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Abstract: For an industrial process, the estimation of feeding composition is important for analyzing
production status and making control decisions. However, random errors or even gross ones in-
evitably contaminate the actual measurements. Feeding composition is conventionally obtained via
discrete and low-rate artificial testing. To address these problems, a feeding composition estimation
approach based on data reconciliation procedure is developed. To improve the variable accuracy, a
novel robust M-estimator is first proposed. Then, an iterative robust hierarchical data reconciliation
and estimation strategy is applied to estimate the feeding composition. The feasibility and effective-
ness of the estimation approach are verified on a fluidized bed roaster. The proposed M-estimator
showed better overall performance.

Keywords: data reconciliation; robust estimator; gross error detection; feeding composition

1. Introduction

Complete, accurate and reliable data measurements are important for process model-
ing, model identification, real-time online optimization and process control. However, the
measured values of variables in the actual measurement process are inevitably contami-
nated by random errors or even gross errors. Therefore, the process measurements will
deviate from the real values. In addition, the feeding composition, which is important in
making control decisions, cannot be measured online due to the high economic cost and
technical limitations. Therefore, it is necessary to process the measurements to guarantee
the reliability and observability of the system. Based on this, the estimation of feeding
composition can be better performed. Data reconciliation is an effective approach for this
aim [1]. The principle of data reconciliation is to minimize the sum of square deviations
between the coordinated value of variables and their measurements under the condition of
satisfying material balances, heat balances and boundary constraints of process variables.
From the mathematical point of view, data reconciliation is a constrained optimization
problem [2], which has been widely used in many important procedures such as in-line
process monitoring [3,4], enhanced control strategy performance [5,6], parameter estima-
tion [7], soft sensor applications [8], quality control [9] and industrial optimization [10,11]
among others [3–11].

Traditional data reconciliation typically assumes that measurements contain only
random errors with an average value of zero and normal distributions. Nonetheless, the
measurements will be contaminated by gross errors. If gross errors are not processed,
the accuracy of data reconciliation results will be reduced. The gross error detection is
therefore particularly important for data reconciliation. There are currently three main
methods for handling measurements with gross errors. The first strategy is sequential gross
error detection and data reconciliation. A variety of statistical tests, including the global
test [12], the measurement test [13], the nodal test [14], generalized likelihood ratio test [15]
and principal component analysis test [16], are used for gross error detection. Following
the detection and elimination of gross errors, the traditional data reconciliation is carried
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out. The second strategy is simultaneous gross error detection and data reconciliation.
Yu et al. [17] proposed a support vector regression method for recursive simultaneous
data reconciliation and gross error detection. Zhang et al. [18] used a novel particle filter
(PF) algorithm based on the measurement test (MT) to solve the dynamic simultaneous
gross error detection and data reconciliation. Yuan et al. [19] established a new hierarchical
Bayesian framework, which can simultaneously estimate the real value of process variables
and obtain the magnitudes of gross errors. The last strategy is robust data reconciliation.
The estimations close to the true value can be obtained by reducing the influence of gross
errors on data reconciliation results. Tjoa and Biegler [20] constructed an M-estimator
based on mixed distribution, which takes both random errors and gross errors into account
and minimized the M-estimator as an objective function. Johnson and Kramer [21] pre-
sented a new robust method for data reconciliation based on a probability bootstrapping
theory. Arora and Biegler [22] evaluated the Fair and Hampel estimators in stationary
and dynamical constrained problems. Hampel’s three-part estimator presented the best
performance. Wang and Romagnoli [23] designed a partially adaptive estimator based on
a generalized T distribution and a fully adaptive estimator based on density estimation
by studying the robustness of a set of existing estimators. Özyurt and Pike [24] analyzed
the performance of a number of robust estimators such as Hampel, Cauchy and Fair.
Ragot et al. [25] adopted a cost function that has been improved based on the contaminated
probability density distribution model for the design of robust estimator. Prata et al. [26]
applied the proposed strategy based on the particle swarm optimization (PSO) and the
robust Welsch estimator to real-time online detection of Bulk polymerization of propylene.
Zhang et al. [27] constructed a robust estimator by using the quasi-weighted least squares.
Through the comparative analysis of various methods like Welsch, quasi-weighted least
squares and comentropy M-estimators, the feasibility and effectiveness of robust estimators
in simultaneous gross error detection and data reconciliation were demonstrated [28].
Alighardashi et al. [29] proposed a maximum likelihood framework for simultaneous data
reconciliation and gross error detection for steady-state data. Xie et al. [30] utilized a novel
robust estimator to improve the robustness of data reconciliation. Forty-eight different
robust M-estimators can be founded in a recent review study, including Fair, Cauchy,
Biweight, Jin, Welsch estimator and Xie [31].

The key to estimating feeding composition based on data reconciliation is the robust
estimator and the design of the estimation strategy. An excellent robust estimator is
embodied in two aspects: On the one hand, the objective function is bounded, and the
bound value is small; on the other hand, the influence function can converge quickly
and converge to zero. The objective functions of Cauchy [32] and Fair [33] estimators
increase with the increase in standard measurement residuals, indicating that the error
will greatly affect the reconciled results. Besides, the convergence speed of their influence
functions is very slow, and the bound values are large, which shows that the two estimators
cannot suppress the influence of gross errors on reconciled results. The objective function of
Welsch [26] estimator is limited, but the bound value is also large, and the influence function
does not converge rapidly. Although the influence function of Xie [30] estimator may
converge to zero and the convergence speed is improved in comparison to the estimators
above, it still cannot achieve the fast standard. Based on the robust estimation theory, a
novel robust estimator is proposed to enhance the performance of the robust estimators.
The objective function is bounded, the bound value is smaller, and the influence function
converges toward zero faster. At the same time, aiming at the problem that the change of
feeding composition caused by the long test period of industrial processes is unknown,
an iterative robust hierarchical data reconciliation and estimation strategy based on the
heat balance is proposed. In order to further verify the robustness and effectiveness of
the proposed robust estimator and estimation of feeding composition strategy, a series of
comparative experiments are carried out through two numerical examples and the real
data from a fluidized bed roaster for zinc smelting.
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After initial remarks, motivation aspects and applications of the data reconciliation
issue, the paper is organized as follows. Section 1 presents preliminary approaches to tradi-
tional data reconciliation and robust estimator. The novel robust estimator is proposed, and
two numerical examples are used to demonstrate the effectiveness of the proposed estima-
tor in Section 2. Section 3 provides an iterative robust hierarchical data reconciliation and
estimation strategy to estimate feeding composition. The feeding composition of fluidized
bed roaster is then estimated in Section 4. Finally, Section 5 provides the conclusions.

2. Preliminaries
2.1. Data Reconciliation

The purpose of data reconciliation is to obtain the reconciled data by processing the
raw measurements. The reconciled data not only satisfy the constraints of the process
model but are also closer to the true value. There are three main assumptions for the system
using data reconciliation: The system is in a steady state, the measurement errors follow a
normal distribution with zero mean, and each measured variable is independent of each
other. Taking into account the presence of measurement errors, the measurement model
may be expressed as follows:

x = x∗ + ε (1)

where x denotes the vector of raw process measurements, x∗ denotes the vector of true
values of the process variables and ε is the random measurement errors.

Based on the principle of data reconciliation, the general steady-state data reconcil-
iation problem can be stated as a form of solving the weighted least squares solution
satisfying the process model and boundary constraints:

min (x− x̃)T ∑−1(x− x̃)
s.t. F(x̃, u) = 0

G(x̃, u) ≤ 0
(2)

where x̃ is the vector of reconciled data, ∑ is the diagonal covariance matrix of measurement
errors, u is the vector of unmeasured variables; F represents the process model, which is
used as equality constraints in the optimization problem, and G denotes the inequality
constraints indicating variable boundaries.

2.2. M-Estimator

In the classical weighted least square of data reconciliation, Equation (2), it is usually
assumed that the process measurements contain only random errors. However, in the
actual measurement process, the measured values may contain gross errors. The presence
of gross errors has a serious effect on the conventional data reconciliation, resulting in
the propagation of gross errors. This will cause the reconciled data to not satisfy the
process model and deviate from the true value of variables seriously. As a result, the robust
estimator is used to account for gross errors in measurements.

Currently, there are numerous approaches for robust data reconciliation, the majority
of which are based on the theory of M-estimator. The function of the measurement residuals
is constructed as the objective function of the robust estimator. By reducing the weight of the
measurements with gross errors, it can prevent gross errors smearing other measurements.
Hence, the robust estimator can well reconcile the data with gross errors. The problem of
robust data reconciliation can be expressed as follows:

min
n
∑

i=1
ρ(ξi) = min

n
∑

i=1
ρ( xi−x̃i

σi
)

s.t. F(x̃, u) = 0
x̃imin ≤ x̃i ≤ x̃imax, i = 1, 2, . . . , n
ulmin ≤ ul ≤ ulmax, l = 1, 2, . . . , N − n

(3)
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where ρ is the robust estimator, ξi = (xi − x̃i)/σi is the standardized residual for the ith
measured variable, xi, x̃i and ul are, respectively, the measured data, the reconciled data
for the ith measured variable and the estimated value for the jth unmeasured variable,
x̃imin, x̃imax, ulmin and ulmax are, respectively, the lower limit, the upper limit for the
ith reconciled variable, the lower limit, the upper limit for the lth unmeasured variable.
N, n, N − n denote the total number of variables, the total number of measured variables
and the total number of variables not measured, respectively. σi represents the standard
deviation for variable measurement errors.

Most M-estimators are not based on a clearly defined probability distribution known
in advance. Most of them are based on a simple mathematical structure. The mathematical
structure of M-estimator, i.e., ρ, has some general characteristics as follows:

• ρ is is continuous;
• ρ(ξ) = ρ(−ξ);
• ρ(ξ) ≥ 0 and ρ is integrable
• ρ(ξ1) ≤ ρ(ξ2), for |ξi| <

∣∣ξ j
∣∣;

• ρ(0) = 0.

As a crucial index in assessing the robustness of the M-estimator, the influence function
(IF) [34] is directly proportional to the derivative of the objective function of the estimator.
The influence function value refers to the effect of different deviation on the estimator. In
general, the function may be defined as the first derivative of the objective function to
standardized residuals, which can be expressed as follows:

IF(ξ) =
dρ(ξ)

dξ
(4)

Some general characteristics of IF [35] are:

• IF is limited;
• IF is continuous or piecewise continuous;
• IF(−ξ) = −IF(ξ);
• IF is nearly linear near the origin (IF(ξ) ≈ k · ξ, k 6= 0, for small ξ), but this character-

istic is not necessary;
• the rejection point of IF (the point where IF is zero) is finite to suppress large deviations.

On the basis of a robust M-estimation theory, the influence function needs to be
continuous and bounded. When ξ is small, the influence function is proportional to ξ;
when ξ is infinite, the influence function can converge to a constant, which indicates that
the robust estimator can suppress the effect of gross errors in the reconciled results. The
influence function of the weighted least squares estimator is the standardized residual ξ,
which indicates that the influence function will increase with the measurement errors. It
can be seen that the weighted least squares estimator is not robust because its influence
function is boundless, and the reconciled results can be easily affected by gross errors.

3. Data Reconciliation Based on a Novel Robust Estimator
3.1. A Novel Robust Estimator

The most robust estimators are constructed according to the following requirements:
The objective function of the estimator is bounded, and the bound value is small; the influ-
ence function can rapidly converge to a constant. From the observation of the mathematical
structure of 48 different robust estimators in the literature [31], it has been shown that the
objective functions of these M-estimators comprise limitless function, limited function,
non-piecewise function, piecewise function, multi parameters and a single parameter. The
performance of the M-estimator whose objective function is limited, non-piecewise and
has single parameter is analyzed. It is found that the M-estimator with a relatively rapid
convergence rate basically contains the mathematical expression with e as the base number.
The derivative of exponential function based on e is equal to itself. Moreover, e−ξ decreases
with increasing ξ and tends towards 0. When ξ tends towards 0, e−ξ tends towards 1.
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Therefore, the objective function can be limited if the structure of 1− e−ξ is included in.
For instance, the Welsch estimator and the objective function is presented in Equation (5).
In order to improve the robustness of the M-estimator, Xie divided 1− e−ξ with 1 + e−ξ .
By the decline of 1 + e−ξ , the overall rise speed of the objective function is improved.
Furthermore, the converging speed of the influence function is accelerated. The objective
function of Xie estimator is illustrated under Equation (6).

Welsch:

ρ(ξi) =
c2

w
2

(
1− exp

(
−
(

ξi
cw

)2
))

(5)

Xie:

ρ(ξi) =

1− exp
(
−
(

ξi
cx

)2
)

1 + exp
(
−
(

ξi
cx

)2
) (6)

where cw and cx are, respectively, tuning parameters of Welsch and Xie estimators.
As discussed above, in order to limit the effect of gross errors on the reconciled results,

a novel robust estimator is created based on the general characteristics of the M-estimator
and influence function. The objective function of the novel robust estimator is defined
as follows:

ρ(ξi) =
c2

p

[
1− exp

(
−
(
ξi/cp

)2
)]

4
[
1 + exp

(
−
(
ξi/cp

)4
)] (7)

where cp is the tuning parameter; the definition of ξi is the same as above. By increasing
the index of ξ, the downward velocity of 1 + e−ξ is increased. Then, the objective function
increases faster, and the influence function converts to 0 faster. At the same time, in order
to satisfy the characteristic that the influence function is almost linear near the origin,
the objective function is multiplied by c2

p/4. The influence function of the novel robust
estimator function expressed in Equation (7) is as follows:

IF(ξi) =
dρ(ξi)

dξi
=

ξi exp
(
−
(

ξi
cp

)2
)[

1 + exp
(
−
(

ξi
cp

)4
)
+

2ξ2
i

c2
p

(
1− exp

(
−
(

ξi
cp

)2
))]

2
[

1 + exp
(
−
(

ξi
cp

)4
)]2 (8)

It can be seen from Equations (7) and (8) that when the standardized residual is small,
the objective function of the novel robust estimator tends to be gradually zero, and the
influence function is proportional to the standardized residual. It shows that the weighted
least squares method can be used to reconcile the data where measurements contain only
random errors. When the standardized residual is significant, the objective function of
the novel robust estimator tends to be constant little by little, and the influence function
quickly converges to zero. It is demonstrated that the novel robust estimator can adjust the
weight of the estimator based on the standardized residual size when the measurements
contain gross errors. The larger the gross errors, the lower the weights, and the greater the
effects of restraining the gross errors. Therefore, the proposed estimator is more robust.

3.2. The Tuning Parameter of the Novel Robust Estimator

The use of robust estimators in data regression typically involves the inverse rela-
tionship between relative efficiency and robustness [36]. Relative efficiency refers to the
fit quality of the estimated value reconciled by M-estimator, when errors follow another
distribution relative to the reference distribution (usually assumed to be Normal distribu-
tion). The so-called robustness refers to the performance of the M-estimator under various
nonnormal error distributions. The more robust an M-estimator is, the less its relative
efficiency is. The relationship between robustness and relative efficiency is addressed by
the tuning parameters. When comparing the performance of different M-estimators, the
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level of relative efficiency and the reference distribution should be consistent. In general,
the tuning parameters for each M-estimator are obtained at the relative efficiency level of
95%. Then the robustness of distinct M-estimators is judged.

The mathematical definition of relative efficiency is illustrated in Equation (9):

E f f [IF(ξ), f (ξ)] =
Vf [IF f (ξ), f (ξ)]
V[IF(ξ), f (ξ)]

(9)

where Vf is the asymptotic variance of the reference estimator, V is the asymptotic variance
of the specified estimator, f (ξ) is the error reference probability distribution, IF f (ξ) is the
influence function of the reference estimator and IF(ξ) is the influence function of the
specified estimator. The asymptotic variance V is defined as follows [37]:

V[IF(ξ), f (ξ)] =

∫ +∞
−∞ IF2(ξ) f (ξ)dξ[∫ +∞
−∞ IF′(ξ) f (ξ)dξ

]2 (10)

where IF′(ξ) is the derivative of the influence function IF(ξ). Since IF′(ξ) may be discon-
tinuous, Equation (10) can be further expressed by Equation (11):

V[IF(ξ), f (ξ)] =

∫ +∞
−∞ IF2(ξ) f (ξ)dξ[

−
∫ +∞
−∞ IF(ξ) f ′(ξ)dξ

]2 =

∫ +∞
−∞ IF2(ξ) f (ξ)dξ[

−
∫ +∞
−∞ IF(ξ) f ′(ξ)dξ

]2 (11)

where f ′(ξ) is the derivative of f (ξ).
The tuning parameter of the proposed estimator at the relative efficiency level of 95%

in respect to the Normal distribution is calculated as follows:
(1) The Normal distribution is selected as the reference distribution, and its probabilis-

tic distribution and the first derivative are respectively expressed as follows:

f (ξ) =
1

σ
√

2π
exp

(
− ξ2

2

)
(12)

f ′(ξ) = −ξ
1

σ
√

2π
exp

(
− ξ2

2

)
= −ξ f (ξ) (13)

(2) The least square estimator is selected as the reference estimator, and its influence
function is expressed as follows:

IF f (ξ) =
dρ(ξ)

dξ
=

d
dξ

(
ξ2

2

)
= ξ (14)

(3) The influence function of the proposed estimator is shown in Equation (8). The
expressions of Vf and V can be obtained by using Equation (11):

Vf =
2 ·
∫ +∞

0 IF2
f (ξ) f (ξ)dξ(

2 ·
∫ +∞

0 IF f (ξ)ξ f (ξ)dξ
)2 (15)

V =
2 ·
∫ +∞

0 IF2(ξ) f (ξ)dξ(
2 ·
∫ +∞

0 IF(ξ)ξ f (ξ)dξ
)2 (16)

(4) The expression of relative efficiency can be obtained from Equation (9). Making
the expression equal to 0.95, a univariate equation on the tuning parameter cp can be
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constructed, as shown in Equation (17). By numerical calculation, the tuning parameter at
the relative efficiency level of 95% in respect to the Normal distribution is 1.5424.

Vf
V =

2
∫+∞

0 ξ2 · 1
σ
√

2π
exp(−(ξ2/2))dξ[

2
∫+∞

0 ξ2 · 1
σ
√

2π
exp(−(ξ2/2))dξ

]2

2
∫+∞

0
ξ2 exp(−2(ξ/cp)2)[1+exp(−(ξ/cp)4)+2ξ2(1−exp(−(ξ/cp)2))/c2

p ]
2

4[1+exp (−(ξ/cp)4 ]
4 · 1

σ
√

2π
exp(−(ξ2/2))dξ

2
∫+∞

0
ξ2 exp(−(ξ/cp)2)[1+exp(−(ξ/cp)4)+2ξ2(1−exp(−(ξ/cp)2))/c2

p ]

2[1+exp (−(ξ/cp)4 ]
2 · 1

σ
√

2π
exp(−(ξ2/2))dξ

2

= 0.95 (17)

To more accurately reflect the competitive relationship between the relative efficiency
and robustness of the M-estimator, the comparative images of the objective function and
influence function of the proposed, Xie and Welsch estimators are shown in Figure 1.
Relative efficiency levels are 90%, 95%, 98% and 99%, respectively. The tuning parameters
of the three estimators at different relative efficiency levels are presented in Table 1. Table 1
and Figure 1 show that the higher the relative efficiency level, the higher the values of the
tuning parameters for the three estimators. The higher the tuning parameter, the slower
the convergence speed of the influence function to 0 and the weaker the robustness. Hence,
when comparing the robustness of distinct estimators, the comparative analysis has to be
performed at the same level of relative efficiency.

Table 1. Tuning parameters of three estimators at distinct relative efficiency levels.

M-Estimator Tuning Parameter

1 Welsch


cw = 2.3828 E f f = 90%
cw = 2.9846 E f f = 95%
cw = 3.9077 E f f = 98%
cw = 4.7343 E f f = 99%

2 Xie


cx = 1.6705 E f f = 90%
cx = 1.9597 E f f = 95%
cx = 2.3409 E f f = 98%
cx = 2.6359 E f f = 99%

3 Proposed


cp = 1.3082 E f f = 90%
cp = 1.5424 E f f = 95%
cp = 2.0942 E f f = 98%
cp = 2.6060 E f f = 99%

In order to further analyze the effectiveness of the proposed estimator, the objective
function and influence function of the proposed estimator are compared with the other
four robust estimators. The four types of robust estimators are Fair, Cauchy, Welsch and
Xie. The objective functions of Fair and Cauchy are shown in Equations (18) and (19):

Fair:

ρ(ξi) = c2
f

(
|ξi|
c f
− ln

(
1 +
|ξi|
c f

))
(18)

Cauchy:

ρ(ξi) = c2
c ln

(
1 +

ξ2
i

c2
c

)
(19)

where c f and cc are, respectively, tuning parameters of Fair and Cauchy estimators. The
tuning parameters of the five M-estimators under the level of 95% relative efficiency are
c f = 1.3998, cw = 2.9846, cc = 2.3849, cx = 1.9597 and cp = 1.5424. The results of the
comparison are illustrated in Figures 2 and 3.
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As can be seen from Figures 2 and 3, the objective function and influence function
of the proposed M-estimator satisfy their general characteristics. When the standardized
residual is low, the objective and influence functions of several robust estimators are all
close, which indicates that low measurement errors have little effect on these estimators.
When the standardized residual is large, the objective function of the Fair and Cauchy
estimator increases at a higher rate. Their influence functions do not converge rapidly and
eventually converge to a nonzero value. It shows that both Fair and Cauchy estimators
are sensitive to gross errors. Although the objective function of Welsch does not diverge,
it tends to be a greater constant than Xie and the novel robust estimator. The objective
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functions of the novel robust estimator and Xie estimator are less than those of the other
three estimators in the case of gross errors in measurements. Furthermore, the proposed
M-estimator tends to be a constant lower than Xie. It can be seen further from Figure 2 that
when there are gross errors in measurements, the influence function of the proposed M-
estimator decreases much faster than that of Xie. When the standardized residual exceeds
4, the influence function of the proposed M-estimator converges to 0. Nevertheless, the
influence function of Xie converges to 0 only when the standardized residual is above 5.
Hence one can see that the convergence speed of influence function of the novel robust
estimator is faster than that of Xie, and the effect of suppressing gross errors is excellent.
The proposed method is therefore more robust and efficient than other estimators.
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estimators. The data reconciliation procedure can be interpreted mathematically as an
optimization problem. In this paper, the state transition algorithm (STA) is applied as
the optimization method for data reconciliation problems [38]. The local search operator,
the global search operator and the heuristic search operator are adopted as the state
transformation operators. This can prevent the solution process from falling into the local
optimum and reduce the search time for the global optimum.

3.3. Linear Case

In this part, the measurement network [26] as shown in Figure 4 is adopted. The
network is a linear structure consisting of four nodes and seven streams. As can be seen
from Figure 4, the seven streams meet the following material balance

x1 − x2 + x4 + x6 = 0
x2 − x3 = 0
x3 − x4 − x5 = 0
x5 − x6 − x7 = 0

(20)

where x = [x1, x2, . . . , x7]
T is set of stream variables. In this linear example, all variables

are assumed to be measured, and the true value of each variable is X = [5, 15, 15, 5, 10, 5, 5].
The true value of each variable is added with some random errors to get the corresponding
measurements. Let the standard deviation of random errors be 2.5% of the true value of
each stream. The diagonal matrix of the variance is as follows:

∑ = 0.01× diag(1.562, 14.062, 14.062, 1.562, 6.250, 1.562, 1.562) (21)
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where ix  represents the reconciled data for the i th measurable variable; *
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For a precise analysis of the performance of each robust estimator, SSE (sum of squares
due to error), TER (total error reduction) and RER (relative error reduction) [27] are used
as indicators to assess the precision of the reconciled results. The definitions included are:

SSE =
n

∑
i=1

(x̃i − x∗i )
2 +

m

∑
j=1

(ũj − u∗j )
2 (22)
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√
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σi

)
2
−
√

n
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(

x̃i−x∗i
σi

)
2
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(

xi−x∗i
σi

)
2

(23)

RER =

n
∑

i=1
(
|x∗i −xi|

x∗i
− |x

∗
i −x̃i|
x∗i

)

n
∑

i=1

|x∗i −xi|
x∗i

(24)

where x̃i represents the reconciled data for the ith measurable variable; x∗i represents the
true value for the ith measurable variable; xi represents the measured data for the ith
measurable variable; ũj is the estimated value of the jth unmeasurable variable; u∗j is the
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true value of the jth unmeasurable variable; σi denotes the standard deviation for the ith
measurable variable; n is the total number of measurable variables; m is the total number
of unmeasurable variables. The smaller the SSE, the closer the reconciled results are to the
true value. The larger the TER, the more accurate the reconciled results. The larger RER
shows that the reconciled results are less affected by gross errors.

3.3.1. There Are Two Gross Errors in the Measurement Variables

Streams 2 and 5 are selected to add gross errors in the magnitude of 2 and 1, respec-
tively, and other streams contain only random errors. The results of the data reconciliation
and indicators for several methods are presented in Table 2. For convenience, "Proposed"
is used to represent the proposed estimator in this table and subsequent tables.

Table 2. Reconciled results of different methods with two gross errors.

Stream True Original Meas. Meas. with Gross Error Proposed Xie Welsch Cauchy Fair

x1 5 4.995 4.995 5.0111 5.0152 5.0346 5.0519 5.1777
x2 15 14.91 16.91 15.0420 15.0540 15.1202 15.1970 15.6413
x3 15 15.01 15.01 15.0420 15.0540 15.1202 15.1970 15.6413
x4 5 5.002 5.002 4.9987 4.9985 5.0053 5.0230 5.1795
x5 10 9.98 10.98 10.0433 10.0555 10.1149 10.1740 10.4618
x6 5 5.019 5.019 5.0322 5.0403 5.0803 5.1221 5.2841
x7 5 5.014 5.014 5.0111 5.0152 5.0346 5.0519 5.1777

SSE – – – 0.0067 0.0110 0.0510 0.1287 1.2117
TER – – – 0.9424 0.9263 0.8457 0.7606 0.2953
RER – – – 0.9101 0.8838 0.7501 0.6008 −0.2626

Table 2 shows that the SSE of the proposed robust estimator (Proposed) is much lower
than that of Fair with 1.2117 and Cauchy with 0.1287 and is less than that of Xie and Welsch
estimator. The TER of the novel robust estimator is much larger than that of Fair with
0.2953 and Cauchy with 0.7606, and higher than that of Xie and Welsch estimator. In
addition, the RER of Proposed is also higher than that of the other four robust estimators.
The results show that in the case of two gross errors, the reconciled results of the novel
robust estimator are closer to the true value, and the proposed estimator performs better
than other methods.

3.3.2. There Are Three Gross Errors in the Measurement Variables

Streams 2, 5 and 7 are selected to add gross errors with the magnitudes of 2, 1 and
−1.5, respectively, and other streams contain only random errors. The results of the data
reconciliation and indicators for several methods are presented in Table 3.

Table 3. Reconciled results of different methods with three gross errors.

Stream True Original Meas. Meas. with Gross Error Proposed Xie Welsch Cauchy Fair

x1 5 4.995 4.995 5.0080 5.0164 5.0574 5.0323 4.3533
x2 15 14.91 16.91 15.0390 15.0552 15.1425 15.1802 15.1833
x3 15 15.01 15.01 15.0390 15.0552 15.1425 15.1802 15.1833
x4 5 5.002 5.002 4.9991 4.9984 5.0037 5.0244 5.3066
x5 10 9.98 10.98 10.0399 10.0568 10.1388 10.1558 9.8767
x6 5 5.019 5.019 5.0320 5.0404 5.0814 5.1235 5.5233
x7 5 5.014 3.514 5.0080 5.0164 5.0574 5.0323 4.3533

SSE – – – 0.0058 0.0115 0.0731 0.1071 1.2866
TER – – – 0.9743 0.9642 0.9111 0.8954 0.3474
RER – – – 0.9641 0.9470 0.8621 0.8446 0.1268

Table 3 shows that the SSE of the proposed robust estimator (Proposed) is much lower
than that of Fair with 1.2866 and Cauchy with 0.1071 and is less than that of Xie and Welsch
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estimator. The TER of the novel robust estimator is much larger than that of Fair with
0.3474, and higher than that of Xie, Welsch and Cauchy estimator. In addition, the RER
of Proposed is also higher than that of the other four robust estimators. The results show
that in the case of three gross errors, the reconciled results of the novel robust estimator are
closer to the true value, and the proposed estimator performs better than other methods.

In order to better illustrate the effectiveness of the proposed estimator, the linear
numerical example is divided into three groups for comparative experiments. Each group
comprises 100 data samples. In the first group, there is gross error in stream 2 (x2). In group
two, there are gross errors in stream 2 (x2) and stream 5 (x5). The third group contains gross
errors in stream 2 (x2), stream 5 (x5) and stream 7 (x7). In each group of experiments, the
selected variables are added with gross errors ranging from 3 times to 9 times the standard
deviation. The measurement test (MT) is used to detect gross errors. Two criteria are
selected to assess the performance of different methods, including the observed power (OP)
and the Average Number of Type I errors (ATVI) [2]. OP and ATVI are defined as follows:

OP =
The number of gross errors detected correctly

The total number of gross errors
(25)

ATVI =
The number of gross errors detected mistakenly

The total number of simulations
(26)

OP indicates the number of gross errors correctly detected. ATVI indicates the number
of gross errors mistakenly detected. The larger value of the OP is, the stronger ability of
the estimator to identify gross errors. The lower value of the ATVI is, the less frequently
gross errors are detected incorrectly. The statistical graph of the process in which gross
errors are detected by distinct methods in each group is shown in Figure 5. The abscissa of
each graph corresponds to seven stream variables. The y-axis is the number of times each
variable is detected to contain gross errors. The OP and ATVI of the proposed estimator,
Xie, Welsch, Cauchy and Fair are obtained by statistical analysis of the process diagram, as
illustrated in Figure 6.

As depicted in Figure 6, when one variable, two variables and three variables contain
gross errors, the OP obtained by the proposed estimator is higher than that obtained by
other estimators. The result shows that the proposed estimator has a higher probability of
identifying gross errors correctly. In addition, the AVTI obtained by the proposed estimator
is lower than that obtained by other methods. It can also be seen from Figure 5 that the
proposed estimator has a lower number of gross errors mistakenly detected than other
estimators. It is shown that gross errors have less influence on the data reconciliation based
on the Proposed estimator.

3.4. Nonlinear Case

A nonlinear numerical example [22] is used in this part. Within the nonlinear sys-
tem, there are five measurable variables, three unmeasurable variables and six nonlinear
constraint equations, which are described as Equation (27):

0.5x2
1 − 0.7x2 + x3u1 + x2

2u1u2 + 2x3u2
3 − 255.8 = 0

x1 − 2x2 + 3x1x3 − 2x2u1 − x2u2u3 + 111.2 = 0
x3u1 − x1 + 3x2 + x1u2 − x3

√
u3 − 33.57 = 0

x4 − x1 − x2
3 + u2 + 3u3 = 0

x5 − 2x3u2u3 = 0
2x1 + x2x3u1 + u2 − u3 − 126.6 = 0

(27)

where xi(i = 1, 2, . . . , 5) is the measured variable and uj(j = 1, 2, 3) is the unmeasured
variable. Measurements of the measured variables are obtained from the true value added,
some random errors and gross errors. The true value, the measured value, the standard
deviation of the measured variables and the true value of the unmeasured variables are
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given in Table 4. Amongst these, x2 , x3 and x5 contain gross errors. The results of the data
reconciliation and indicators for several methods are presented in Table 4.
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Table 4. Reconciled results of different methods for nonlinear constraints.

Stream Standard Deviation True Meas. Proposed Xie Welsch Cauchy Fair

x1 0.5 4.5124 4.5360 4.5378 4.5280 4.5379 4.5796 4.4727
x2 0.6 5.5819 5.9070 5.5754 5.5655 5.5331 5.5360 5.6514
x3 0.2 1.9260 1.8074 1.9221 1.9223 1.9200 1.9153 1.9321
x4 0.2 1.4560 1.4653 1.4653 1.4842 1.4924 1.5096 1.4655
x5 0.5 4.8545 4.5491 4.8156 4.8010 4.8083 4.7882 4.7870
u1 – 11.070 – 11.0988 11.1178 11.1939 11.2079 10.9076
u2 – 0.6147 – 0.6143 0.6160 0.6187 0.6168 0.6104
u3 – 2.0504 – 2.0469 2.0349 2.0317 2.0345 2.0372

SSE – – – 0.0031 0.0067 0.0222 0.0333 0.0377
TER – – – 0.8950 0.8192 0.7751 0.6631 0.7994
RER – – – 0.8805 0.8008 0.7324 0.5930 0.7693

Table 4 shows that the SSE calculated by the proposed robust estimator is significantly
less than that calculated by Fair, Cauchy and Welsch estimator, and it is less than that
calculated by Xie estimator. Furthermore, the TER and RER of the proposed estimator are
larger than those of the other four estimators. The results show tha for the nonlinear case,
the reconciled results of the new robust estimator are also near the true value. Consequently,
the proposed robust estimator can effectively suppress the effect of gross errors on the
reconciled results and has greater robustness and excellent effectiveness.

4. Feeding Composition Estimation Based on Iterative Data Reconciliation

In order to address the problem caused by the unknown change in feeding composi-
tion, an iterative robust hierarchical data reconciliation and estimation strategy is proposed.
The method is applied to a fluidized bed roaster for zinc smelting. Firstly, the industrial
process of fluidized bed roaster is introduced. At the same time, difficulties in reconciling
the fluidized bed roaster are discussed in Section 3.1. Then, on the basis of the establish-
ment of the mechanism balance model of the fluidized bed roaster, specific solutions are
presented in accordance with the existing difficulties.

4.1. Industrial Process Description

The fluidized bed roaster is a type of thermal equipment that applies fluidization
technology to make materials desulphurized by oxidation roasting in the metallurgical
industry. The roasting process of the fluidized bed roaster is a gas-solid reaction procedure.
By sending a great deal of air into the oven from the bottom, a very intense exothermic
reaction occurs in the material layer of the sulfur ore under the agitation of the air. Oxygen
combines with sulfide to form sulfur dioxide and precious metals are converted into oxides
or sulphates. The structure diagram for the fluidized bed roaster is shown in Figure 7.

In the fluidized roasting process, accurate and reliable measurements are the basis
of process control, functional analysis and production management. However, in the
real process, due to inaccurate sensors, equipment leaks and measurement bias, real-time
measurements are inevitably affected by random errors and gross errors. That has a serious
effect on the accuracy of measurements. In addition, some important variables, such as
smoke volume and calcine quality, cannot be measured due to limitations in measurement
technology and the environment.

The ZnS content of the feed during the roasting of the zinc concentrate will affect the
indices of operation, such as the resistance to roasting, the temperature of the boiling layer
and the content in the gaseous effluents. Then, the technical-economic index of the level of
zinc soluble in calcine is affected, which field staff can judge from according to roasting.
The compositions of mixed zinc concentrate and calcine are sampled only twice a day, once
in the morning and once at night. Then the percentage of Zn, S and other elements in
the mixed zinc concentrate and that of soluble zinc and soluble sulfur in the calcine are
detected by the laboratory. Nevertheless, the sampling frequency of the variables measured
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in real time, like feed volume and blast volume, is 5 seconds, which is much greater than
that of the laboratory data. Hence, due to the long test cycle of the mixed zinc concentrate
composition in the fluidized bed roaster, the laboratory data cannot reflect the change in
the real-time feeding composition.
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Concerning the problems of measurements contaminated by gross errors, irredundant
process data and a long test cycle of the feeding composition, an iterative robust hierarchical
data reconciliation and estimation strategy for feeding composition is proposed.

4.2. Iterative Robust Hierarchical Data Reconciliation and Composition Estimation Framework

Figure 8 illustrates the framework of iterative robust hierarchical data reconciliation
and estimation strategy for feeding composition. The major steps are as follows:
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Step 1: Establish the steady-state mechanism model of the fluidized bed roaster The es-
tablishment of a reasonable process model is the basis for data reconciliation. However, the
actual industrial process is complex and needs to be simplified accordingly. The following
assumptions are put forward to establish a credible and comprehensible mechanism model:

(1) The only exothermal component of the mixed zinc concentrate is ZnS.
(2) Since the specific heat of calcine and soot is close and the mass ratio is close to 1:1,

soot can be classified as calcine in the calculation.
Therefore, the material and heat balance at steady-state are expressed by

Equations (28) and (29):
Material balance:

16
97

α(M1 + M2)1000 + V0(ρ0 − ρ1) = 0 (28)

Heat balance:

1000(M1 + M2)T1cp1 + V0T0cp2 +
443508

97 α(M1 + M2)1000
= 1000(1− 16

97 α)(M1 + M2)T3cp3 + V0T2cp0 + Q
(29)

where α denotes the percentage of ZnS in zinc concentrate; M1 and M2 represent the first
and second feeding quantity, respectively; V0 is the blast velocity; T0, T1, T2 and T3 denote
the temperature variables for blast, zinc concentrate, gas and calcine, respectively; cp0, cp1,
cp2 and cp3 are specific heat for gas, zinc concentrate, blast and calcine, respectively; Q
describe the heat loss; ρ0 and ρ1 are, respectively, the density of air and gas. Among these
variables, M1, M2, V0, T0, T2 and T3 are measured variables. ρ1, Q and α are unmeasured
variables. The other parameters are all fixed values.

Step 2: Preliminary estimation of α based on measurements and heat balance. Estima-
tion of α can be considered as an optimization problem. Combined with the heat balance
and measurements, the ZnS estimation model before data reconciliation could be expressed
as follows:

minY1 = (1000(M1 + M2)T1cp1 + V0T0cp2 +
443,508

97 α(M1 + M2)1000
−1000(1− 16

97 α)(M1 + M2)T3cp3 −V0T2cp0 −Q)2 (30)

s.t. αmin ≤ α ≤ αmax (31)

where Y1 is the objective of the optimization problem; αmin and αmax are the top and bottom
bounds of α, respectively. In this case, Q can be roughly considered as a fixed value, which
can be obtained by expert knowledge. The preliminary estimation of α will be used to
construct the hierarchical model in Step 3.

Step 3: Robust hierarchical data reconciliation. First, the robust reconciliation model of
material balance layer is established to obtain the reconciled values of the first and second
feeding quantity and blast velocity. Then, the reconciled values of the material balance
layer are used as precise values to construct the robust reconciliation model of heat balance
layer. Finally, the reconciled results of the temperature for the blast, gas and calcine can be
obtained. Therefore, the hierarchical data reconciliation model based on the novel robust
estimation is expressed as follows:

Material balance layer:

min f1 =
n
∑

i=1
ρ(xi, x̂i)

=
n
∑

i=1
(1 + ((xi − x̂i)

2/σ2
i c14

p − 1) exp(−((xi − x̂i)/σicp)
2))

= 1 + ((M1 − M̂1)
2/σ2

M1
c14

p − 1) exp(−((M1 − M̂1)/σM1 cp)
2
)+

1 + ((M2 − M̂2)
2/σ2

M2
c14

p − 1) exp(−((M2 − M̂2)/σM2 cp)
2
)+

1 + ((V0 − V̂0)
2/σ2

V0
c14

p − 1) exp(−((V0 − V̂0)/σV0 cp)
2
)+

1 + (‖ρ1 − ρ̃1‖2/c14
p − 1) exp(−(‖ρ1 − ρ̃1‖/cp)2)

(32)
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s.t.



16
97 α(M̂1 + M̂2) + V̂0(ρ0 − ρ1) = 0
M̂1min ≤ M̂1 ≤ M̂1max
M̂2min ≤ M̂2 ≤ M̂2max
V̂0min ≤ V̂0 ≤ V̂0max
ρ1min ≤ ρ1 ≤ ρ1max

(33)

where f1 is the objective function of the robust estimator; xi and x̂i represent the mea-
surement and reconciled data for the ith measured variable respectively; M̂1min, M̂2min,
V̂0min and ρ1min denote the bottom bounds of the reconciled results for the first and second
feeding quantity, blast velocity and the density of the air, respectively. M̂1max, M̂2max, V̂0max
and ρ1max denote the top bounds of the reconciled results for the first and second feeding
quantity, blast velocity and the density of the air, respectively.

Heat balance layer:

min f2 =
n
∑

i=1
ρ(xi, x̂i)

=
n
∑

i=1
(1 + ((xi − x̂i)

2/σ2
i c14

p − 1) exp(−((xi − x̂i)/σicp)2))

= 1 + ((T0 − T̂0)
2/σ2

T0
c14

p − 1) exp(−((T0 − T̂0)/σT0 cp)2)+

1 + ((T2 − T̂2)
2/σ2

T2
c14

p − 1) exp(−((T2 − T̂2)/σT2cp)2)+

1 + ((T3 − T̂3)
2/σ2

T3
c14

p − 1) exp(−((T3 − T̂3)/σT3 cp)
2
)+

1 + (‖Q− Q̃‖2
/c14

p − 1) exp(−(‖Q− Q̃‖/cp)2)

(34)

s.t.



1000(M̂1 + M̂2)T1cp1 + V̂0T̂0cp2 +
443508

97 α(M̂1 + M̂2)1000
= 1000(1− 16

97 α)(M̂1 + M̂2)T̂3cp3 + V̂0T̂2cp0 + Q
T̂0min ≤ T̂0 ≤ T̂0max
T̂2min ≤ T̂2 ≤ T̂2max
T̂3min ≤ T̂3 ≤ T̂3max
Qmin ≤ Q ≤ Qmax

(35)

where f2 is the objective function of the robust estimator; T̂0min, T̂2min, T̂3min and Qmin
denote the bottom bounds of the reconciled results for the temperature of the blast, gas,
calcine and heat loss, respectively; T̂0max, T̂2max, T̂3max and Qmax denote the top bounds of
the reconciled results for the temperature of the blast, gas, calcine and heat loss, respectively.

Step 4: Reconciled estimation of α̂ based on reconciled results and heat balance.
The reconciled results obtained in Step 3 are substituted for the objective function of the
optimization problem based on heat balance. Then the estimated value of the percentage
for ZnS after reconciliation could be obtained. The ZnS estimation model after data
reconciliation can be represented as follows:

minY2 = (1000(M̂1 + M̂2)T1cp1 + V̂0T̂0cp2 +
443,508

97 α̂(M̂1 + M̂2)1000
−1000(1− 16

97 α̂)(M̂1 + M̂2)T̂3cp3 − V̂0T̂2cp0 −Q)2 (36)

s.t.α̂min ≤ α̂ ≤ α̂max (37)

where Y2 is the objective of the optimization problem; α̂ represents the estimated value of
percentage for ZnS after reconciliation; α̂min and α̂max denote the bottom and top bounds
of α̂ respectively. Through the iterative process of the above steps, greater accuracy and
a smaller range of ZnS fluctuation in the feed can be obtained. Therefore, staff can better
understand changes of the feeding composition and make adjustments as required.

5. Results from Real Industrial Data

To further demonstrate the effectiveness of the proposed method, 100 steady-state
samples are collected from the real industry of a fluidized bed roaster. In addition, the data
reconciliation results of the proposed estimator are compared with those of Xie estimator.
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The results of the comparison between the two methods are presented in Figures 9–14,
which respectively present the reconciled results for the first feeding quantity, the second
feeding quantity, blast velocity, blast temperature, gas temperature and calcine temperature.
From Figures 9–14, it is known that the reconciled results by the novel robust estimator
have a smaller range of fluctuation than that obtained by Xie estimator. It shows that
whatever the uncertainty of the fluctuation of the measurements and the number of gross
errors they contain, the data reconciliation approach based on the novel robust estimator is
highly robust.
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In addition, the standard deviations of the reconciled results and measurements for
six variables obtained from the two methods are calculated, and the results of the comparison
are presented in Figure 15. Figure 15 shows that, for the first feeding quantity, the seconding
feed quantity, the blast velocity and the temperature of blast, the standard deviation of the
reconciled results based on the novel robust estimator is less than Xie. For the temperature
of gas and calcine, the standard deviations of reconciled results for the two methods are
closer, because the measurement fluctuation ranges for both two variables are all very small.
The results demonstrate that the data reconciliation based on the novel robust estimator
provides better reconciliation results for variables with a large fluctuation range.
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For the change in feeding composition, the above 100 steady-state samples are also col-
lected to compare the percentage of ZnS before and after data reconciliation. Experimental
results are shown in Figures 16 and 17. It is evident that the ZnS fluctuation range obtained
by the proposed method is smaller than that before data reconciliation. It illustrates that
the percentage of ZnS estimated by the reconciled results is more accurate and could better
reflect the change of feeding composition over a period of time.
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6. Conclusions

The feeding composition in an industrial process can better reflect the state of produc-
tion. In this paper, estimation of feeding composition based on robust data reconciliation is
proposed to account for the unknown change in feeding composition. According to the
robust estimation theory, a novel robust estimator is presented to handle the measurements
with random errors and gross errors. In comparison with the objective function and in-
fluence function of other robust estimators, the proposed estimator is proved to be more
robust. Besides, the linear and nonlinear numerical examples are used to further verify
the effectiveness of the estimator. Then, an iterative robust hierarchical data reconciliation
and estimation of feeding composition strategy is proposed and used for a fluidized bed
roaster. The reconciled and estimated results show that the proposed strategy is beneficial
for the estimation of feeding composition in the actual industrial process.
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