shape parameter of the gamma distribution is 1; the infectious period began with symptom onset; and, we did not estimate
separate parameters for children and adults. These simplifications allowed estimation with sparse data from a prospective
cohort. In addition to information available from case-ascertained studies, the prospective cohort has richer information
on the hazard from the community over time. So, we also wanted to take advantage of this information in the model.

Now, we make the following assumptions to begin building our model.

• The time to infection follows an exponential distribution with a time-dependent rate parameter.
• The time from infection to recovery follows an exponential distribution.
• The hazard from the community is proportional to the smoothed hazard within the cohort.
• The hazard within the household is proportional to the percent of household members who are infectious.
• The overall hazard is the sum of the community hazard and the household hazard.
• The observed onset dates are conditionally independent given the first case of the season, the overall hazard within the

cohort, the onset dates of other household members, and the model parameters.
• The prior probability distribution of our parameters follows a uniform distribution on

[
1 × 10−2, 1 × 103].

In the remainder of this subsection, we will implement these assumptions to build a posterior, and we will detail our
Metropolis algorithm.

2.1.1 Hazard within the cohort

Here, we construct smoothed estimates of the hazard within the cohort for use in our model. In the next subsection, we
will use these smoothed estimates when estimating the hazard within each household.

We take the earliest onset date of the season among laboratory confirmed cases as t = 1 and the last onset date of the
season as day t = T. Then, we compute the Kaplan-Meier estimates of survival Ŝ(t) for t = 0, 1, … ,T: the probability of
not meeting the case definition before time t.143 We estimate the cummulative hazard for t = 0, 1, … ,T with

Ĥ(t) = −log(Ŝ(t)).
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We estimate the instantaneous hazard for t = 1, 2, … ,T with

ĥ(t) = Ĥ(t) − Ĥ(t − 1).

We use LOESS to smooth our estimates of ĥ.144 We name these locally smoothed estimates h̃.

2.1.2 Hazard within the household

The time-dependent hazard within each household underlays the results from the model. Suppose we follow a cohort
of households for T days and document the days on which household members first meet the case definition. For an
individual, we take the sample space of the first day when a household member meets the case definition to be

Ω = {1, 2, 3, … ,T − 1,T,∞},

where individuals who do not meet the case definition during followup are assigned an onset date of ∞. Suppose a
household has n members. Then, we may write the set of observed onset dates for the household in increasing order as

A = {a1 ≤ a2 ≤ · · · ≤ an} ∈ Ωn.

We write the onset dates in order to simplify our indices. We fit three parameters to our data: 𝛼, 𝛽, and 𝛾 .

• If h is the instantaneous hazard within the cohort, then 𝛼h is the hazard attributable to community transmission.
• If 𝜋 is the proportion of household members who are infectious, then 𝛽𝜋 is the hazard attributable to household

transmission.
• The rate of recovery among infectious individuals is 𝛾 .

Next, we need an estimate of the proportion of infectious household members at day t. For individual i = 1, … ,n, we
define characteristic functions

𝜒i(t) =

{
1 if t > ai

0 if t ≤ ai

The characteristic function reflects the fact that an individual is not infectious before their onset date. Using these
characteristic functions, we define the expected proportion of infectious people in the household at time t as

𝜋(t) = 1
n

n∑
i=1

𝜒i(t)e−𝛾(t−ai),

where e−𝛾(t−ai) is the probability that the ith case in the household is still infectious at time t for t ≥ ai. Finally, we may
define the time-dependent hazard within the household:

𝜆(t) = 𝛼h̃(t) + 𝛽𝜋(t).

We summarize the model with Figure 1.

2.1.3 Conditional probability of onset dates

We do not want the first case of the season to contribute to our likelihood. Instead, we want to condition our probability
on the first case of the season. We use the symbol 1 to denote the fact that the season’s index case is 1 ∈ Ω. Recall that
A = {a1 ≤ a2 ≤ · · · ≤ an} ∈ Ωn are ordered onset dates of a household with n people. Suppose a ∈ A is the onset date of
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F I G U R E 1 Compartmental SIR model. Susceptible individuals become infectious with a time-dependent, household-specific hazard
𝜆(t), and recover at a constant rate of 𝛾

a household member. Because we want to condition our analysis on the season’s index case, if a = 1, then the house-
hold member is an index case for the season. So, if a = 1, we take p(a = 1|1) = 1. If 2 ≤ a ≤ T, we take the conditional
probability of onset on day a as

p(a|A ⧵ {a}, 𝛼h̃, 𝛽, 𝛾, 1) = ∫
a

a−1
𝜆(t)e−∫ t

0 𝜆(u)dudt. (1)

If a = ∞, we take the conditional probability of not meeting the case definition during followup as

p(a|A ⧵ {a}, 𝛼h̃, 𝛽, 𝛾, 1) = ∫
∞

T
𝜆(t)e−∫ t

0 𝜆(u)dudt. (2)

The integrals in (1) and (2) are integrals of an exponential distribution with a time-dependent rate parameter 𝜆.
Because 𝜒 is not continuous for cases, 𝜆 is not continuous for households with at least one case. However, 𝜆 is continu-
ous between onset dates. So, we want to rewrite the integrals in (1) and (2) so that we may compute them easily. For a
household with d unique onset dates, we order the unique onset dates in increasing order ai1 < ai2 < · · · < aid . Then, we
define a non-decreasing sequence of times {s2d+3} as

{
0, ai1 − 1, ai1 , … , aid − 1, aid ,T,∞

}
. Now, for every t ∈ {s2d+3} we

may compute the integral

∫
t=sj

0
𝜆(u)du =

j−1∑
k=1

∫
sk+1

sk

𝜆(u)du. (3)

Using (3) allows us to compute the integral in (1) for each onset date after day 1 and the integral in (2) for household
members who do not meet the case definition during followup.

We assume conditional independence of onset dates within a household to estimate the conditional probability of
onset dates A

p(A|𝛼h̃, 𝛽, 𝛾, 1) =
n∏

l=1
p(al|A ⧵ {al}, 𝛼h̃, 𝛽, 𝛾, 1).

Similarly, we assume conditional independence of onset dates between households in order to compute the conditional
probability of the onset dates within the cohort. We index the households with 1, … ,m. Then, we label the onset dates
within the hth household as Ah = (ah1, ah2, … , ahnh) ∈ Ωnh . We define the onset dates for the cohort as = {A1, … ,Am}.
The overall conditional probability of  is

p(|𝛼h̃, 𝛽, 𝛾, 1) =
m∏

h=1

nh∏
l=1

p(ahl|Ah ⧵ {ahl}, 𝛼h̃, 𝛽, 𝛾, 1).

In summary, we have a conditional probability of the observed onset dates. This is the likelihood we use when estimating
our model parameters.

2.1.4 Metropolis algorithm

We use Markov chain Monte Carlo methods to estimate 𝛼, 𝛽, and 𝛾 . Specifically, we use a stepwise Metropolis
algorithm.145 We use a uniform prior with a large support for our parameters
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p(𝛼, 𝛽, 𝛾) ∝

{
1 if 𝛼, 𝛽, 𝛾 ∈ [10−2, 103]
0 otherwise

Before the algorithm begins, we tune mixing parameters using small chains such that the acceptance of the Metropo-
lis algorithm is about 1∕2. Before the first iteration of the algorithm, we initialize the parameters using random
draws from the uniform distribution on [0.1, 1]. Then, we compute the conditional probability of the onset dates
within the cohort  given these parameters and given the date of the first observed case of the season, p(|𝛼h̃,
𝛽, 𝛾, 1).

We begin the first iteration of our stepwise algorithm. To begin the first step, we take a random draw from a stan-
dard normal distribution and call this value u. Using u and the tuning parameter 𝛿𝛼 , we propose a new value for
𝛼 as

𝛼 = 𝛼eu𝛿𝛼 .

As p(u) = p(−u), we have p(𝛼|𝛼) = p(−u) = p(u) = p(𝛼|𝛼). So, our proposal distribution is symmetric. Next, we decide
whether to accept or reject our proposal 𝛼.

• If p(𝛼, 𝛽, 𝛾) = 0, then we reject 𝛼.
• Otherwise, we compute p(|𝛼 h̃, 𝛽, 𝛾, 1).

– If p(|𝛼 h̃, 𝛽, 𝛾, 1) ≥ p(|𝛼h̃, 𝛽, 𝛾, 1), then we accept 𝛼 as the new value of 𝛼.
– Otherwise, we accept 𝛼 as the new value of 𝛼 with probability

p(|𝛼 h̃, 𝛽, 𝛾, 1)
p(|𝛼h̃, 𝛽, 𝛾, 1)

.

This completes the first step. For the second step, we propose 𝛽 and either accept or reject using the same method as
the first step. For the third step, we propose 𝛾 and either accept or reject using the same method as the first step. This
completes the first iteration of the algorithm. The algorithm continues for 106 iterations.

2.1.5 Estimates

We assume the parameter values from the Metropolis algorithm are a sample from the posterior probability distribution
with density p(𝛼, 𝛽, 𝛾|, 1). For each iterate, we compute the community attack rate (CAR) within the cohort by setting
𝛽 = 0, and we have

1 − e−∫ T
0 𝛼h̃(t)dt = 1 − e−

∑T
t=1 𝛼h̃(t).

So, the CAR is the probability of influenza from the community during followup when no household members are
infectious. We compute the SAR within a household of size n by setting 𝛼 = 0, and we have

1 − e−∫
∞

0
𝛽

n
e−𝛾tdt = 1 − e−

𝛽

n𝛾 .

So, the SAR is the probability of influenza from a single infectious household member when no community members are
infectious.

For each iterate, we compute the relative attack rate of influenza within a household

• with a single infectious member and
• n − 1 susceptible members
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T A B L E 1 Number of households with 0, 1, 2, 3, 4, or 5 cases; number of cases; number of people enrolled; and attack rate by virus and
season

Cases in household
Influenza
virus Season

Households
enrolled 0 1 2 3 4 5 Cases

People
enrolled

Attack rate
% (95% CIa)

A and B 2013-2014 230 189 34 6 1 49 1044 4.7 (3.6, 6.2)

A and B 2014-2015 238 206 19 10 2 0 1b 50 1063 4.7 (3.6, 6.1)

B 2013-2014 234 217 14 2 1 21 1062 2.0 (1.3, 3.0)

B 2014-2015 238 234 4 4 1064 0.4 (0.1, 1.0)

A 2013-2014 233 207 23 3 29 1067 2.7 (1.9, 3.9)

A 2014-2015 242 212 18 10 1 1 45 1088 4.1 (3.1, 5.5)

A (H1) 2013-2014 241 223 16 2 20 1144 1.7 (1.1, 2.7)

A (H1) 2014-2015 242c 242 0 1088c 0 (0, 0.4)c

A (H3) 2013-2014 233 225 8 8 1067 0.7 (0.4, 1.5)

A (H3) 2014-2015 242 213 21 6 1 1 40 1088 3.7 (2.7, 5.0)

a Confidence interval.
b One enrollee met the case definition twice: once for influenza A (H3) and once for influenza B.
c Based on the number of people enrolled in the cohort for the influenza A (H3) analysis during 2014-2015.

vs. within a household

• without any infectious people and
• of size n

using the formula

RR = 1 − e−∫
∞

0
𝛽

n
e−𝛾tdt−∫ T

0 𝛼h̃(t)dt

1 − e−∫ T
0 𝛼h̃(t)dt

= 1 − e−
𝛽

n𝛾
−
∑T

t=1 𝛼h̃(t)

1 − e−
∑T

t=1 𝛼h̃(t)
.

So, the denominator of our RR is simply the CAR. The numerator of the RR is the risk of influenza: the competing risk
from the community and from a single infectious household member.

We use the median value as our point estimate. We create 95% credible intervals with the 2.5% and 97.5% quantiles.

2.2 Computer software

We used R version 3.5.1“Feather Spray” (Copyright 2018 The R Foundation for Statistical Computing) and GCC version
4.9.3 (Copyright 2015 Free Software Foundation, Inc.) for all computations. We used the R package Rcpp to execute our
C++ functions within R.146

3 RESULTS

The number of households enrolled for our analyses ranged from a low of 230 for influenza A and B in 2013-2014 to
a high of 242 for influenza A (H3) in 2014-2015 (Table 1). During the 2014-2015 season, a single enrollee met the case
definition twice: once for influenza A (H3) and once for influenza B. Otherwise, enrollees met the case definition at most
once per season. The attack rate of influenza A and B was 4.7% during 2013-2014 and 4.7% during 2014-2015 seasons
(Table 1). Most cases were attributable to community transmission (Tables 1 and 2). Two households had at least 2 cases
of influenza A (H1) in 2013-2014; 8 households had at least 2 cases of influenza A (H3) in 2014-2015; and 3 household
had at least 2 cases of influenza B in 2013-2014 (Table 1).



SCOTT DAHLGREN et al. 6267

T A B L E 2 Attack rate, community attack rate, and secondary attack rate for seasons and influenza virus with at least one case

Influenza
virus Season

Attack rate
% (95% CIc)

Community attack
rate % (95% CIb)

Secondary attack
ratea % (95% CIb)

Relative attack
ratea RR (95% CIb)

A (H1) 2013-2014 1.7 (1.1, 2.7) 1.5 (0.9, 2.3) 2.3 (0.3, 7.7) 2.6 (1.2, 6.8)

A (H3) 2013-2014 0.7 (0.4, 1.5) 0.6 (0.3, 1.2) 0.2 (0.0, 6.8) 1.3 (1.0, 13.3)

A (H3) 2014-2015 3.7 (2.7, 5.0) 2.7 (1.8, 3.8) 7.6 (3.7 13.3) 3.8 (2.2, 6.5)

B 2013-2014 2.0 (1.3, 3.0) 1.5 (0.9, 2.4) 5.3 (1.5, 12.7) 4.5 (1.9, 10.9)

B 2014-2015 0.4 (1.3, 3.0) 0.3 (0.1, 0.7) 0.3 (0.0, 14.3) 2.3 (1.0, 78.9)

Note: The relative attack rate is the attack rate of influenza in households with a single case relative to the attack rate of influenza in households with
no cases.
a Computed for the average household size.
b Credible interval.
c Confidence interval.

F I G U R E 2 The estimated secondary attack rate by household size for influenza by selected type and subtype during 2013-2014 and
2014-2015. Vertical bars represent 95% credible intervals

Secondary attack rates varied depending on the season and the circulating virus type (Figure 2 and Table 2). Similarly,
the CAR varied by season and circulating virus type (Figure 3 and Table 2). For a household of average size (4.7 people),
the SAR of influenza A (H1) was 2.3% during 2013-2014 (Table 2). Similarly, the SAR of influenza A (H3) was 7.6% during
2014-2015 for a household of average size (4.5 people). The SAR of influenza B was 5.3% during 2013-2014 for a household
of average size (4.5 people).

For an average-sized household during 2013-2014, if a household member became infectious with influenza A (H1),
then the attack rate of influenza for the other household members increased 160% (Table 2). Similarly, the attack rate
increased by 280% during 2014-2015 if a household member became infectious with influenza A (H3). The attack rate
increased by 350% during 2013-2014 if a household member became infectious with influenza B.

The estimates of the SAR from the transmission model differed from the 3-day, 5-day, and 7-day r-day SAR (Table 3).
As expected, estimates of SAR from the analysis, which also included episodes of ARI regardless of test result, were higher
than when limited to only laboratory-confirmed cases (Table 4).

Estimates of model parameters are in Table 5. The 95% credible intervals of 𝛽 and 𝛾 were wide, especially for
those analyses with no apparent secondary cases. The point estimates and 95% credible intervals for 𝛼 scale the
overall hazard within the cohort, which we present for those analyses with at least one apparent secondary case
(Figure 3).
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F I G U R E 3 The estimated community attack rate over the followup period of (A) influenza A (H1) during 2013-2014, (B) influenza A
(H3) during 2014-2015, and (C) influenza B during 2013-2014. The black lines represent point estimates, and the shaded areas represent 95%
credible regions
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T A B L E 3 Comparing secondary attack rate of PCR confirmed influenza from the transmission model with 3-, 5-, and 7-day r-day
secondary attack rate

r-day secondary attack rate
Influenza
virus Season

Transmission model
secondary attack
rate a % (95% CIb) 3-day % (95% CIc) 5-day % (95% CIc) 7-day % (95% CIc)

A (H1) 2013-2014 2.3 (0.3, 7.7) 2.5 (0.7, 8.8) 2.5 (0.7, 8.8) 2.5 (0.7, 8.8)

A (H3) 2013-2014 0.2 (0.0, 6.8) 0.0 (0.0, 12.9) 0.0 (0.0, 12.9) 0.0 (0.0, 12.9)

A (H3) 2014-2015 7.6 (3.7 13.3 7.4 (3.8, 13.9) 9.2 (5.1, 16.2) 9.2 (5.1, 16.2)

B 2013-2014 5.3 (1.5, 12.7) 3.4 (1.0, 11.7) 5.2 (1.8, 14.1) 6.9 (2.7, 16.4)

B 2014-2015 0.3 (0.0, 14.3) 0.0 (0.0, 24.2) 0.0 (0.0, 24.2) 0.0 (0.0, 24.2)

aComputed for the average household size.
bCredible interval
cConfidence interval

T A B L E 4 Comparing secondary attack rate of episodes of ARI regardless of test results from the transmission model with 3-, 5-, 7-, and
10-day r-day secondary attack rate

r-day secondary attack rate
Influenza
virus Season

Transmission model
secondary attack
ratea % (95% CIb) 3-day % (95% CIc) 5-day % (95% CIc) 7-day % (95% CIc) 10-day % (95% CIc)

A (H1) 2013-2014 5.7 (2.0, 12.2) 6.3 (2.7, 14.0) 6.3 (2.7, 14.0) 6.3 (2.7, 14.0) 6.3 (2.7, 14.0)

A (H3) 2013-2014 0.2 (0.0, 6.8) 0.0 (0.0, 12.9) 0.0 (0.0, 12.9) 0.0 (0.0, 12.9) 0 (0.0, 12.9)

A (H3) 2014-2015 13.5 (8.6, 19.7) 12.0 (7.2, 19.5) 16.7 (10.8, 24.8) 17.6 (11.6, 25.8) 19.4 (13.1, 27.9)

B 2013-2014 6.5 (2.1, 14.0) 5.2 (1.8, 14.1) 6.9 (2.7, 16.4) 8.6 (3.7, 18.6) 8.6 (3.7, 18.6)

B 2014-2015 5.6 (0.2, 26.0) 8.3 (1.5, 35.4) 8.3 (1.5, 35.4) 8.3 (1.5, 35.4) 8.3 (1.5, 35.4)

aComputed for the average household size.
bCredible interval.
cConfidence interval.

T A B L E 5 Summary of parameter estimates from the household transmission models

Season Virus Case definition 𝜶 (95% CI) 𝜷 (95% CI) 𝜸 (95% CI)

2013-2014 A (H1) PCR confirmed 0.82 (0.48, 1.29) 3.3 (0.04, 139) 33 (0.7, 845)

2013-2014 A (H3) PCR confirmed 0.80 (0.33, 1.58) 0.16 (0.01, 39) 59 (0.1, 886)

2014-2015 A (H1) PCR confirmed 0.73 (0.49, 1.03) 0.23 (0.08, 0.56) 0.65 (0.29, 1.29)

2013-2014 B PCR confirmed 0.73 (0.42, 1.16) 0.06 (0.01, 0.22) 0.24 (0.06, 0.63)

2014-2015 B PCR confirmed 0.60 (0.13, 1.63) 0.20 (0.01, 78) 46.9 (0.09, 878))

2013-2014 A (H1) ARI episode 0.72 (0.43, 1.11) 11.0 (0.3, 282) 40.5 (1.4, 845)

2013-2014 A (H3) ARI episode 0.80 (0.33, 1.58) 0.16 (0.01, 41) 59.3 (0.1, 886)

2014-2015 A (H1) ARI episode 0.60 (0.41, 0.83) 0.29 (0.14, 0.54) 0.44 (0.25, 0.74)

2013-2014 B ARI episode 0.70 (0.41, 1.11) 0.09 (0.01, 0.29) 0.30 (0.09, 0.71)

2014-2015 B ARI episode 0.47 (0.10, 1.29) 4.9 (0.03, 386) 24.3 (0.2, 828)
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4 DISCUSSION

We found an attack rate of 4.7% for influenza illness each season and a SAR of 2.3% for influenza A (H1) in 2013-2014,
5.3% for influenza B in 2013-2014, and 7.6% for influenza A (H3) 2014-2015. When the first person in an average sized
household was infected with influenza, the attack rate increased up to 350% for the rest of the household, depending on
the season and virus circulating in the home. Our results are qualitatively similar to published estimates of the attack
rate and SAR of PCR-confirmed influenza infections from household cohort studies in the United States. The Flu Watch
cohort study reported the attack rate was on average 4% per season for the 2006-2007 through 2008-2009 seasons.53 The
Household Influenza Vaccine Effectiveness (HIVE) study reported SARs of 2.9% for influenza A (H1), 7.7% for influenza
B, and 15.3% for influenza A (H3) during the 2010-2011 season and reported an attack rate of 8.7%.18 For the 2014-2015
season, the HIVE study reported a SAR of 17% for influenza A (H3), a SAR of 6% for influenza B, and an attack rate of
12%.23

When we included episodes of ARI regardless of test results, our estimates of SAR often increased substantially.
For example, the estimate of SAR for influenza A (H3) during 2014-2015 increased from 7.6% to 13.5% by including
additional episodes of ARI regardless of test result. While we know that including all episodes of ARI likely overes-
timates the SAR, the opposite is true when we restricted analysis to laboratory-confirmed secondary cases. The more
inclusive definition of a secondary case allows comparison with previously published work from case ascertained
household studies. The earliest reports from the United States on the household transmission of pandemic H1N1 2009
influenza reported a SAR of 13% and 27.3%.76,147 Subsequent reports of estimates of the SAR ranged from 3.5% to 22.8%;
and, our analogous estimate of SAR of influenza A (H1) during 2013-2014 was 5.7%, which is in the middle of this
range.81,82,85,93,94,148

As accurate counts of the number of secondary cases are rarely available, researchers rely on statistical methods
to estimate SARs. If we relied only on counting apparent secondary cases, then neither the 3-, nor 5-, nor 7-day SAR
could capture quantitatively similar estimates as our method. In effect, shortening the time at risk for these SARs cor-
rects for over counting, but specifying the optimal time interval is difficult. Specifically, the number of uncounted cases
attributable to household transmission must equal the number of over counted cases attributable to community trans-
mission. While the 3-, 5-, or 7-day SAR was similar to that from the transmission model for influenza A (H1) during
2013-2014, neither the 3-, 5-, nor 7- day SAR was similar to the SAR from the transmission model for both influenza
A (H3) during 2014-2015 and influenza B during 2013-2014 (Table 3). As risk from the community relative to the risk
from the household increases, this bias increases. Using the model-based approach obviates choosing the appropriate
length of time at risk for household transmission, in exchange for a more cumbersome process of estimation. Addition-
ally, the model-based approach provides credible intervals for the CAR and the SAR, while simultaneously adjusting for
uncertainty in both.

Our results may not be generalizable. In order to participate in this study, households must have at least one child. The
dynamics of influenza transmission in homes without children may be qualitatively different than what we present here.76

In order to participate in this study, households must have at least 3 people. Smaller households account for about 60%
of households in the United States (U.S. Census Bureau, 2012-2016 American Community Survey 5-Year Estimates). Our
case definition relied on molecular evidence of influenza virus in a nasal swab as detected by RT-PCR using a benchtop
system.140 While highly specific, our methods may not have detected every infection with influenza virus among enrollees
with an ARI. Our study did not capture asymptomatic infections with influenza, which would violate our assumptions
that enrollees who never met the case definition remained susceptible for the entire influenza season. Although we ana-
lyzed the data separately for cases of influenza A (H1), influenza A (H3), and influenza B, more than one influenza virus
may have circulated in some households. For example, most of the circulating influenza A (H3) viruses belonged to the
3C.2a genetic group during the 2014-2015 season in New York, but influenza A (H3) viruses from other genetic groups
also circulated within the state.148

Estimates of the transmissibility of influenza, measured by SAR within a household, ranges widely over recent history.
The estimates we present here reinforce the variation of the expected transmissibility of influenza viruses circulating in
the population from historical data (Table S3). Future data about this cohort may enable analyses which account for dif-
ferential susceptibility within the cohort, for example, by extending the compartmental model to allow for immunity. The
changing susceptibility of the population to the circulating influenza viruses could explain part of the observed dynam-
ics of the transmissibility of influenza. Quantifying this relationship could strengthen public health messaging about
preventing influenza.
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