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Abstract 

Background:  Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome and 
while the majority are transcriptionally silent, the most recently integrated HERV, HERV-K (HML-2), remains active. 
During HIV infection, HERV-K (HML-2) specific mRNA transcripts and viral proteins can be detected. In this study, we 
aimed to understand the antibody response against HERV-K (HML-2) Gag in the context of HIV-1 infection.

Results:  We developed an ELISA assay using either recombinant protein or 164 redundant “15mer” HERV-K (HML-2) 
Gag peptides to test sera for antibody reactivity. We identified a total of eight potential HERV-K (HML-2) Gag immuno‑
genic domains: two on the matrix (peptides 16 and 31), one on p15 (peptide 85), three on the capsid (peptides 81, 97 
and 117), one on the nucleocapsid (peptide 137) and one on the QP1 protein (peptide 157). Four epitopes (peptides 
16, 31, 85 and 137) were highly immunogenic. No significant differences in antibody responses were found between 
HIV infected participants (n = 40) and uninfected donors (n = 40) for 6 out of the 8 epitopes tested. The antibody 
response against nucleocapsid (peptide 137) was significantly lower (p < 0.001), and the response to QP1 (peptide 
157) significantly higher (p < 0.05) in HIV-infected adults compared to uninfected individuals. Among those with HIV 
infection, the level of response against p15 protein (peptide 85) was significantly lower in untreated individuals con‑
trolling HIV (“elite” controllers) compared to untreated non-controllers (p < 0.05) and uninfected donors (p < 0.05). In 
contrast, the response against the capsid protein (epitopes 81 and 117) was significantly higher in controllers com‑
pared to uninfected donors (p < 0.001 and <0.05 respectively) and non-controllers (p < 0.01 and <0.05). Peripheral 
blood mononuclear cells (PBMCs) from study participants were tested for responses against HERV-K (HML-2) capsid 
recombinant peptide in gamma interferon (IFN-γ) enzyme immunospot (Elispot) assays. We found that the HERV-K 
(HML-2) Gag antibody and T cell response by Elispot were significantly correlated.

Conclusions:  HIV elite controllers had a strong cellular and antibody response against HERV-K (HML-2) Gag directed 
mainly against the Capsid region. Collectively, these data suggest that anti-HERV-K (HML-2) antibodies targeting cap‑
sid could have an immunoprotective effect in HIV infection.
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Background
Human endogenous retroviruses (HERVs) are fossil rem-
nants of inherited retroviruses which were endogenized 
into the genome, and comprise about 5–8% of the 
human genome [1]. Their ability to replicate or produce 

infectious particles is impaired by host restriction [2, 
3] and they are now considered to be stably integrated, 
largely silent, and transmitted in a Mendelian fashion [4]. 
Three major HERV classes have been identified and clas-
sified according to their polymerase gene (pol) sequence 
homology with exogenous retroviruses. Class I, II and 
III HERVs have similarities with gammaretroviruses, 
betaretroviruses and spumaviruses, respectively [5]. To 
date, endogenous homologues to lentiviruses have not 
been described in the human genome.
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HERV-K (HML-2), a class II HERV, with gag, pro, pol 
and env genes, flanked by two Long Terminal Repeats 
(LTR), is the most recently integrated into the genome 
and under certain circumstances can express proteins 
[6, 7]. HERV-K (HML-2) expression has been associated 
with some autoimmune diseases [8–13] and cancers [14–
19], and mRNA transcripts and proteins can be found in 
tumor tissues. Translated HERV proteins can induce an 
immune response that correlates with disease progres-
sion or regression in some cancers [20–25].

We, and others, have previously shown that HERV-K 
(HML-2) can be reactivated in HIV infection [26–28]. 
The mechanisms leading to HERV-K (HML-2) expres-
sion are still being elucidated, but HIV Vif and Tat pro-
teins have been implicated [27, 29]. However, it appears 
that the transactivation of HERV-K by exogenous HIV is 
more complex than initial studies suggested. In a previ-
ous study, we showed that HIV induced a skewed expres-
sion of HERV-K (HML-2) Env which favored the surface 
cell expression of the transmembrane envelope glyco-
protein (TM) at the expense of the surface unit (SU). We 
showed that isolated HERV-K specific T-cell clones and 
HA137, a human anti-HERV-K (HML-2) TM antibody, 
eliminated HIV infected cells in vitro [26–28, 30, 31].

To further characterize the role of the anti-HERV-K 
(HML-2) immune response in HIV infection, we investi-
gated the antibody response to HERV-K (HML-2) Gag in 
HIV infected participants. In this study, we showed that 
strong anti-HERV-K (HML-2) capsid response is more 
frequently found in elite controllers (ECs) compared to 

viremic non-controllers (VNCs) and HIV-negative low 
risk donors (SNLR). This response correlated with the 
HERV-K (HML-2) capsid T cell response. We mapped 
the antibody response and characterized an antibody 
pattern signature in ECs that significantly differed from 
the ones found VNCs, suggesting that the anti-HERV-K 
(HML-2) antibody response could play a role in the con-
trol of infection.

Results
The anti‑HERV‑K (HML‑2) Capsid response correlates 
with anti‑HERV Gag T‑cell response in elite controllers
We first evaluated the antibody response against HERV-
K (HML-2) recombinant capsid protein in uninfected 
donors and in untreated HIV-infected participants who 
were categorized as ECs or VNCs (Fig. 1). Although no 
significant differences were found in the magnitude of 
the antibody response between HIV-infected adults and 
HIV-negative low risk donors (SNLR), when the HIV-
infected cohort was classified according to clinical status, 
we found that ECs had significantly higher level of anti-
bodies against HERV-K (HML-2) capsid compared to 
SNLR (p < 0.01, Kruskal–Wallis test) and VNC (p < 0.001, 
Kruskal–Wallis test) (Fig.  1a). Since 85% of ECs devel-
oped a moderate or a strong anti-HERV Gag B-cell 
response (compared to 15% for VNCs), we investigated 
whether ECs also had a T-cell response against HERV-K 
(HML-2) Gag. We found that the HERV-K (HML-2) Gag 
antibody and T-cell response by Elispot were significantly 
correlated (p = 0.0047, Spearman test) (Fig. 1b).
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Fig. 1  Comparison of antibody response against HERV-K (HML-2) recombinant capsid protein (a). Detection of antibodies against recombinant 
HERV-K (HML-2) capsid protein was performed by ELISA assay for 40 seronegative low risk healthy donors (SNLR) and 80 chronic HIV subjects: 40 
elite controllers (EC) and 40 viremic non-controllers (VNC). Individual dots represent the mean of 4 independent experiments. Correlation of capsid 
specific T cell responses in elite controllers (b). Both specific T cell and antibody responses were assayed by Elispot and ELISA respectively using the 
recombinant HERV-K (HML-2) protein for 18 elite controllers. Individual dots represent the mean of 4 independent experiments for the ELISA assay. 
The statistical significance between the different groups was established using a Kruskal–Wallis and Dunn’s Multiple Comparison test for A and a 
non-parametric Spearman test for B. A p value <0.05 was considered as significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Identification of linear antibody epitopes on HERV‑K 
(HML‑2) Gag proteins
To further characterize anti-HERV-K (HML-2) Gag 
responses during HIV infection we used a set of 164 
redundant “15mer” peptides overlapping by 11 amino 
acids in a peptide-based ELISA assay to map immuno-
genic domains. We used sera from 8 SNLR and confirmed 
that HIV uninfected donors had a low basal level of anti-
bodies against HERV-K (HML-2) Gag, as previously pub-
lished [32]. Among all tested peptides, 8 sequences had 
significant differences with the basal level. We identified 
4 sequences with a higher reactivity with human sera and 
4 sequences associated with a lower reactivity (Table  1; 
Fig. 2; Additional file 1: Fig. S1). The epitopes are distrib-
uted on HERV-K (HML-2) Gag as follows: two epitopes 
on matrix (MA, peptides 16 and 31), one epitope on p15 
(peptide 85), three epitopes on capsid (CA, peptides 81, 
97 and 117), one epitope on nucleocapsid (NC, peptide 
137) and one epitope on the QP1 protein (peptide 157). 
These results suggest that each protein domain has dif-
ferent antibody immunogenicity to HERV-K (HML-2) 
proteins (Fig.  2). Indeed, sera from SNLR participants 
strongly reacted to the nucleocapsid epitope but not to 
the capsid (Fig.  2). Thus, domains can be classified as 
poorly immunogenic, such as the capsid or the QP1 and 
QP2 proteins, or immunogenic such as matrix, p15 and 
nucleocapsid. 

Elite controllers and viremic non‑controllers have distinct 
antibody patterns
We then used the eight peptide epitopes identified above 
to perform a serological screen on 40 HIV-infected and 
40 SNLR sera samples (Fig.  3). The differences between 
these two groups were not significant for 6 out of 8 
epitopes (Fig.  3). The responses against MA (peptides 
16 and 31) and p15 (peptide 58) were either slightly 
decreased or not changed upon HIV infection (Fig. 3a–
c). However, the response against the most immunogenic 
domain (peptide 137) was significantly lower (p < 0.001, 
q = 0.0004, Kruskal–Wallis test) in HIV infected subjects 

Table 1  Sequence identification of  HERV-K (HML-2) Gag 
epitopes

MA matrix, CA capsid, NC nucleocapsid

Epitope Sequence Protein Immunogenicity

16 KRIGKELKQAGRKGN MA Medium

31 KKSQKETESLHCEYV MA Medium

58 GYPGMPPAPQGRAPY P15 Medium

81 GVKQYGPNSPYMRTL CA Low

97 NPPVNIDADQLLGIG CA Low

117 SIADEKARKVIVELM CA Low

137 KCYNCGQIGHLKKNC NC High

157 PIQPFVPQGFQGQQP QP1 Low

MA p15 CA NC
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Fig. 2  Antibody mapping of anti-HERV-K (HML-2) responses in healthy donors. Sera from 8 seronegative low risk healthy donors (SNLR) were used 
for antibody epitope identification by ELISA. The 7 sub-units: matrix (MA), SP1, p15, capsid (CA), nucleocapsid (NC) and QP 1 and 2 are represented 
by 164 redundant 15mers named by their number corresponding to their rank in the list. The lines represent the average of the 8 individuals and 
duplicate signals (OD). Background was determined by the average of OD from each peptide. The statistical significance between the different 
groups was established using a Kruskal–Wallis and Dunn’s Multiple Comparison test and a p value <0.05 was considered as significant. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001
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(Fig.  3g). Although the response against peptide 97 did 
not differ based on HIV status, the response against the 
two other epitopes present on the capsid, peptide 81 and 
117, trended towards being higher in those infected with 
HIV (p =  0.05, q =  0.07 and p =  0.08, q =  0.1 respec-
tively, Kruskal–Wallis test) (Fig.  3d–f). The response 
against peptide 157 from the QP1 protein was the only 
that was significantly higher among those with HIV infec-
tion (p < 0.05, q = 0.01 Kruskal–Wallis test) (Fig. 3h).

To better understand the potential role of these anti-
body responses in HIV infection, we categorized the 
cohort based on clinical status. We used sera samples 
from 20 elite controllers (ECs) and 20 viremic non-
controllers (VNCs). No differences were observed for 
the responses against peptides 16, 31, 97, 137 and 157 
(Fig. 4a, b, e, g, h). However, significant differences were 
observed for the response against p15 (peptide 58). 
The response was significantly lower in elite control-
lers compared to SNLR (p  <  0.05, Kruskal–Wallis test) 
and VNCs (p  <  0.05, Kruskal–Wallis test), while there 
was no difference between VNCs and SNLR (Fig. 4c). In 

contrast, antibody responses against capsid epitopes 81 
and 117 were significantly higher in ECs compared to 
SNLR (p  <  0.001 and <0.05, respectively, Kruskal–Wal-
lis test) and VNCs (p  <  0.01 and <0.05, Kruskal–Wallis 
test), but no differences were detected between VNCs 
and SNLR (Fig.  4f ). We found that 90% of ECs had a 
moderate or a strong response against peptide 81 (25% 
for VNCs). Furthermore, we found a positive correla-
tion for responses against capsid epitopes 81 and 117 
(p = 0.0122, r = 0.5768, Spearman test) in ECs that was 
not found in VNCs (Fig. 5a). However, compared to the 
response against peptide 58, we found a trend towards 
an inverse relationship between the antibody responses 
against HERV-K (HML-2) capsid and p15 developed in 
VNCs. Collectively, the data show that VNCs and ECs 
developed different anti-HERV-K (HML-2) gag antibody 
responses (Fig. 5b, c).

When analyzing the different groups according to their 
clinical status we found that VNC had low levels of anti-
capsid antibodies, and there was a significant inverse 
correlation between the anti peptide 81 or anti-HERV-K 
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Fig. 3  Anti-HERV-K (HML-2) antibodies in HIV infection. The detection of total IgG against HERV-K (HML-2) gag was performed for 40 seronega‑
tive low risk healthy donors (SNLR white dots) and 80 chronically HIV infected subjects (HIV black dots) by peptide-based ELISA using sequences 
determined in Fig. 2 and represented by their number on the top of each graph (a–h). Each graph represents ELISA for one linear epitope. Error 
bars represent SEM. The statistical significance between the different groups was established using the Mann–Whitney u test. The figure shows the 
representative results of at least three independent experiments. A p value <0.05 was considered as significant. *p < 0.05; **p < 0.01; ***p < 0.001. In 
parenthesis is indicated the adjusted p value (q) regarding the 3 independent experiments using original method of Benjamini and Hochberg with 
a Q of 5%. The number of independent observations is represented by n
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(HML-2) recombinant capsid responses and HIV viremia 
(p = −0.4879, r = 0.0291 and p = 0.0056, r = −0.5955 
respectively, Spearman test) (Fig.  6). However, no cor-
relation between CD4+T cell counts and anti-HERV-K 
(HML-2) Gag responses were detected, either in ECs or 
in VNCs (data not shown).

Discussion
We, and others, have previously shown that HIV infec-
tion reactivates HERV-K (HML-2), leading to HERV-K 
(HML-2) Gag and Env protein production [27, 33]. In 
this study, we hypothesized that HIV infection leads to a 
HERV-K (HML-2) capsid antibody response. We focused 
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on responses to HERV-K (HML-2) capsid based on our 
previous findings that elite controllers (EC) developed an 
anti-HERV-K (HML-2) capsid cellular immune response 
[30]. We show here that a strong antibody response 
against HERV-K (HML-2) capsid can be detected in 
ECs. To better characterize the anti-HERV-K (HML-2) 
response, we mapped responses to linear epitopes on the 
full HERV-K (HML-2) Gag sequence. Responses against 
HERV-K (HML-2) Gag were not changed by HIV infec-
tion, except for responses to an epitope present on the 
QP1 protein (epitope 157), which were higher in HIV-1 
infected participants compared to controls. The antibody 
response against nucleocapsid (epitope 137) was signifi-
cantly lower in HIV infected participants compared to 
uninfected individuals.

When we compared the anti-HERV-K (HML-2) gag 
antibody response between ECs and VNCs, we saw a dis-
tinct antibody pattern, characterized by a significantly 
higher anti-capsid antibodies (specific to peptides 81 
and 117) and lower anti-p15 antibodies (epitope 58) in 
controllers. The plasma HIV RNA levels were strongly 
inversely correlated in VNCs who had an anti-HERV-K 
(HML-2) capsid response.

It has been previously established that HERV-K (HML-
2) expression is tightly associated with HIV viral tran-
scription and activity in  vitro and in  vivo [31, 34–37]. 
However, ECs have limited HIV replication activity, sug-
gesting that the induction of the anti HERV-K (HML-2) 
capsid response in ECs is not caused by HIV-induced 
HERV-K capsid expression, as has been previously 
described for the HERV-K (HML-2) envelope antibody 
response [31, 36, 37]. However, a longitudinal study would 
be more informative to determine potential causality.

In a previous report, we showed that expression of 
HERV-K Env proteins following HIV infection is skewed 
towards a predominant expression of the HERV-K trans-
membrane protein compared to the surface unit protein 
[31]. This suggested an HIV/HERV-K (HML-2) interac-
tion far more complex than previous studies have pro-
posed. In the case of HERV-K (HML-2) Gag expression, 
antibody profiles found in VNCs and ECs seem to rein-
force this complexity. Anti-HERV-K (HML-2) capsid 
responses in VNCs are not significantly different than 
those found in controls, but they seem to be lower in 
early and late stages of HIV infection despite an increase 
of HERV-K (HML-2) expression. Patients who naturally 
control HIV infection are more likely to have a strong 
antibody response against HERV-K capsid, but the anti-
body response against p15 (peptide 58) was strongly 
decreased in ECs compared to VNCs and SNLR. Further 
longitudinal studies are needed to understand the chro-
nology and the cause of this dichotomy.

A second objective of our study was to character-
ize the role of anti HERV-K (HML-2) capsid responses 
in ECs. Antibodies against viral gag proteins are not 
unexpected in HIV patients [38] and the anti-HIV p24 
response correlates with control of disease progression 
[38]. Antibodies against capsid could bind cells resulting 
in their lysis and formation of immunocomplexes. Those 
immunocomplexes might interact with innate immune 
cells such as NK cells, macrophages or dendritic cells 
and promote their activation and induction of a cellular 
immune response [39, 40]. This may explain why both T 
and B cell responses directed against HIV p24 correlated 
with the status of controllers. A similar hypothesis could 
be applied for anti-HERV-K (HML-2) capsid antibodies, 
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using the non-parametric Spearman test. Figure 6a shows a representative result of four independent experiments. Figure 6b shows the mean of 
four independent experiments. A p value <0.05 was considered as significant. *p < 0.05; **p < 0.01
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with EC having both an anti-HIV p24 and an anti-HERV-
K (HML-2) capsid response as a way to reinforce their 
antiviral response.

Conclusion
In this study, we identified linear immunogenic antibody 
epitopes on HERV-K (HML-2) gag proteins. We found 
that elite controllers had a distinctive antibody pattern 
compared to viremic non-controllers and HIV seronega-
tive participants. Although further studies are needed to 
elucidate how these responses could be involved in the 
control of viremia, it reinforces the importance of study-
ing HERV-K (HML-2) capsid immune responses in HIV 
infection.

Methods
Study populations
Samples of peripheral blood mononuclear cells (PBMCs) 
were selected from participants in a San Francisco-based 
HIV-infected cohort: OPTIONS (n = 40). Samples from 
HIV-negative controls were obtained from individuals 
who donated blood to the Stanford blood bank. Studies 
were performed on cryopreserved PBMCs and sera.

PBMC and sera samples were obtained from the fol-
lowing categories of chronically HIV-infected indi-
viduals: 20 elite controllers (EC: naive for treatment, 
undetectable viral load for two years, CD4  >  350) and 
20 untreated virologic non-controllers (VNC; naive for 
treatment, viral load >2000 copies/mL).

ELISA
A set of 164 overlapping “15-mer” HERV-K (HML-2) Gag 
peptides (JPT Peptide Technologies, Berlin, Germany), 
based on HERV-K102 sequence (AF164610), were used 
to comprehensively map the HERV-K (HML-2) antibody 
response (Additional file 2: Fig. S2). Positive signals were 
confirmed by peptides produced by two other compa-
nies (New England Peptide and Gene Script). 96 micro-
titer wells plate (Nunc-Immuno Plate MaxiSorp Surface) 
were coated for 1  h at 37  °C with peptides at 10  μg/ml 
in PBS or over-night at 4  °C with recombinant protein 
(GeneArt) at 5 μg/ml in PBS. Plates were then washed 3 
times with 200  μL of PBS/0.05%-Tween 20 and blocked 
with 100 μL of blocking buffer (PBS/2.5%-BSA) at room 
temperature (RT). The samples were diluted in blocking 
buffer and incubated 2 h at RT in duplicates. Plates were 
then washed 3 times with 200  μL of PBS/0.05%-Tween 
20. An anti-human IgG or anti-human IgM HRP-conju-
gated secondary antibody was diluted at 1:1000 in block-
ing buffer and incubated at RT for 1 h. Plates were then 
washed 6 times with 200 μL of PBS/0.05%-Tween 20 and 
incubated for 10 min with 100 μL of TMB (Invitrogen). 
Addition of 50 μL H2SO4 2 M stopped the reaction. The 

plates were read at 450 and 690 nm for the background 
on a plate reader. Background from 690  nm uncoated 
wells and twice the background from 450  nm PBS-
BSA (negative control) were subtracted from the mean 
absorbance of the coated wells (corrected OD). For the 
detection of anti-Gag antibodies, sera were used at 1:400. 
ODs were normalized with serum from a high responder 
in a standard curve. The STDEV intra experiment was 
less than 4%.

For the response against the recombinant HERV-
K (HML-2) capsid and the peptide 81, we defined the 
humoral responses for elite controllers as followed: the 
response was considered moderate if the corrected OD 
is greater than the mean of corrected OD for SNLR and 
strong if the corrected OD is greater than twice the mean 
of corrected OD for SNLR.

ELISPOT assays
The ELISPOT assay has been described previously [30]. 
In brief, 96-well plates (Millipore, Billerica, MA) were 
coated with human monoclonal anti-interferon gamma 
(IFN-γ) immunoglobulin (Mabtech, Mariemont, OH). 
After plates were washed and blocked with 10% fetal 
calf serum, PBMCs were added at a concentration of 105 
cells per well. Duplicate wells were prepared for each 
experimental condition. Spot totals for duplicate wells 
were averaged, and all spot numbers were normalized to 
numbers of (IFN-γ) spot forming units (SFU) per million 
PBMCs (SPM). The spot values from medium control 
wells were subtracted, after which a positive response to 
a peptide was defined as 50 SPM and 2 times the medium 
control value. The total magnitude of the HERV T cell 
response was calculated by adding up all of the individual 
peptide SPM values.

Statistical analyses
To assess the distribution of the humoral responses 
obtained in this study, we used the D’Agostino and Pear-
son normality test. The results concluded that the popu-
lations were not normally distributed. According to this 
statement, we used non-parametric statistical tests to 
compare the humoral responses assayed by ELISA for 
each group. Multiple comparisons were performed in the 
3 groups (SNLR, EC and VNC) with the Kruskal–Wallis 
and Dunn’s multiple comparison test for Fig.  4. Spear-
man correlation analyses were used to measure associa-
tions between different humoral responses and HIV viral 
load or CD4+T cells count for Figs.  1b, 5, and 6. The 
two-tailed Mann–Whitney u test was used to compare 
the humoral responses between HIV-1pos and HIV-1neg 
(SNLR) groups for Fig. 3. A q value was calculated using 
the original method of Benjamini and Hochberg and 
added on the figure when it was relevant. All tests were 
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conducted using GraphPad Prism, version 6.00 (Graph-
Pad Software, San Diego, CA), with the statistical signifi-
cance of the findings set at a p value of less than 0.05.
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