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Abstract

Background: Cancer neoantigens have attracted great interest in immunotherapy due to their capacity to elicit
antitumoral responses. These molecules arise from somatic mutations in cancer cells, resulting in alterations on the
original protein. Neoantigens identification remains a challenging task due largely to a high rate of false-positives.

Results: We have developed an efficient and automated pipeline for the identification of potential neoantigens.
neoANT-HILL integrates several immunogenomic analyses to improve neoantigen detection from Next Generation
Sequence (NGS) data. The pipeline has been compiled in a pre-built Docker image such that minimal
computational background is required for download and setup. NeoANT-HILL was applied in The Cancer Genome
Atlas (TCGA) melanoma dataset and found several putative neoantigens including ones derived from the recurrent
RAC1:P29S and SERPINB3:E250K mutations. neoANT-HILL was also used to identify potential neoantigens in RNA-
Seq data with a high sensitivity and specificity.

Conclusion: neoANT-HILL is a user-friendly tool with a graphical interface that performs neoantigens prediction
efficiently. neoANT-HILL is able to process multiple samples, provides several binding predictors, enables
quantification of tumor-infiltrating immune cells and considers RNA-Seq data for identifying potential neoantigens.
The software is available through github at https://github.com/neoanthill/neoANT-HILL.
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Background
Recent studies have demonstrated that T cells can
recognize tumor-specific antigens that bind to human
leukocyte antigens (HLA) molecules at the surface of
tumor cells [1, 2]. During tumor progression, accumulat-
ing somatic mutations in the tumor genome can affect
protein-coding genes and result in mutated peptides [1].
These mutated peptides, which are present in the malig-
nant cells but not in the normal cells, may act as neoan-
tigens and trigger T-cell responses due to the lack of
thymic elimination of autoreactive T-cells (central toler-
ance) [3–5]. As result, these neoantigens appear to rep-
resent ideal targets attracting great interest for cancer
immunotherapeutic strategies, including therapeutic vac-
cines and engineered T cells [1, 6].

In the last few years, advances in next-generation se-
quencing have provided an accessible way to generate
patient-specific data, which allows the prediction of
tumor neoantigens in a rapid and comprehensive man-
ner [7]. Several approaches have been developed, such as
pVAC-Seq [8], MuPeXI [9], TIminer [10] and TSNAD
[11], which predict potential neoantigens produced by
non- synonymous mutations. However, none of these
proposed tools considers tumor transcriptome sequen-
cing data (RNA-seq) for identifying somatic mutations.
Moreover, only one of these tools provides quantifica-
tion of the fraction of tumor-infiltrating immune cell
types (Supplementary: Table S1).
Here we present a versatile tool with a graphical

user interface (GUI), called neoANT-HILL, designed
to identify potential neoantigens arising from cancer
somatic mutations. neoANT-HILL integrates comple-
mentary features to prioritizing mutant peptides based
on predicted binding affinity and mRNA expression
level (Fig. 1). We used datasets from GEUVADIS
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RNA sequencing project [12] to demonstrate that
RNA-seq is also a potential source of mutation detec-
tion. Finally, we applied our pipeline on a large mel-
anoma cohort from The Cancer Genome Atlas [13]
to demonstrate its utility in predicting and suggesting
potential neoantigens that could be used in personal-
ized immunotherapy.

Implementation
neoANT-HILL requires a variant list for potential
neoantigen prediction. Our pipeline is able to handle a
VCF file (single- or multi-sample) for the genome data

or a tumor transcriptome sequence data (RNA-seq) in
which somatic mutation will be called following GATK
best practices [14, 15] with Mutect2 [16] on tumor-only
mode. However, the RNA-seq data must be previously
aligned to the reference genome (BAM) by the user. The
size of corresponding BAM files from the RNA-Seq can
be a limiting factor in the analysis. Since neoANT-HILL
is run locally, the user must guarantee that enough space
and memory are available for a proper execution of the
program. In the current implementation, neoANT-HILL
supports VCF files generated using the human genome
version GRCh37. The variants are properly annotated by

Fig. 1 Overall workflow of neoANT-HILL. The neoANT-HILL was designed to analyze NGS data, such as genome (WGS or WES) and transcriptome
(RNA-Seq) data. Basically, it takes as input distinct data types, including raw and pre-aligned sequences from RNA-Seq, as well as, variant calling
files (VCF) from genome or transcriptome data (dotted lines indicate that the VCF must be previously created by the user). The blue boxes
represent the transcriptome analyses, which should be carried out using data in either BAM format (variant calling) or fastq format (expression,
HLA typing and tumor-infiltrating immune cells). The neoANT-HILL can perform gene expression (Kallisto), variant calling (GATK4 | Mutect2), HLA
typing (Optitype), and Tumor-infiltrating immune cells (quanTIseq). The gene expression quantification is used as input to identify molecular
signatures associated with immune cell diversity into the tumor samples. On the other hand, the gray boxes represent common steps to genome
and transcriptome data. NeoANT-HILL uses the variant calling data to reconstruct the proteins sequences using as reference the NCBI RefSeq
database. The VCF files can be either generated by using our pipeline or by external somatic variant-calling software. Next, reconstructed proteins
are submitted to neoepitope binding prediction using HLA alleles from Optitype results or defined by the user. Finally, all steps and results are
shown into a user-friendly interface
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Fig. 2 Screenshots of neoANT-HILL interface. a Processing tab for submitting genome or transcriptome data. b Processing tab for parameters
selection to run neoepitope binding affinity prediction. On this tab, all the parameters can be defined by the users through selection boxes,
ranging from the MHC class, corresponding prediction methods, to parallelization settings. The length and HLA alleles parameters allow multiple
selections, although that might interfere in the processing time. c Binding prediction results tab shows an interactive table which reports all
predicted neoepitopes and information about each prediction, respectively. The interactive table shows several columns, such as the donor gene,
HLA allele, mutation type, reference (Ref_Peptide) and altered (Alt_peptide) peptides sequences, reference (Ref_IC50) and altered (Alt_IC50)
binding affinity scores, binding affinity category (High, Moderate, Low, and Non-binding) and differential agretopicity index (DAI)
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snpEff [17] to identify non-synonymous mutations (mis-
sense, frameshift and inframe).
Once the VCF files have been annotated, the result-

ing altered amino acid sequences are inferred from
the NCBI Reference Sequence database (RefSeq) [18].
For frameshift mutations, the altered amino acid se-
quence is inferred by translating the resulting cDNA
sequence. Altered epitopes (neoepitopes) are trans-
lated into a 21-mer sequence where the altered resi-
due is at the center. If the mutation is at the
beginning or at the end of the transcript, the neoepi-
tope sequence is built by taking the 20 following or
preceding amino acids, respectively. The neoepitope
sequence and its corresponding wild-type are stored
in a FASTA file. Non-overlapping neoepitopes can be
derived from frameshift mutations.
A list of HLA haplotypes is also required. If this data

had not been provided by the user, neoANT-HILL in-
cludes the Optitype algorithm [19] to infers class-I HLA
molecules from RNA-Seq. The subsequent step is the
binding affinity prediction between the predicted neoepi-
topes and HLA molecules. This can be executed on sin-
gle or multi-sample using parallelization with the
custom configured parameters. The correspondent wild-
type sequences are also submitted at this stage, which al-
lows calculation of the fold change between wild-type
and neoepitopes binding scores, known as differential
agretopicity index (DAI) as proposed by [20]. This add-
itional neoantigen quality metric contributes to a better
prediction of neoantigens that can elicit an antitumor re-
sponse [21].
neoANT-HILL employs seven binding prediction algo-

rithms from Immune Epitope Database (IEDB) [22], in-
cluding NetMHC (v. 4.0) [23, 24], NetMHCpan (v. 4.0)
[25], NetMHCcons [26], NetMHCstabpan [27], Pick-
Pocket [28], SMM [29] and SMMPMBEC [30], and the
MHCflurry algorithm [31] for HLA class I. The user is
able to specify the neoepitope lengths to perform bind-
ing predictions. Each neoepitope sequence is parsed
through a sliding window metric. Our pipeline also em-
ploys four IEDB-algorithms for HLA class II binding af-
finity prediction: NetMHCIIpan (v. 3.1) [32], NN-align
[33], SMM- align [34], and Sturniolo [35].
Moreover, when the unmapped RNA-seq reads are

available (fastq), neoANT-HILL can quantify the expres-
sion levels of genes carrying a potential neoantigen. Our
pipeline uses the Kallisto algorithm [36] and the output
is reported as transcripts per million (TPM). Potential
neoantigens arising from genes showing an expression
level under 1 TPM are excluded. In addition, neoANT-
HILL also offers the possibility of estimating quantita-
tively, via deconvolution, the relative fractions of tumor-
infiltrating immune cell types through the use of quan-
TIseq [37].

Our software was developed under a pre-built Docker
image. The required dependencies are packed up, which
simplify the installation process and avoid possible in-
compatibilities between versions. As previously de-
scribed, several analyses are supported and each one
relies on different tools. Several scripts were imple-
mented on Python to complete automate the execution
of these single tools and data integration.

Results
neoANT-HILL was designed through a user-friendly
graphical interface (Fig. 2) implemented on Flask frame-
work. The interface comprises three main sections: (i)
Home (Fig. 2a), (ii) Processing (Fig. 2b), and (iii) Results
(Fig. 2c). neoANT-HILL stores the outputs in sample-
specific folders. Our pipeline provides a table of ranked
predicted neoantigens with HLA alleles, variant informa-
tion, binding prediction score (neoepitope and wild-
type) and binding affinity classification. When optional
analyses are set by the user, the outputs are stored in
separated tabs. Gene expression is provided as a list with
corresponding RNA expression levels and it is used to
filter the neoantigens candidates.

Variant identification on RNA-Seq
We evaluate the utility of RNA-seq for identifying
frameshift, indels and point mutations by using samples
(n = 15) from the GEUVADIS RNA sequencing project.

Table 1 Top 15 potential shared neoantigens based on TCGA-
SKCM cohort. Recurrent mutations observed on TCGA-SKCM
cohort. The amino acid (AA) residue changes caused by somatic
mutations are highlighted in the (neo) epitopes sequences. The
frequency represents the number of samples showing the
corresponding mutation

Gene AA change Neoepitope HLA haplotype Frequency

RAC1 P29S FSGEYITV HLA-A*02:01 17/466

KLHDC7A E635K HTATVRAKK HLA-A*11:01 12/466

INMT S212F YMVGKREFFCV HLA-A*02:01 9/466

CDH6 S524L FLFSLAPEAA HLA-A*02:01 8/466

ZBED2 E157K GTMALWASQRK HLA-A*11:01 8/466

CRNKL1 S128F LQVPLPVPRF HLA-A*15:01 7/466

IL37 S202L FLFQPVCKA HLA-A*02:01 7/466

SERPINB3 E250K LSMIVLLPNK HLA-A*11:01 6/466

DNAJC5B E22K STTGEALYK HLA-A*11:01 6/466

MYO7B E512K MSIISLLDK HLA-A*11:01 6/466

MORC1 E878K IQNTYMVQYK HLA-A*11:01 6/466

SCN7A S445F IEMKKRSPIF HLA-A*15:01 6/466

PSG9 E404K KISKSMTVK HLA-A*11:01 6/466

RAC1 P29L FLGEYIPTV HLA-A*02:01 5/466

NUTF2 Q20K SSFIQHYYK HLA-A*11:01 5/466
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Although these samples are not derived from tumor
cells, the goal of these analysis was to benchmark the ef-
ficiency of our pipeline to detect somatic mutations from
RNA-Seq data. We limited our analysis to variants with
read depth (DP) > = 10 and supported by at least five
reads. The overall called variants were then compared to
the corresponding genotypes (same individuals) provided
by the 1000 Genomes Project Consortium (1KG) [38].
We found that on average 71% of variants in coding re-
gions detected by RNA-seq were confirmed by the gen-
ome sequencing (concordant calls) (Supplementary
Table S2). Variants in genes that are not expressed can-
not be detected by RNA-seq and RNA editing sites
could partially explain the discordant calls. Furthermore,
some of the discrepancies can be also due to low cover-
age in the genome sequence, which generated a false-
negative in the calling. Although calling variants from

RNA-Seq data has been shown to be more challenging,
it is an interesting alternative for genome sequencing
and a large amount of tumor RNA-seq samples do not
have normal matched data [39, 40].

Use case
We applied our pipeline on a large melanoma cohort
(SKCM, n = 466) from TCGA to demonstrate its util-
ity in identifying potential neoantigens. We found ap-
proximately 198,000 instances of predicted neoantigens
binding to HLA-I. It is important to note that the large
number of mutant peptides is due to: i) the larger cohort
size, ii) the high mutational burden of melanoma and iii)
the large set of HLA alleles that was used to run the bind-
ing prediction. These neoepitopes were classified as strong
(IC50 under 50 nM), intermediate (IC50 between 50 nM
and 250 nM) or weak binders (IC50 over 250 nM and

Fig. 3 Distribution of recurrent missense mutations that generated high-affinity neoantigens. The y-axis shows peptide coverage based on the
number of epitope binding predictions in each region. The coverage was calculated by increasing the overall frequency of each amino acid by
one, including non-high-affinity regions. The allele classification is shown as colored lines. The x-axis shows the protein length, and also contains
information about conserved domains for each protein. a P29S and RAC1 gene generated recurrent mutant peptides with strong affinity to HLA-
A*02:01 and P29L generated peptides with strong affinity to HLA-A*02:01 or HLA-A*11:01, depending on peptide length (b) E250K in SERPINB3
gene generate a recurrent potential neoantigen that binds to HLA-A*11:01

Coelho et al. BMC Medical Genomics           (2020) 13:30 Page 5 of 8



under 500 nM) (Supplementary Table S3). We limited our
analyses to high binding affinity candidates to reduce po-
tential false positives.
We observed that the majority of strong binder mu-

tant peptides are private and unique, which is likely
linked to the high intratumor genetic diversity. However,
we observed that frequent mutations may be likely to
generate recurrent mutant peptides (Table 1). These re-
current neoantigens are interesting since they could be
used as a vaccine for more than one patient. Figure 3
shows potential neoepitopes arising from recurrent mu-
tations. The potential neoantigen (FSGEYIPTV), which
was predicted to form a complex with HLA-A*02:01 al-
lele, was found to be shared among 17 samples (3.65%).
It was generated from the P29S mutation in gene RAC1
(Fig. 3a). RAC1 P29S have been described as a candidate
biomarker for treatment with anti-PD1 or anti-PD-L1
antibodies [41]. Another mutation (P29L) in the same
gene formed a recurrent potential neoantigen (FLGEYIPTV)
and was found in 5 samples (1.07%). As another example,
we can also highlight the potential shared neoantigen
(LSMIVLLPNK) related to mutation E250K in the SER-
PINB3 gene (Fig. 3b). This was found in 6 samples (1.29%)
and it was likely to form a complex with the HLA-A*11:01
allele. Mutations in SERPINB3 have also been related to re-
sponse to immunotherapy [42].

Conclusion
We present neoANT-HILL, a completely integrated, effi-
cient and user-friendly software for predicting and
screening potential neoantigens. We have shown that
neoANT-HILL can predict neoantigen candidates, which
can be targets for immunotherapies and predictive bio-
markers for immune responses. Our pipeline is available
through a user-friendly graphical interface which enables
its usage by users without advanced programming skills.
Furthermore, neoANT-HILL offers several binding pre-
diction algorithms for both HLA classes and can process
multiple samples in a single running. Unlike the majority
of existing tools, our pipeline enables the quantification
of tumor-infiltrating lymphocytes and considers RNA-
Seq data for variant identification. The source code is
available at https://github.com/neoanthill/neoANT-
HILL.

Availability and requirements
Project name: neoANT-HILL.
Project home page: https://github.com/neoanthill/

neoANT-HILL
Operating system(s): Unix-based operating system,

Mac OS, Windows.
Programming language: Python 2.7.
Other requirements: Docker.
License: Apache License 2.0.

Any restrictions to use by non-academics: None.
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000genomes.ebi.ac.uk/vol1/ftp/phase1/data/NA12006/exome_alignment/
NA12006.mapped.SOLID.bfast.CEU.exome.20110411.bam). The melanoma
TCGA mutation data was downloaded from the cBio datahub (https://github.
com/cBioPortal/datahub/blob/master/public/skcm_tcga/data_mutations_
extended.txt).
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