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With the development of next-generation sequencing technologies, single-cell RNA sequencing (scRNA-
seq) has become one indispensable tool to reveal the wide heterogeneity between cells. Clustering is a
fundamental task in this analysis to disclose the transcriptomic profiles of single cells and is one of the
key computational problems that has received widespread attention. Recently, many clustering algo-
rithms have been developed for the scRNA-seq data. Nevertheless, the computational models often suffer
from realistic restrictions such as numerical instability, high dimensionality and computational scalabil-
ity. Moreover, the accumulating cell numbers and high dropout rates bring a huge computational chal-
lenge to the analysis. To address these limitations, we first provide a systematic and extensive
performance evaluation of four feature selection methods and nine scRNA-seq clustering algorithms on
fourteen real single-cell RNA-seq datasets. Based on this, we then propose an accurate single-cell data
analysis via Ensemble Feature Selection based Clustering, called scEFSC. Indeed, the algorithm employs
several unsupervised feature selections to remove genes that do not contribute significantly to the
scRNA-seq data. After that, different single-cell RNA-seq clustering algorithms are proposed to cluster
the data filtered by multiple unsupervised feature selections, and then the clustering results are com-
bined using weighted-based meta-clustering. We applied scEFSC to the fourteen real single-cell RNA-
seq datasets and the experimental results demonstrated that our proposed scEFSC outperformed the
other scRNA-seq clustering algorithms with several evaluation metrics. In addition, we established the
biological interpretability of scEFSC by carrying out differential gene expression analysis, gene ontology
enrichment and KEGG analysis. scEFSC is available at https://github.com/Conan-Bian/scEFSC.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Advances in next-generation sequencing technologies brought
single-cell RNA sequencing (scRNA-seq), which is rapidly generat-
ing large amounts of the single-cell RNA sequencing data. The main
improvement achieved by scRNA-seq is that it overcomes the
drawback of traditional bulk RNA sequencing in averaging gene
expression across all cells in a sample [1]. On the contrary,
scRNA-seq measures the transcriptome of individual cells, which
makes high throughput investigations of tissue samples contribut-
ing to reveal heterogeneity of the cells and the molecular basis of
phenotypic variation between them. This technology can provide
new opportunities to characterize and understand the investiga-
tion of complex diseases and the dynamics of cell developmental
cycles at the single cell resolution [2]. Therefore, the accurate iden-
tification of cell types and their underlying profiles has become an
important step in single-cell RNA-seq analysis [3].

Clustering has been proven to be a critical computational
method in grouping cells according to transcriptomic characteris-
tics and thereby annotating cell types [4]. Recently, a plethora of
clustering algorithms have been used to address the complexities
of the scRNA-seq data [5]; for instance, Lin et al. [6] proposed
CIDR, a clustering algorithm that reduces data dropouts through
an implicit interpolation method using principal coordinate anal-
ysis (PCoA) to reduce the dimensionality. Qiu et al. [7] presented
the Monocle model for clustering using t-SNE and density peak
clustering. Yau et al. [8] proposed the pcaReduce algorithm,
which integrates principal component analysis (PCA) and hierar-
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chical clustering to generate a cell state hierarchy in which each
clustering branch is associated with a variant principal compo-
nent. Levine et al. [9] developed the PhenoGraph algorithm for
the analysis of high-dimensional single-cell data, by creating a
graph representing the phenotypic similarity between cells. Satija
et al. [10] proposed the Seurat algorithm for clustering based on
PCA, Shared Nearest Neighbour (SNN) graphs and Louvain’s algo-
rithm. Guo et al. [11] proposed the SINCERA algorithm to opti-
mize cell clusters by hierarchical clustering for detecting
differentially expressed genes. Grün et al. [12] developed RaceID
for identifying rare cell types in complex single cell populations.
It is difficult to imagine, however, that each clustering method
can be equally effective across all scRNA-seq datasets. Indeed,
each clustering algorithm has its own strengths and weaknesses
and performances exhibit specific characteristics on particular
scRNA-seq datasets [13]. Therefore, this is a challenge for users
to decide which clustering algorithm is the most appropriate
choice for the scRNA-seq data in hand.

Clustering ensembles have emerged as an effective method for
combining solutions from multiple individual clustering algo-
rithms into a consensus result. A number of clustering ensemble
models have been developed for the scRNA-seq data; for example,
Kiselev et al. [14] proposed the SC3 algorithm to combine the base
clustering results obtained using spectral transformation and k-
means algorithms into a consensus matrix, and then employing a
hierarchical clustering to achieve the final clustering result. Wan
et al. [15] presented the SHARP algorithm to cluster scRNA-seq
data, using meta-clustering algorithms to obtain the final cluster-
ing result. Yang et al. [16] proposed the SAFE-clustering algorithm
to first perform an independent clustering using four methods, SC3,
CIDR, Seurat, and t-SNE + k -means, and then integrating solutions
using three hypergraph-based partitioning algorithms. Geddes
et al. [17] developed an autoencoder-based cluster integration
framework to obtain random subspace projections from the data
and the reducing dimensionality using an autoencoder. Zhu et al.
[18] developed the Sc-GPE algorithm by combining five clustering
methods based on single-cell graph partitioning and calculating
the probability of cell pairs being classified into the same cluster.
Huh et al. [19] presented the SAME-clustering algorithm to gener-
ate clustering solutions from multiple methods and selected a sub-
set of maximum diversity to produce improved integrated
solutions. However, we find that most clustering algorithms sup-
pose that all features are equally significant in the clustering while
in reality, diverse features have different effects on clustering [20].
This is one of the reasons why most clustering algorithms often
perform poorly when faced with high-dimensional scRNA-seq data
[21]. Therefore, efficient feature selection methods need to be
developed for optimizing scRNA-seq data analysis.

To address these challenges, we first carry out a performance
evaluation of multiple feature selection methods and nine
scRNA-seq clustering algorithms on fourteen real single-cell RNA-
seq datasets. Then, we present an accurate single-cell data analysis
via Ensemble Feature Selection based Clustering, called scEFSC. The
first module proposes removing genes that do not add significantly
to the analysis of the scRNA-seq data using multiple unsupervised
feature selections. Then, the second module implements different
scRNA-seq clustering algorithms on the data generated in the first
module to cluster the data, and then combines all the clustering
results using a weighting-based meta-clustering method to obtain
the final result. We applied scEFSC to the fourteen tested real
scRNA-seq datasets compared clustering performance using sev-
eral evaluation metrics to other scRNA-seq clustering algorithms.
Results showed that our proposed scEFSC outperformed the other
clustering algorithms. In addition, we realized differential gene
expression analysis, gene ontology enrichment and KEGG analysis,
demonstrating the biological interpretability of scEFSC.
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2. Methods

2.1. Overview of the scEFSC algorithm

In our study, we developed an accurate single-cell data analysis
via Ensemble Feature Selection based Clustering, called scEFSC. The
input of the proposed scEFSC was the scRNA-seq data, which is
composed of an n � d gene expression matrix
X ¼ x1; x2; � � � ; xnf g; xi ¼ x1i ; x

2
i ; � � � ; xdi

� �
, where n is the number of

cells and d is the number of genes. To begin, data pre-processing
was performed using a log2 transformation to normalize the data
and then genes detected in the normalized data in less than 2%
of the cells were removed to filter out the low-level expressed
genes from the scRNA-seq data. The overall framework of our pro-
posed scEFSC is summarized in Fig. 1. As depicted in this figure,
scEFSC consists of three important phases.

In phase A, we first employed a non-negative kernel autoen-
coder [22] to pre-select 5000 genes to remove insignificant genes.
After that, we proposed multiple unsupervised feature selections
including Low Variance [23], Laplacian Score [24], SPEC [25], and
MCFS [26] to remove genes that do not contribute significantly
to the analysis of the scRNA-seq data. We then fed the derived fea-
ture subsets into the clustering algorithms. Among them, we can
observe that Low Variance is based on statistics; Laplacian Score
and SPEC are based on similarity and MCFS is based on sparse
learning. The last three methods are extensions of spectral model
previously used for scRNA-seq data analysis. Unlike feature extrac-
tion methods, these feature selection methods do not change the
original representation of the data and are considered to provide
better readability and interpretability [27].

In phase B, we applied several different scRNA-seq clustering
algorithms to cluster the feature subsets obtained by the multiple
feature selection models. Various scRNA-seq clustering methods
exist to run in our model. These methods are based on different
underlying mathematical formulations as described above, includ-
ing SC3 [14], CIDR [6], monocle [7], pcaReduce [8], Rphenograph
[9], Seurat [10], SHARP [15], SINCERA [11], and RaceID [12]. For
each feature subset derived from the different feature selection
models, we applied the stated clustering methods to generate clus-
ter labels to finally yield a set of individual cluster labels. In addi-
tion, to enhance the diversity of the individual cluster labels in the
set, the pairwise Adjusted Rand Index (ARI) was employed to mea-
sure the similarity between any two individual clustering labels
and then remove the method having similarity with the lowest
variance [19]. In phase C, a weighted-ensemble clustering method
called wMetaC was used to obtain the final clustering result of the
individual cluster labels [15].

2.2. Non-negative kernel autoencoder

Since non-negative kernel autoencoders have been proven to be
successful for screening single-cell sequencing data with highly
expressed genes [22], in our study we first use non-negative
nuclear autoencoders to preselect genes. Indeed, the normalized
data is fed to a single-layer autoencoder to remove the insignifi-
cant genes, which consists of two important parts: the encoder
and the decoder. The autoencoder can be formulated as follows.

e ¼ f E xð Þ; f E xð Þ ¼ xWE þ bE ð1Þ

x ¼ f D eð Þ; f D eð Þ ¼ eWD þ bD ð2Þ
where f E and f D represent the conversion function of the encoder
and decoder layers, x is the input of the encoder, x is a restruction
of x; e is the reduced dimensional data of x;W is the weight matrix,
and b is the bias vector. The encoder aims to represent the data in a



Fig. 1. Diagram of the framework of our proposed scEFSC algorithm. It consists of data pre-processing and three important phases. In Phase A, a non-negative kernel
autoencoder to pre-select a portion of genes to remove genes that were insignificant and multiple unsupervised feature selections are proposed to remove genes that do not
contribute significantly to the analysis of the scRNA-seq data. In Phase B, several different scRNA-seq clustering algorithms are employed to cluster the feature subsets
obtained by the multiple feature selection models. In Phase C, a weighted-ensemble clustering method called wMetaC was used to obtain the final clustering result of the
individual cluster labels.
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low-dimensional space, while the decoder tries to rebuild the orig-
inal input from the reduced data. After that, the encoder weights are
imposed as non-negative so that each latent variable is an additive
representation of the original features. Then, the non-negative fac-
tors of less important features are reduced to zero. Based on the cal-
culated weights, the method retains only those genes with large
weight variances that can be considered as important features to
characterize the original data. Following the reference [22], we also
pre-selected 5000 genes for subsequent algorithm evaluation and
analysis.
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2.3. Unsupervised Feature Selection Algorithms

After data pre-processing, we employed four unsupervised fea-
ture selection algorithms, Low Variance [23], Laplacian Score [24],
SPEC [25] and MCFS [26] to further select genes with relevant
information, and then obtained four different feature subsets.
The detailed section is summarized in the Supplementary
Section S1.

Low Variance is a simple and effective unsupervised algorithm
for choosing features, consisting of a typical filtering method that



Table 1
Summary of the compared single-cell clustering algorithms on the scRNA-seq data.

Algorithm Type Version Published

SC3 k-means 1.18.0 Nature methods [14]
CIDR hierarchical 0.1.5 Genome biology [6]
monocle density peaks

clustering
2.18.0 Nature methods [7]

pcaReduce k-
means + hierarchical

1.0 BMC bioinformatics [8]

Rphenograph graph-based 0.99.1 BMC bioinformatics [9]
Seurat graph-based 4.0.0 Nature biotechnology [10]
SHARP hierarchical 1.1.0 Genome research [15]
SINCERA hierarchical 0.99.0 PLoS computational biology

[11]
RaceID k-means 0.2.2 Nature [12]
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evaluates features by their variance which can be formularized as
follows:

r2 ¼

Xn
i¼1

xi � lð Þ2

n
; ð3Þ

where xi is the value of the i-th sample, l is the mean of samples,
and n is the number of samples.

Laplacian Score is a filter method with Laplacian Eigenmaps and
Locality Preserving Projection. The Laplacian Score first builds a
graph and connects the adjacent points. The incidence matrix S
can be defined as follows:

Sij ¼ e�
jjxi�xj jj2

t ; if nodes i and j are connected;
0; otherwise;

(
ð4Þ

where t is a constant. Then, it establishes a diagonal matrix D on the
basis of S, where the diagonal element Dii of D is the sum of the ele-
ments in the i-th row of S, generates a Laplacian matrix L ¼ D� S
according to S and D. The Laplacian Score of the i-th feature is cal-
culated as follows:

Li ¼ f̂ Ti Lf̂ i
f̂ Ti Df̂ i

ð5Þ

f̂ i ¼ f i � f Ti D1
1TD1

1; ð6Þ

where f i is the vector formed by the i-th feature of the data and 1 is
the vector formed by the number 1.

SPEC is a feature selection framework based on spectral graph
theory, which unifies the algorithmic selection of the supervised
and unsupervised features. SPEC uses the RBF kernel function,
which is a popular similarity measure to construct similarity
matrix S, which can be calculated as follows:

Sij ¼ e�
jjxi�xj jj2

2r2 : ð7Þ
SPEC, induces the undirected graph G from the data and obtains its
adjacency matrix W ¼ S. The degree matrx D of the graph G, is
established by W. D is a diagonal matrix and its diagonal element
Dii is the sum of the elements in the i-th row of W. The Laplace
matrix L is defined as L ¼ D�W . The normalized Laplacian matrixbL is formulated as bL ¼ D�1

2LD�1
2. The relevance of the features is eval-

uated by using the spectrum of the graph in SPEC. The scoring func-
tions is calculated as follows:

û1 Fið Þ ¼ f̂ Ti c bL� �
f̂ i ð8Þ

û2 Fið Þ ¼
f̂ Ti c bL� �

f̂ i

1� f̂ Ti n0
ð9Þ

f̂ i ¼ D
1
2f i

jjD1
2f ijj

; ð10Þ

where Fi is the i-th feature of data, f i is the vector formed by the i-th

feature of data, c bL� �
is the Fourier transform of bL, and n0 ¼ D

1
2e.

MCFS is based on manifold learning and L1-regularized models
for feature selection so that the multi-cluster structure of the data
can be well preserved. In MCFS, the representation of the data in
the embedding space is obtained by solving the generalized feature
problem Ly ¼ kDy. Let Y ¼ y1; . . . yk½ �; yk be the eigenvector corre-
sponding to the smallest eigenvalue, and K be the dimension of
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the embedding space. The coefficients of linear regression are
obtained by addressing the following problems:

min
ak

jjyk � XTakjj2 þ bjakjn; ð11Þ

where ak is the regression coefficient vector, jakj is the L1-norm of
ak. The importance of each feature is determined by the MCFS score.
The MCFS score is obtained as follows:

MCFS jð Þ ¼ max
k

jak;jj; ð12Þ

where ak;j is the j-th element of the vector ak.

2.4. Implementation of multiple scRNA-seq clustering methods

After implementing the unsupervised feature selection meth-
ods, nine scRNA-seq clustering algorithms, including SC3[14],
CIDR[6], monocle[7], pcaReduce[8], Rphenograph[9], Seurat[10],
SHARP[15], SINCERA[11] and RaceID[12], were employed for clus-
tering under those four different feature subsets generated by the
above four unsupervised feature selection algorithms. We describe
this briefly below, with detailed sections in the Supplementary
Section S2.

Table 1 summarizes these single-cell clustering algorithms. For
SC3, we used the version 1.18.0 from Bioconductor and employed
the number of cell types as the number of clusters k in our pro-
posed model. For CIDR, we used the version 0.1.5 from GitHub
(github.com/VCCRI/CIDR). The Monocle R package was the version
2.18.0 from GitHub (github.com/cole-trapnell-lab/monocle-releas
e). For pcaReduce, we used the version 1.0 from GitHub (github.c
om/JustinaZ/pcaReduce) and performed merging based on largest
probability. The Rphenograph R package was the version 0.99.1
from GitHub (github.com/JinmiaoChenLab/Rphenograph). For Seu-
rat, we used the version 4.0.0 from CRAN and the dimension of
reduction to use as input was 10. For SHARP, we used the version
1.1.0 from GitHub (github.com/shibiaowan/SHARP). The SINCERA
R package was the version 0.99.0 from GitHub (github.com/xu-
lab/SINCERA) and the agglomeration method to be used was the
group average method in the hierarchical clustering. For RaceID,
we used the version 0.2.2 from CRAN and the maximum number
of clusters for the derivation of the cluster number by the satura-
tion of mean within-cluster-dispersion was 20.

2.5. scEFSC: Ensemble Consensus Clustering Based on Multiple Feature
Selections

After data preprocessing and non-negative kernel autoencoder,
multiple unsupervised feature selection was proposed to select dif-
ferent feature subsets to remove genes that do not contribute sig-
nificantly to the scRNA-seq data. On this basis, the data generated
by the four unsupervised feature selections were clustered by exe-
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cuting nine single-cell RNA-seq clustering algorithms separately to
finally obtain the underlying set of clustering results.

2.5.1. Ensemble consensus clustering
After obtaining the basic clustering results and removing labels

with least diversity, we proposed employing weighted-based
meta-clustering (wMetaC) [15] to combine the clustering results
from the multiple individual clustering methods. In contrast to tra-
ditional cluster-based similarity partitioning algorithms that give
equal importance to each instance and each cluster, wMetaC
assigns different weights to different instances or pairs of instances
and different clusters to enhance the clustering capabilities. With
wMetaC, the individual clustering results were transformed into
a clustering similarity matrix S whose elements si;j represented
the similarity between the ith and jth cells. Since the weight of
each cell pair is determined by the degree of agreement of the colo-
cation clustering results of the two cells, the similarity matrix S is
transformed into a weight matrix W as follows:

wi;j ¼ si;j 1� si;j
� �

; ð13Þ
where wi;j is the element of the ith row and jth column in W. When
si;j ¼ 1 or si;j ¼ 0;wi;j reaches a minimum value of 0; when
si;j ¼ 0:5;wi;j reaches a maximum value of 0.25. Zero weights were
assigned to cell pairs that were easiest to cluster, while the highest
weights were assigned to the most difficult pairs to cluster. The
weight associated with each cell was then calculated as the cumu-
lative sum of all the intercellular weights associated with the corre-
sponding cell.

Then, the weighted inter-cluster similarity was calculated by
dividing the sum of the weights of their overlapping elements by
their combined weights. Given two clusters Cu and Cv , the inter-
cluster similarity in wMetaC was calculated as:

S ¼

X
t2Cu\Cv

XN
j¼1

wt;j þ d

X
t2Cu[Cv

XN
j¼1

wt;j þ d

; ð14Þ

where wt;j is the colocation weight of the tth cell and the jth cell
obtained above, N is the number of cells, and d is a very small pos-
itive number, with d ¼ 0:01 used to avoid a zero denominator. SincePN

j¼1wt;j summarizes all possible colocation weights between the
tth cell and all cells, it is set to the overall colocation weight of
the tth cell. The numerator of the inter-cluster similarity formula
represents the sum of the colocation weights of the cells that appear
in both the Cu and Cv groups, while the denominator represents the
sum of the colocation weights of the cells that appear in either the
Cu or Cv group.

With this, the similarity matrix obtained was clustered using
the hierarchical clustering method with the ”ward.D”. The corre-
spondence between the clusters was obtained after clustering.
Finally a voting scheme [15] was applied to the clustering results
obtained in the previous step and the individual cells were
assigned to the clusters to which they fit in the highest proportion,
resulting in the final clustering result.

2.5.2. Removing labels with least diversity
Since the diversity of clustering results is beneficial to enhance

the performance of the ensemble solution [28], we computed pair-
wise ARI between clustering labels to quantify the similarity
between the results of individual clustering methods to evaluate
the diversity. After that, a similarity matrix was constructed by cal-
culating the pairwise similarity between all individual clustering
labels, including the clustering labels with a self-similarity value
of 1. Then the variance of the similarity vector was evaluated for
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each clustering labels. Since high pairwise similarity has a high
ARI value and a self-similarity value of 1, the similarity vector with
the most similar cluster label to the other cluster labels has the
smallest variance. Because the clustering labels with the lowest
variance contribute least in terms of diversity, we removed cluster-
ing labels obtained from the few clustering methods with the low-
est variance to obtain the set of clustering labels.

2.6. Evaluation metrics

Comparing the agreement of cell clustering results with the pre-
viously published labels is a common method for evaluating the
performance of clustering methods for scRNA-seq data analysis.
In this study, we used two evaluation metrics: Normalised Mutual
Information (NMI) and Adjusted Rand Index (ARI), as summarized
in Supplementary Section S3.
3. Results and Discussion

3.1. Data source

We collected fourteen publicly available scRNA-seq datasets
containing cell type annotations and gene expression values from
various scRNA-seq platforms, which can be downloaded from the
Gene Expression Omnibus and Broad Institute Single Cell Portal.
All the datasets are from different species, including mouse and
human, as well as from different organs, such as brain, lung and
kidney. The detailed information on the datasets are summarized
in Table 2. Of note, we removed cells labeled ambiguously as
”abandoned” and then performed a logarithmic transformation
(base 2) to rescale the data if its gene expression values were
higher than 100. Indeed, for the 14 scRNA-seq datasets in Table 2,
we can see that the number of cells varies from 90 to 13316, the
number of genes from 19020 to 55186 and the number of clusters
from 4 to 14. To further remove redundant and irrelevant genes
and reduce the computational cost of the algorithm, we used a
non-negative kernel autoencoder [22] to pre-select 5000 genes
for downstream analysis.

3.2. scEFSC is the most accurate among computational methods on the
scRNA-seq data

To investigate the advantages of clustering using scEFSC, we
benchmarked our proposed scEFSC method alongside the nine
scRNA-seq clustering methods on the fourteen published scRNA-
seq datasets (Table 2). The clustering results measured by NMI
and ARI are summarized in Fig. 2.

The results of the NMI evaluation, are summarized in Fig. 2a.
We observe the following: it appears that of the ten single-cell
clustering algorithms, scEFSC provided the best clustering results
on eleven of the fourteen datasets, and ranked second, slightly
below SC3 on the E-MTAB-5061 dataset, and third and fourth on
the GSE36552 and GSE84133 datasets; CIDR had the worst perfor-
mance. Compared to Rphenograph and Seurat that based on the
community detection method Louvain, scEFSC outperformed both.
In addition, compared to the consensus clustering algorithms, SC3
and SHARP, scEFSC was superior to both indicating that multiple
clustering is more effective for base clusters in consensus
clustering.

In terms of ARI evaluation, as shown in Fig. 2b, we observe
broadly similar results to those using the NMI. Our proposed
scEFSC performed better than the other nine clustering algorithms,
while CIDR and SHARP simultaneously performed the worst.
scEFSC clustered best on ten datasets, being second only to SC3
on the GSE71585 and E-MTAB-5061 datasets, second only to SIN-



Table 2
Summary of the 14 real scRNA-seq datasets.

Source Organism cell gene class platform Ref

GSE36552 Human embryo 90 20214 6 Tang Nature structural & molecular biology [29]
GSE83139 Human pancreas 457 19950 7 SMARTer Diabetes [30]
GSE81861 Human tissues 561 55186 9 SMARTer Nature genetics [31]
GSE59739 Mouse brain 622 25334 4 STRT-Seq Nature neuroscience [32]
GSE81252 Human liver 777 19020 7 SMARTer Nature [33]
GSE81608 Human pancreas 1600 39851 8 SMARTer Cell metabolism [34]
GSE71585 Mouse brain 1679 24150 18 SMARTer Nature neuroscience [35]
GSE85241 Human pancreas 2126 19140 10 CEL-Seq2 Cell systems [36]
E-MTAB-5061 Human pancreas 2209 25525 14 Smart-Seq2 Cell metabolism [37]
GSE65525 Mouse embryo 2717 24175 4 inDrop Cell [38]
GSE60361 Mouse brain 3005 19972 9 STRT-Seq Science [39]
phs000833.v3.p1 Human brain 3042 25123 16 Fluidigm C1 Science [40]
GSE84133 Human pancreas 8569 20125 14 inDrop Cell systems [41]
SCP345 Human pancreas 13316 21813 8 10X Genomics The reference [42]
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CERA on the SCP345 dataset and fourth on the GSE84133 dataset.
Although CIDR showed a higher performance than most of the
other algorithms on the GSE83139 and GSE81861 datasets, it per-
formed particularly poorly on GSE85241, E-MTAB-5061,
phs000833.v3.p1, GSE84133 datasets. SHARP performed the worst
on the GSE81861 and GSE71585 datasets, and did not perform well
on the remaining datasets. SC3 achieved better performance than
the others on most scRNA-seq datasets, while scEFSC outper-
formed SC3 on most datasets. scEFSC was better than community
detection method Louvain algorithms, Rphenograph and Seurat.
The higher ARI values of scEFSC clustering results over consensus
clustering algorithms, SC3 and SHARP, suggest that multiple clus-
tering is more effective in base clustering for consensus clustering.

In summary, our proposed scEFSC algorithm performed well
and demonstrated superior clustering performance on fourteen
scRNA-seq datasets, improving the clustering performance on the
scRNA-seq data. The results also reflect that the combination of
multiple clustering models can enhance the performance of con-
sensus clustering.
3.3. scEFSC outperforms other ensemble clustering algorithms

We compared scEFSC, SAME[19], scCCESS[43] and RSEC[44] on
the fourteen published scRNA-seq datasets as in the previous sec-
tion. SAME, scCCESS and RSEC are three ensemble clustering algo-
rithms for single-cell RNA-seq data. The clustering results
measured by NMI and ARI are summarized in Fig. 3.

Fig. 3a summarizes the clustering results evaluated by NMI.
Compared with SAME and RSEC, our proposed scEFSC had the best
NMI values on all 14 datasets. Of the fourteen datasets, our pro-
posed scEFSC had better NMI values on twelve datasets compared
with scCCESS, they provided the similar results on the GSE84133
dataset, and on the GSE36552 datasets scCCESS had better NMI
values than our proposed scEFSC. Our proposed scEFSC performed
the best among the four algorithms, and RSEC performed the
worst. On the GSE59739, GSE81608, and SCP345 datasets, our pro-
posed scEFSC was superior to the other three algorithms by more
than 0.1.

Fig. 3b summarizes the clustering results evaluated by ARI. The
results using ARI are roughly similar to the results using NMI. Com-
pared with SAME and RSEC, our proposed scEFSC had the best ARI
values on all 14 datasets. Of the fourteen datasets, our proposed
scEFSC had better ARI values on twelve datasets compared with
scCCESS, both algorithms had the same result on the GSE84133
dataset, and on the GSE36552 datasets scCCESS had better ARI val-
ues than our proposed scEFSC. Our proposed scEFSC performed the
best among the four algorithms, and RSEC performed the worst. On
the GSE59739, GSE81608, GSE85241, GSE65525, GSE60361,
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phs000833.v3.p1, and SCP345 datasets, our proposed scEFSC was
superior to the other three algorithms by more than 0.1.

Overall, the clustering results showed that our proposed scEFSC
outperformed SAME, scCCESS and RSEC on most scRNA-seq data-
sets, and our proposed scEFSC exhibited excellent clustering per-
formance in comparison with other ensemble clustering
algorithms.
3.4. The performance of scEFSC outperforms the scDHA algorithm
recently reported in Nature Communications

We compared scEFSC and scDHA [22] on the fourteen published
scRNA-seq datasets as in the previous section. scDHA is a scRNA-
seq clustering method, which uses a hierarchical autoencoder pub-
lished in Nature Communications. The scDHA algorithm frame-
work consists of two main components. The first component is a
non-negative kernel autoencoder that aims to filter genes that con-
tribute little to the data representation. The second part is a
stacked Bayesian autoencoder for data dimensionality reduction.
Fig. 4 depicts the clustering results of scEFSC and scDHA as mea-
sured by NMI and ARI.

The clustering results of scEFSC and scDHA assessed by NMI are
summarized in Fig. 4a. Of the fourteen datasets, our proposed
scEFSC had better NMI values on ten datasets compared with
scDHA, both algorithms had the same result on the GSE71585
dataset, and on the GSE36552, E-MTAB-5061 and GSE65525 data-
sets scDHA had better NMI values than our proposed scEFSC. Our
proposed scEFSC significantly outperformed scDHA on the
GSE59739 dataset, with an improvement in clustering perfor-
mance of 0.11. Our proposed scEFSC was superior to scDHA by
more than or equal to 0.03 on the GSE81252, GSE81608,
GSE85241, GSE60361 and GSE84133 datasets. On the E-MTAB-
5061 and GSE65525 datasets, our proposed scEFSC was worse than
scDHA.

Fig. 4b summarizes the clustering results for scEFSC and scDHA
assessed by ARI. For the fourteen datasets our proposed scEFSC had
better ARI values than scDHA on ten datasets, scEFSC and scDHA
gave the similar ARI value on the GSE71585 dataset, and on the
GSE36552, E-MTAB-5061 and GSE65525 datasets scDHA had bet-
ter ARI values than scEFSC. scEFSC significantly outperformed
scDHA on the GSE81252, GSE81608, GSE85241, GSE60361 and
phs000833.v3.p1 datasets, with a clustering performance improve-
ment of no less than 0.10. Meanwhile, on GSE83139, GSE59739,
GSE84133 and SCP345 datasets, our proposed scEFSC outper-
formed scDHA by more than or equal to 0.6. On the dataset
GSE65525, scDHA outperformed our proposed method.

Overall, the clustering results showed that our proposed scEFSC
outperformed scDHA on most of the scRNA-seq datasets and was



Fig. 2. Clustering performance comparison of scEFSC, SC3, CIDR, monocle, pcaReduce, Rphenograph, Seurat, SHARP, SINCERA and RaceID on the fourteen published scRNA-seq
datasets. (a) Clustering performance evaluated by NMI. (b) Clustering performance evaluated by ARI.
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Fig. 3. Comparison of the clustering performance of scEFSC, SAME, scCCESS and RSEC on the fourteen published scRNA-seq datasets. (a) Clustering performance evaluated by
NMI. (b) Clustering performance evaluated by ARI.
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inferior to scDHA on only a few scRNA-seq datasets. Our proposed
scEFSC demonstrated an excellent clustering performance there-
fore, compared to scDHA.
3.5. Integration of multiple feature selection methods can improve
downstream functional analysis

We compared our proposed scEFSC with the scEFSC algorithms
with one of the four feature selections on the fourteen scRNA-seq
datasets shown in Table 2 using the clustering evaluation metrics
NMI and ARI to evaluate the clustering results and summarize
the results in Fig. 5.

With the NMI evaluation, the full scEFSC outperforms the other
four single-feature selection algorithms on six scRNA-seq datasets
including GSE59739, GSE81608, GSE85241, GSE65525, GSE60361,
and phs000833.v3.p1. On GSE83139, GSE81861, GSE81252 and
GSE71585 datasets, our proposed full scEFSC performed equally
well as some of the other four algorithms. On GSE36552 and E-
MTAB-5061 datasets, scEFSC performed next to scEFSC containing
only SPEC. On the GSE84133 dataset, performance of our proposed
scEFSC was second to that of scEFSC containing only MCFS. Finally,
on the SCP345 dataset, the performance of full scEFSC is second to
that of scEFSC with only Laplacian Score. Overall, our proposed
scEFSC performed best, and scEFSC including SPEC was the second
best, scEFSC having only Laplacian Score or only MCFS had the
worst performances.
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With ARI evaluation, our proposed scEFSC similarly outper-
formed the other four algorithms on six datasets including
GSE83139, GSE81861, GSE81608, GSE65525, GSE60361, and
phs000833.v3.p1. On the GSE36552 and GSE81252 datasets, full
scEFSC performed just as well as some of the other four algorithms.
On GSE85241, the performance of our proposed scEFSC was only
lower than scEFSC having only Low Variance. The performance of
full scEFSC on the GSE59739, GSE71585, E-MTAB-5061,
GSE84133 and SCP345 datasets, however was not good. In sum-
mary, our proposed scEFSC had the best performance, scEFSC with
only Low Variance was second best and scEFSC with only MCFS the
worst.

Altogether, our proposed scEFSC algorithm exhibited superior
clustering performance on the fourteen scRNA-seq datasets, indi-
cating that using multiple unsupervised feature selection algo-
rithms can strengthen the clustering ability of consensus
clustering over a single unsupervised feature selection algorithm.
3.6. The clustering performance of scEFSC is affected by different
parameters

In terms of parameters, our proposed sEFSC default selects 5000
genes by a non-negative kernel autoencoder and 2000 genes by
unsupervised feature selections, using nine clustering algorithms.
To verify the superiority of the default parameters, we conducted
two sets of experiments on the fourteen scRNA-seq datasets test-
ing these parameters. The first experiment compared the effect



Fig. 4. Comparison of the clustering performance of scEFSC and scDHA on the fourteen published scRNA-seq datasets. (a) Clustering performance evaluated by NMI. (b)
Clustering performance evaluated by ARI.
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of the number of features selected on scEFSC. The second experi-
ment compared the effect of the number of clustering algorithms
in the multiple clustering on scEFSC.

For the first parametric experiment, we compared scEFSC with
the proposed default parameters to scEFSC with 10,000 or 5,000
genes selected, and scEFSC with 5,000 or 3,000 genes selected,
respectively and the clustering results assessed by NMI and ARI
are summarized in Fig. 6a and 6b. NMI and ARI values were broadly
similar. scEFSC with default parameters outperformed scEFSC with
two feature selections of 10,000 and 5,000 genes on thirteen data-
sets and was the same on the GSE60361 dataset. Therefore, our
proposed scEFSC using a non-negative encoder for 5,000 genes fea-
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ture selection was effective. In addition, scEFSC with default
parameters performed better on eight datasets, the same on three
datasets and worse on three datasets, compared to the scEFSC with
two feature selections of 5,000 and 3,000 genes. This shows that
our proposed scEFSC was effective in selecting 2000 genes using
unsupervised feature selection. In conclusion, our proposed scEFSC
default setting of 5000 and 2000 genes for feature selection effec-
tively enhanced the clustering performance.

In the second parametric experiment, on the fourteen datasets,
we compared scEFSC with our proposed default parameters to
scEFSC with eight clustering algorithms and scEFSC with six clus-
tering algorithms. Fig. 6c and 6d summarize the clustering results,



Fig. 5. Performance comparisons of the different feature selections. NMI and ARI values were multiplied by 100 for comparison purposes. (a) Clustering performance
evaluated by NMI evaluation metric. (b) Clustering performance evaluated by ARI evaluation metric.
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showing the largely consistent results evaluated by NMI and ARI.
In the previous comparison of our proposed scEFSC and nine
single-cell clustering algorithms, SC3 was second to scEFSC in
terms of average clustering results across the fourteen datasets
and was better than the other nine single-cell clustering algo-
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rithms, while CIDR, SHARP and pcaReduce were the three worst
algorithms. The scEFSC using eight clustering algorithms elimi-
nated the SC3 algorithm and the scEFSC using six clustering algo-
rithms excluded CIDR, SHARP and pcaReduce. Our proposed
scEFSC clustered better on ten datasets, equally well on the



Fig. 6. Comparison of the clustering performance with different parameters of scEFSC on the fourteen published scRNA-seq datasets. (a) Comparison of the clustering
performance of scEFSC with two default feature selections of 5,000 and 2,000 genes to scEFSC with two feature selections of 10,000 and 5,000 genes and scEFSC with two
feature selections of 5,000 and 3,000 genes. Clustering performance evaluated by NMI. (b) The same as a. with clustering performance evaluated by ARI. (c) Comparison of the
clustering performance of scEFSC with default multiple clustering using nine clustering algorithms to scEFSC with multiple clustering using eight clustering algorithms and
scEFSC with multiple clustering using six clustering algorithms. Clustering performance evaluated by NMI. (d) The same as c. with clustering performance evaluated by ARI.
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GSE36552 dataset and worse on three datasets compared to scEFSC
using eight clustering algorithms, indicating that SC3 plays an
important role in consensus clustering. Furthermore, scEFSC clus-
tered better on eight datasets, the same on the GSE36552 and
GSE81252 datasets and worse on four datasets compared to scEFSC
using six clustering algorithms, suggesting that CIDR, SHARP and
pcaReduce, the three clustering algorithms with the worst average
clustering results, also play a positive role in the final clustering
result for consensus clustering.

In summary, the selection of 5000 genes with a non-negative
kernel autoencoder and 2000 genes with unsupervised feature
selections and applying nine clustering algorithms in the multiple
clustering are meaningful in enhancing the clustering advantages
of the proposed scEFSC algorithm.
3.7. The running times of scEFSC with other single-cell clustering
algorithms

We compared the running time of scEFSC with other single-cell
clustering algorithms, including SC3, CIDR, monocle, pcaReduce,
Rphenograph, Seurat, SHARP, SINCERA, and RaceID. All those algo-
rithms were run on Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0–90-
generic x86_64). The running time comparisons are summarized
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in Supplementary Table S3 for fourteen scRNA-seq data. Since
scEFSC performs multiple feature selection and multiple clustering,
scEFSC has the longest running time compared to other single-cell
clustering algorithms.
3.8. Evaluations on a large-scale scRNA-seq dataset GSE109774

Due to the development of scRNA-seq technology, an increasing
number of cells are sequenced. Therefore, to demonstrate the scal-
ability of our proposed scEFSC on large datasets, we conducted
experiments on the GSE109774 dataset. The GSE109774 dataset
is from Mouse tissues with 54,439 cells and 40 celltypes. Since
computational resources were limited, we downsampled the
large-scale GSE109774 dataset with 16,332 cells (about 30% of
the cells). Then we compared scEFSC,SC3, CIDR, monocle, pcaRe-
duce, Rphenograph, Seurat, SHARP, SINCERA, RaceID,scDHA,SAME,
scCCESS and RSEC on GSE109774. Fig. 7 summarizes the perfor-
mance comparisons under two evaluation metrics NMI and ARI.
From the figure, it can be seen that our proposed scEFSC provided
better performance than most other algorithms on the large data-
set. Compared to SC3, CIDR, monocle, pcaReduce, Rphenograph,
Seurat, SHARP, SINCERA and RaceID, we found that the clustering
performance of scEFSC was worse than Rphenograph and SINCERA,



Fig. 7. Comparison of the clustering performance of scEFSC,SC3, CIDR, monocle, pcaReduce, Rphenograph, Seurat, SHARP, SINCERA, RaceID,scDHA,SAME, scCCESS and RSEC on
GSE109774. (a) Clustering performance evaluated by NMI. (b) Clustering performance evaluated by ARI.
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the same as SC3, and better than the other algorithms. SINCERA
and Rphenograph had the best clustering performance, CIDR had
the worst clustering performance, and SHARP had only better clus-
tering performance than CIDR. Compared to scDHA, the clustering
performance of scEFSC was better than scDHA. Compared to SAME,
scCCESS and RSEC, the clustering performance of scEFSC was
slightly worse than scCCESS, and better than SAME and RSEC.
The clustering performance of RSEC was the worst among the three
ensemble clustering algorithms, SAME, scCCESS and RSEC. There-
fore, our proposed scEFSC is scalable for large-scale scRNA-seq
data.
3.9. Functional genomic analysis

Although scEFSC shows superiority in the clustering perfor-
mance analyses described above, the biological significance of its
clustering results is particularly important for the understanding
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of the biological data. The biological analysis of differentially
expressed genes, gene ontology enrichment and KEGG pathway
analysis can be performed from the gene expression data and clus-
tering labels obtained from scEFSC. Next, we elcidated the biolog-
ical significance of scEFSC from the GSE81861 dataset of human
colorectal tumour cells.
3.9.1. Differential expressed genes analysis
We used the gene expression matrix obtained from the

GSE81861 dataset and the clustering labels from scEFSC to identify
differentially expressed genes (DEGs) and marker genes for each
cluster. Fig. 8 shows a volcano plot of each cluster analysed for dif-
ferentially expressed genes, and the top twenty differentially
expressed genes are labelled. The top twenty DEGs showed a
high-fold change, indicating a greater difference in gene expression
from the rest of the cluster and representing the marker genes for
that cluster. In this analysis, we found the most differentially



Fig. 8. Volcano plots for each identified cluster versus all other clusters, with the top twenty differentially expressed genes annotated. Selected differentially expressed genes
are adjusted p-value < 0.05, fold change >1 or < �1. Up-regulated genes are in red and down-regulated genes in blue.
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expressed gene was ALDH1A1, which is a member of the ALDH1
gene family. The ALDH1A1 gene is an important marker gene for
human colorectal carcinoma stem cells and encodes an enzyme
responsible for intracellular aldehyde oxidation, shown to have a
function in the early differentiation of stem cells. Its expression
profile shows potential as a universal marker for the identification
and isolation of normal and cancer stem cells of multiple origins in
a variety of tissue types. The remaining genes with large differ-
ences were AKR1B10, CYP24A1, and AKR1C3. AKR1B10 is a patho-
logical diagnostic marker for tumours and is highly expressed in
normal gastrointestinal epithelial tissues with low or no expres-
sion in other normal tissues, and highly significant expression in
breast, liver and non-small cell lung cancers. CYP24A1 is a poten-
tial oncogene, which is aberrantly expressed in breast, lung and
oesophageal cancer tissues and correlates with tumour malignancy
and poor patient prognosis, based on its aberrant expression regu-
lated by DNA methylation in some tumour types. AKR1C3 is a
member of the AKR1 family and involved in synthesis of a steroid
hormone closely associated with the development of many malig-
nancies and also involved in regulating the sensitivity of many
anti-tumour drugs.
3.9.2. Gene Ontology (GO) enrichment and KEGG analysis
From the differential gene expression analysis on the GSE81861

dataset, we selected the top twenty differentially expressed genes
from each of the nine clusters and removed duplicate genes to
obtain 162 genes. These 162 genes were queried by gene ID trans-
formation to 153 genes for gene ontology (GO) enrichment analysis
and KEGG pathway analysis to interpret the biological significance
of the genes. For the GO enrichment analysis, we obtained 533
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enriched GOs, of which 465 were biological processes (BP), 31 were
cellular components (CC) and 37 were molecular functions (MF).
Fig. 9a shows the top 20 categories of the three GO enrichments,
ordered by adjusted p-value. The five most enriched GO biological
processes were regulation of lymphocyte activation (GO:0051249),
positive regulation of cell activation (GO:0050867), antigen
receptor-mediated signaling pathway (GO:0050851), positive reg-
ulation of leukocyte activation (GO:0002696) and positive regula-
tion of lymphocyte activation GO:0051251). We can see that
most of the five enriched biological processes were related to sig-
naling pathways and the positive regulation of cell activation,
which are highly relevant to cancer.

The top five enriched GO cellular components are MHC class II
protein complex (GO:0042613), blood microparticle
(GO:0072562), external side of the plasma membrane
(GO:0009897), MHC protein complex (GO:0042611) and integral
component of lumenal side of endoplasmic reticulum membrane
(GO:0071556). The MHC protein complex is closely associated
with tumours [45] and there is a clear correlation between MHC-
I gene composition and the genes that are mutated in the cancer
of this person. The molecule MHC-II [46] may have a greater effect
on neoplastic tumours than MHC-I. The remaining three enriched
cellular components were all associated with the colorectum. The
top five enriched GO molecular functions were alditol:NADP + 1-
oxidoreductase activity (GO:0004032), alcohol dehydrogenase
(NADP+) activity (GO:0008106), aldo–keto reductase (NADP) activ-
ity (GO:0004033), antigen binding (GO:0003823) and MHC class II
protein complex binding (GO:0023026). Expression of MHC-II and
related pathway components have been found in cancer cells from
colorectal cancer. Tumor-specific MHC-II expression can increase



Fig. 9. (a) Top 20 classes of GO enrichment terms sorted by adjusted p-values. (b) Top 9 pathways of KEGG enrichment sorted by adjusted p-values. (c) The distribution of
genes under the three GO enrichments. (d) The network diagram of the top 9 pathways and genes for the KEGG enrichment.
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the recognition of tumors by the immune system and therefore
could play an important role in immunotherapy. Fig. 9c depicts
the distribution of genes of the three GO enrichments.

For the KEGG analysis, 9 pathways were matched and 70 genes
were successfully annotated. Fig. 9b depicts the 9 KEGG pathways
sorted by adjusted p-value. Fig. 9d depicts the network diagram of
the top 9 KEGG pathways with genes. This plot shows that genes
HLA-DRA, HLA-DRB1 and HLA-DPB1 were matched to most of
the KEGG pathways. Human leukocyte antigens (HLA) are the
expression products of the major histocompatibility complex
(MHC) in humans. HLA plays a key role in the immune effect mech-
anism of the body against tumors, in which cellular immunity
plays a leading role and is regulated by humoral immunity to syn-
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ergistically kill tumor cells [47]. The top five KEGG pathways are
Cysteine and methionine metabolism (hsa00270), Viral myocardi-
tis (hsa05416), Th17 cell differentiation (hsa04659), Asthma
(hsa05310) and Wnt signaling pathway (hsa04310). Fig. 10 shows
Th17 cell differentiation (hsa04659) and Wnt signaling pathway
(hsa04310) provided by the KEGG database. The Th17 cell differen-
tiation belongs to the immune system of biological systems, has
five related genes and is highly associated with tumors. Thl7 cells
are a class of CD4 + effector T cells. Thl7 cells and their associated
cytokines have been found to be presented in many tumors, taking
an important role in inflammation-associated tumors [48]. The
Wnt signalling pathway is the part of signal transduction in envi-
ronmental information processing. This pathway has six related



Fig. 10. (a) The KEGG database indicates Th17 cell differentiation (hsa04659). (b) The KEGG database indicates the Wnt signaling pathway (hsa04310).
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genes and is closely associated with tumors. Indeed, the Wnt sig-
nalling pathway is not only associated with events related to
tumor invasion and metastasis, but also plays an essential role in
regulating the self-renewal, proliferation and differentiation of
tumor stem cells [49].
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The GO and KEGG enrichment results reflected that the clus-
tering results of scEFSC can effectively guide the identification
of cancer-related biological processes. We can conclude there-
fore, that the clustering results of scEFSC are biologically
significant.
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4. Conclusions

In this study, we propose a clustering method scEFSC based on
ensemble feature selection. scEFSC is a method for clustering and
analyzing the scRNA-seq data through feature selection and
ensemble clustering. First, the feature selection is divided into
two steps, the first step is a preliminary feature selection employ-
ing a non-negative autoencoder, and the second step uses four
unsupervised feature selection algorithms to further select the
results achieved by step one. For the high-dimensional sparse
single-cell RNA-seq data, feature selection reduces the data dimen-
sionality and selects effective features. Multiple clustering meth-
ods are performed on the data after feature selections. Multiple
clustering methods are executed on multiple feature subsets to
obtain multiple base clustering results. Then, multiple base clus-
tering results are achieved for ensemble clustering with a high
degree of variability, which facilitates the generation of better final
consensus clustering results. Finally, the least diverse labels are
removed and then consensus clustering is performed to obtain
the final clustering results.

To demonstrate the effectiveness of the scEFSC clustering result,
we tested fourteen publicly available scRNA-seq datasets. The
experimental results revealed that our proposed scEFSC signifi-
cantly outperformed other single-cell clustering algorithms in
terms of ARI and NMI evaluation metrics. In addition, we per-
formed differential gene expression analysis, gene ontology enrich-
ment and KEGG analysis on the clustering results of scEFSC to
validate the biological interpretability of the clustering results.
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