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The object of this work was to study the effects of preliminary vacuum drying (VD),
pulsed electric field (PEF) treatment, frying temperature on color, oil uptake, and
acrylamide (AA) content in fried potato chips. The results of this study indicated that
an increase of frying temperature from 120 to 180◦C led to a decrease of frying time
of around 70% for untreated and PEF pre-treated samples. The color value of L∗

and a∗ decreased with the increase of frying temperature, and those values of the
sample pre-treated by PEF were significantly higher compared to those obtained from
untreated samples. The PEF pre-treatment promoted the reduction of oil content of
fried samples by up to 17.6, 14.2, and 16% compared with untreated samples at
the frying temperatures of 120, 150, and 180◦C, respectively. Higher efficiency was
observed by applying the preliminary VD in the case of the frying temperature of 150◦C.
Furthermore, it was revealed that PEF pre-treatment and preliminary VD application lead
to a synergetic effect on the reduction of AA content in potato chips. For example,
with the initial moisture ratio of 0.5, pre-dried by VD and pre-treated by PEF, the AA
content was noticeably decreased from 2,220 to 311 µg/kg compared to untreated
and undehydrated samples at the frying temperature of 150◦C. Our findings provide
reference for a new pre-treatment to mitigate AA formation and to improve the quality of
potato chips.

Keywords: potato chips, pulsed electric fields, vacuum drying, frying, acrylamide

INTRODUCTION

Acrylamide (AA), a carcinogen formed in heated foodstuffs which was found by the
Swedish National Food Administration in 2002, is a significant problem (1). Baked and
fried food, such as French fries and bread, is the main source of AA. Several mice
experiments on AA carcinogen in vitro and in vivo systems have been undertaken and they

Abbreviations: AA, acrylamide; PEF, pulsed electric field; MR, moisture ratio; U, untreated; VD, vacuum drying; WB, wet
basis (g water/g sample); LSD, least significant difference; DM, dry matter.
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suggested that AA might influence hormonal systems and
increase the risk of cancer (2, 3). It has been observed that
exposure to AA leads to a DNA damage and the high doses AA
would affect the reproduction as well (4). There was a moderate
level of AA content in heated protein-rich foods (5–50 µg/kg),
but a higher level of AA content was found in carbohydrate-rich
foods (150–4,000 µg/kg) (5).

Researchers have recently devoted great attention to
understanding the formation of AA and to optimizing the
processing conditions to reduce the amount of AA in foodstuffs.
One of the major routes for AA formation is the Maillard
reaction between amino acid asparagine and reducing sugar
(fructose or glucose) at temperatures above 120◦C (6–9).
Therefore, reducing AA precursors that are free asparagine and
reducing sugars could be directed toward for the mitigation
of AA. Muttucumaru et al. (10) paid attention to genetic
approaches to reducing AA risk, such as changing the cultivated
environment to reduce the sugars and/or free asparagine of
raw materials. Moreover, vacuolar invertase gene silencing
during tuber growth could strongly reduce the sugar and AA
content in fried potato strips (11). Baardseth et al. (12) used
lactic acid fermentation as a pre-treatment for French fries
processing; when the inoculation of lactic acid was done in
the blanched potato rods and fermented for between 45 and
120 min, AA content in final product could be reduced by 79
and 94%, respectively. Carrying out the blanching treatment
before potato chips processing could significantly limit AA
formation (about 64%) by reducing the content of glucose
and asparagine, as well as enzyme inactivation in potato slices
compared to the unblanched samples (13). Similar results
were observed by other researches as well (14). However, the
drawbacks of the blanching thermal pre-treatment are high
energy consumption and modification of sensorial properties
of the final product. During frying process, the oil used for
frying can be oxidized and can be converted into acrolein and
acrylic acid, which interact with asparagine in the presence of
heat and form AA (15). The formation of AA in this way is
common in fried foods. To date, the alternative non-thermal
technologies were proposed to preserve the product quality.
Pulsed electric field (PEF) treatment is well-known for the cell
membrane permeabilization that leads to the increase of mass
and heat transfer during processing; it has been widely studied
in the biomolecular extraction process, drying process, and
freezing process (16–21). Pulsed electric field pre-treatment
could accelerate the evaporation of moisture and reduce the oil
absorption during frying (22). Comparing the impact of PEF
pre-treatment and blanching pre-treatment on the AA content
of potato crisps, PEF can promote a reduction of AA (≈30%)
by removing fructose and asparagine, to a significantly greater
degree compared to the AA reduction obtained with blanching
(≈17%) (23). Jaeger et al. (24) also stated that PEF treatment
could increase the release of reducing sugars and asparagine,
which leads to the limiting of Maillard reaction and consequently
reduces the AA content. In a recent study, the significant effect of
combination of PEF treatment and preliminary vacuum drying
(VD) on frying of potato chips was obtained, which elucidates
the reduction of frying time, oil uptake, as well as improving

the color and texture of the final product (21). However, the
combined effects of PEF treatment and VD on AA content of
fried sample had never studied before.

The aim of this study was, therefore, to evaluate the
effects of preliminary PEF pre-treatment and VD on
frying processes of potato disks, paying attention to the
preliminary moisture content, PEF pre-treatment, and frying
temperature on the formation of AA and other characteristics
of potato chips.

MATERIALS AND METHODS

Materials
Chemicals
13C3-acrylamide (98%), AA (99%), formic acid, and
methanol were obtained from Sigma–Aldrich (St. Louis,
MO, United States); N-hexane, acetone, and ethyl acetate were of
HPLC grade and obtained from Merck (Darmstadt, Germany).
Sodium chloride and diatomite were purchased from Beijing
Chemical Factory (Beijing, China); ammonium sulfate was
obtained from Tianjing Chemical Factory (Tianjing, China).
Ultrapure water (18.2 m�·cm) was obtained from a Millipore
purification system (Billerica, MA, United States).

Food Samples
Commercial potatoes (variety EXCELLENCY for mashed and
chips) and raw vegetable oil (iSiO4) were purchased in a local
supermarket and placed in refrigerator at≈5◦C. All experimental
data were collected within 10 days of the purchase. A special
cylindrical knife was used to prepare the studied samples with
diameter of 25 mm and thickness of 2.5 mm. The initial
water content in the potatoes was determined according to the
Association of Official Analytical Chemists (AOAC) method
(AOAC 2000) by drying about 25 g samples at 105◦C in the
convection oven (UL50, Memmert, Schwabach, Germany). The
initial water content of the sample was 79.71% [wet basis (WB)].

Treatments
The samples were preliminarily treated by PEF and then
dehydrated to MRV = 0.5 and MRV = 0.2 by using VD at
P = 0.3 bar and TV = 50◦C. Lastly the samples were fried at the
temperature of 120, 150, and 180◦C, and analyzed.

Pulsed Electric Fieldtreatment
A PEF generator delivering monopolar pulses (1,500 V–20 A,
Service Electronique UTC, France) was used. A sample was
placed between the bottom and the upper electrodes in a
Teflon cylindrical tube. The PEF treatment was applied using
the electric field strength of E = 600 V/cm in the series of
N = 10 trains. Each train consisted of n = 100 pulses with
pulse duration of ti = 100 µs, and the time interval between
the pulses of 1t = 10 ms. The total PEF pre-treatment time,
tPEF = 0.1 s, applied protocol allowed obtaining the high level
of electroporation of potato tissue [e.g., see the data presented
in Refs. (25, 26)]. The temperature evolution inside the samples
never exceeded 5◦C.
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Preliminary Vacuum Drying
The VD of potato procedure was done in a vacuum oven (Cole–
Parmer, 2.3 cu ft, 120 VAC, United States) connected with
a vacuum pump (30 kPa, Werie, Rietschle, RTV1, Germany).
Untreated (U) and PEF pre-treated samples (PEF) were pre-dried
at the VD temperature, Tv = 50◦C. Potato chips were removed
from the vacuum oven when the moisture ratio were MRv = 0.5
and MRv = 0.2 and then used for frying.

Frying
The preliminary dried/undried and PEF pre-treated and
untreated potato chips were then deep-fried in hot vegetable oil
(iSiO4) contained in a beaker at the potato/oil mass ratio of 1/30.
The mixture was heated and stirred on a ceramic heating plate
C-MAG HS 7 S000 (IKA, France). The temperature of frying
Tf = 120, 150, and 180◦C were controlled by heating system EST-
D6 (IKA, France). The mass of the samples, m, during the frying
process was periodically controlled. After the frying process, the
samples were drained, and blotted using an adsorbent paper.

The moisture ratio, MR, of the sample during frying process
was calculated as

MR =
m−md

mi −md
(1)

where mi is the mass of initial sample, md is the mass of dry matter
(DM). It was determined by drying the potato slices at 105◦C to a
constant weight. The frying process was performed up to the final
moisture ratio of MR f = 0.1.

Analysis of the Samples
Color
The color of the potato chips was determined by a colorimeter
(Konica Minolta CR-321, Japan). The color parameter
coordinates L∗ (whiteness or brightness), a∗ (redness or
greenness), and b∗ (yellowness or blueness) were used to
describe the surface color of samples. The redness parameter,
a∗, presented the significant variation due to non-enzymatic
browning reactions during frying (13).

Fat Content
In the presence of frying (tf 6= 0), the final oil uptake in the
sample, Of , was determined using Soxhlet extraction process
with hexane as a solvent according to AOAC Official Methods
of Analysis, after the frying process, the sample was put into the
convection oven (UL50, Memmert, Germany), dried at 105◦C for
24 h. Finally, the oil uptake Of was calculated as

Of =
mo

md
(2)

where mo is the mass of oil uptake, md is the mass of
dry matter (DM).

Liquid Chromatography-Tandem Mass Spectrometry
Analysis of Acrylamide
Fifty gram of fried sample was taken, pulverized by a food
processor (Elfin2.0, Sheng Zheng), and stored frozen at −20◦C.
Then, 10 µl of 10-mg/L 13C3-acrylamide internal standard

working solution and 10 ml of ultrapure water were added
to 2-g of pulverized samples, shaken for 30 mins, and then
centrifuged at 4,000 rpm for 10 min (MedifugeTM, United States),
and the supernatant was collected. For purification, 15 g
of ammonium sulfate was added to the sample extraction
supernatant, shaken for 10 min to fully dissolve, then centrifuged
at 4,000 rpm for 10 min, and the supernatant was collected
and used. The collected supernatant was analyzed by LC-
MS/MS (at ambient temperature) using the Atlantis C18
columns (5 µm, 2.1 mm × 150 mm ID). The elution was
in isocratic mode using a mixture of 0.1% (v/v formic acid
and methanol (99.5/0.5, v/v) as mobile phase at a flow rate
of 0.2 ml/min for 6.1 min (analytes recorded), injection
volume of sample was 25 µl. The electrospray source had
the following settings (ESI+): Capillary voltage, 3.5 kV; cone
voltage, 40 V; RF lens voltage, 30.8 V; source temperature,
80◦C; desolation temperature, 300◦C; and ion collision energy,
6 eV. AA was identified by multiple reaction monitoring
(MRM). The conditions selected for the MS/MS detection were
as follows: Curtain gas 194 (nitrogen): 40 Arb; ion spray,
5,000 V; temperature, 300◦C; nebulizer gas (nitrogen), 40 psi;
nebulizer gas. The ion m/z55 was used for quantification
of AA, and ion m/z58 was used for quantification of 13C3-
acrylamide.

The standard series of working solutions were injected into
the LC-MS/MS system, and the peak areas of the corresponding
AA and its internal standard were measured. The AA injection
concentration (µg/L) of each standard series of working solutions
was used as the abscissa. The peak area ratio of AA (m/z 55) and
13C3-acrylamide internal standard (m/z 58) as the ordinate, draw
a standard curve.

The sample solution of 10 µl was injected into the LC-MS/MS
system, and the peak area ratio of AA (m/z 55) and 13C3-
acrylamide internal standard (m/z 58) was measured, and the
test solution was obtained according to the standard curve. AA
content X (µg/kg) of the sample (µg/kg) was calculated as

X =
B× f

M
(3)

were B is the corresponding mass of AA of the ratio of the
peak area of AA (m/z 55) peak and the 13C3-acrylamide internal
standard (m/z 58) peak, ng; f is conversion factor of the internal
standard addition quantity in the sample (f = 1 when the internal
standard is 10 µl or f = 2 when the internal standard is 20 µl); M
is sampling quantity when adding the internal standard, g.

Statistical Analysis
The experiments were replicated at least 5 times. Mean and
standard deviation of the data were calculated. The Fisher’s
least significant difference (LSD) tests were applied for analysis
of the effects of PEF treatment, level of dehydration and
frying temperature. For each analysis, the significance level
of 5% was assumed. All statistical analyses were performed
with a 95% confidence interval. For the derivation of
frying rates constant, the software package TableCurve 2D,
version 5.01 (Systat Software, San Jose, CA, United States)
was used.
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RESULTS AND DISCUSSION

Figure 1 presents the moisture ratio, MR, vs. the frying
time, t, for untreated and PEF pre-treated samples at frying
temperatures of 120, 150, and 180◦C. An initial rapid decrease
in water content was observed for all temperatures, followed
by a gradual decrease until a constant moisture value was
obtained. As seen from the view of the heat transfer, the
increase of drying temperature resulted in a decrease in frying
time by nearly 70% for both untreated and PEF pre-treated
samples. The higher the frying temperature is, the shorter is the
time required for the moisture ratio to reach the equilibrium
point. The electroporation obtained by PEF treatment caused
a slight decrease of frying time (Figure 1). This finding is
in agreement with the previous studies, reporting that PEF
processing improves the mass transfer during frying (27, 28).
The empirical Henderson and Pabis equation (Eq. 4) was used
to fit the curve of moisture ratio as a function of frying time
(Figure 1, solid and dashed lines). Software package, TableCurve
2D, version 5.01 (Systat Software, San Jose, CA, United States)
was used to obtain the relevant correlation coefficients (R2) and
the frying rates constant, k. The R2 were rather high for untreated
and PEF pre-treated samples at all temperatures (R2

= 0.978–
0.901). The values of frying rate constant, k, as a function of frying
temperature ranged from 2.06 × 10−3s−1 to 6.07 × 10−3s−1

and 2.17 × 10−3s−1 to 6.74 × 10−3s−1 for untreated and
PEF pre-treated samples, respectively (insert to Figure 1). The
results demonstrated that the increase in frying temperature and
application of PEF pre-treatment caused a significant increase
in frying rate constant (p < 0.05). Higher frying temperature
due to the higher temperature difference between the product
and the oil which accelerated the frying rate constant and the
moisture evaporation. Similar results were also found in the
research of Liu et al. (29). Moreover, PEF pre-treatment caused
the electroporation of the sample, which also increased the mass
transfer during the frying processes, resulted in the increase of
frying rate constant (30).

MR = −Aexp
(
−kt

)
(4)

where A is the frying coefficient and k is the frying rate
constant, s−1.

Activation energy for diffusion processes is a good indicator
of the predominant mechanism. It is the minimum amount of
energy that is needed to cause the moisture loss during the
frying process (31). In our study, the activation energy of the
potato chips during frying process was obtained from Eq. 5, they
were 27.94 and 26.518 kJ/mol for untreated and PEF pre-treated
samples, respectively. The lower values of Ea for PEF pre-treated
sample indicated a less temperature sensitive than the untreated
ones, which is in consistent with those reported for drying of
the potato cylinders (25.2 ∼ 36.2 kJ/mol) (32). Troncoso and
Pedreschi (33) studied the blanch and pre-dried treatment on
water loss and oil uptake during the vacuum frying of potato
slices, these authors found that the Ea for control, blanched
and pre-dried treatment during vacuum frying of potato slices
were 24.2, 26.3, and 29.0 kJ/mol, separately. In an another study,

FIGURE 1 | Evaluation of moisture ratio, MR, of untreated (solid lines, filled
squares) and PEF pre-treated (PEF) (dashed lines, open triangles) samples at
different frying temperatures, Tf = 120, 150, and 180◦C. The lines were
obtained by fitting the data with Eq. 4. Insert of Figure 1 shows the frying rate
constant (k) for untreated (U) and PEF pre-treated samples.

Ea = 39.99 and 25.39 kJ/mol were found for fried sweet potato
chips with untreated and ultrasound pre-treatments (31).

k = k0exp
(
−Ea

TaR

)
(5)

where k0 is the Arrhenius factor in s−1; Ea is the activation
energy of moisture diffusion in kJ/mol; R represents the universal
gas constant (8.314 × 10−3 kJ/mol·K); and Ta is the absolute
temperature of drying air in K.

Figure 2 shows the moisture ratio, MR, vs. the frying time, tf ,
for U and PEF pre-treated samples at different levels of MRv (pre-
dried by vacuum drying). The samples were initially dehydrated
by VD and then fried at 150◦C. The analysis has shown that
all frying curves can be satisfactory fitted (with coefficients of
determination, R2 > 0.971) using Eq. 4. The frying time to
equilibrium point was decreased with the increase of the level
of dehydration (decrease of MRv), which could be explained
by the phenomenon of less free water content is available for
removal during frying procedure (34). Furthermore, the frying
time to obtain MRf = 0.1 was significantly decreased with
PEF pre-treatment. It is evident that there existed a synergetic
effect between PEF pre-treatment and preliminary VD. Insert
of Figure 2 shows the frying rate constant (k) vs. the levels
of dehydration (MRv) for untreated (U) and PEF pre-treated
samples (PEF). It can be seen that the frying rate constant
(k) increased first (MRv = 0.5) from 3.45 × 10−3s−1 to
4.37 × 10−3s−1 for untreated samples; from 4.19 × 10−3s−1 to
5.01× 10−3s−1 for the PEF pre-treated ones, and then decreased
(MRv = 0.2) from 4.37 × 10−3s−1 to 3.16 × 10−3s−1 for
untreated samples; from 5.01 × 10−3s−1 to 3.96 × 10−3s−1

for the PEF pre-treated ones. The preliminary drying process
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resulted in a highly heterogeneous structure with a modified
moisture distribution; it includes surface diffusion, capillary flow
actions, and other mechanisms (35, 36). When dehydrated the
moisture ratio of the sample to MRv = 0.5, it resulted in starch
gelatinization, swelling, and softness of sample texture which
favors the mass transition during the frying process. Nevertheless,
for the sample dehydrated to high level of MRv = 0.2 before
frying (it consists of bound water), it formed a crust on the surface
of sample which affected the evaporation of water during frying
(37), and thereby resulted in a decrease of frying rate constant
compared to MRv = 0.5 of the sample. Debnath et al. (38) found
that the decrease in moisture content before the frying process of
the ribbon snack resulted in a lower value of frying rate constant
in the same way.

Color is related to reducing the sugar content of the potatoes,
it is the basic feature of potato chips to appeal to consumer (39).
Moreover, according to previous studies, there is a relationship
between the AA content and the color coordinate, a∗ (red-
green variation) in the final product (40–43). In addition, several
researchers have identified the chromatic parameter, a∗, as a
useful predictor of AA formation in fried potatoes. They found
that the amount of AA content increased with the increase of
the chromatic parameter, a∗, in general, high values of a∗ are
not desirable (13, 44). Figure 3 shows the value of chromatic
parameter, a∗, at the final moisture ratio of the fried sample
after the frying process, MRf = 0.1, vs. the frying temperature
(Figure 3A) and the moisture ratio after VD (Figure 3B) for
untreated (U) and PEF pre-treated samples (PEF). As can be
seen from Figure 3, the value of a∗ was significantly (p < 0.05)
affected by the frying temperature, the preliminary VD and PEF
pre-treatment. The coordinate, a∗, increased with the increase

FIGURE 2 | Moisture ratio, MR, vs. the frying time, tf , for U (solid lines, filled
symbols) and PEF pre-treated (dashed lines, open symbols) samples. The
samples were preliminary dehydrated by VD to different levels (MRv = 0.5 and
MRv = 0.2) and then they were fried at 150◦C. The curves for undehydrated
samples (MRv = 1.0) are also presented. Insert of Figure 1 shows the frying
rate constant (k) for untreated (U) and PEF pre-treated samples (PEF).

FIGURE 3 | Value of chromatic parameter a∗ after frying, MRf = 0.1, vs. the
frying temperature (A), and the moisture ratio after VD (B) for untreated (U)
and PEF pre-treated samples (PEF).

of the frying temperature, and that of the sample pre-treated by
PEF was lower than that of the untreated ones [a∗ = 8.61 (for
untreated samples), a∗ = 0.41 (for PEF pre-treated samples)] at
the temperature of 120◦C (Figure 3A). At the frying temperature
of 150◦C, lowest value of a∗ was observed at MRv = 0.5 [a∗ = 3.57
(U), a∗ = 2.51 (PEF)] (Figure 3B). The high level of dehydration
(MRv = 0.2) may be resulted in a non-enzymatic browning
reaction (Millard reaction) during VD, which increased the value
of a∗ after the frying process (Figure 3B).

The lightness value, L∗, depends on the amount of free
water present on the sample surface, which is affected by the
preliminary drying, PEF pre-treatment, frying temperature and
frying time (40). Figure 4 presents the lightness value, L∗, after
the frying process at the final moisture ratio of the sample,
MRf = 0.1, vs. the frying temperature (Figure 4A), and the
moisture ratio after VD (Figure 4B) for untreated (U) and PEF
pre-treated samples (PEF). The lightness, L∗, decreased with
the increase of frying temperature (Figure 4A); this could be
associated with the high temperature that increased the level
of non-enzymatic browning reactions (Millard reaction) during
frying. This result is in coincident with that found in the previous
studies (34, 45). PEF pre-treatment produced potato chips with a
significant bright color, and this efficiency was more evident with
the preliminary VD (Figure 4B). This can be attributed to the
shorter frying duration required for the PEF pre-treated samples
compared to the untreated ones to obtain the same final moisture
ratio of 0.1 (27). Ignat et al. (46) also found that the PEF pre-
treatment had a positive effect on the increase of the lightness of
samples during the frying process compared to blanched ones.

The oil content is an important parameter for frying product
as it is involved in both oil absorption and water evaporation
mechanisms. During the frying process, because of the different
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FIGURE 4 | Lightness value, L∗, after frying with the final moisture ratio of the
sample, MRf = 0.1, vs. the frying temperature (A), and the moisture ratio after
VD (B) for untreated (U) and PEF pre-treated samples (PEF).

temperature between product and frying oil, the moisture would
migrate to the surface of the product and evaporate with the
concurrent oil that infiltrates into the chips (47, 48). The effects
of PEF pre-treatment, temperature, and the combination of PEF
and VD on oil contents of final product are presented in Figure 5.
For untreated and PEF pre-treated samples, the increase of the
temperature decreased the oil content of fried chips as expected
(Figure 5A). It can be explained by the increase of the frying
rate (Figure 1) with increasing the frying temperature that can
keep the water content out of the chips for a longer time, which
helps to reduce the final oil content (49). Moreover, the oil uptake
of the PEF pre-treated sample was noticeably lower than that of
the untreated ones at all temperatures. For example, at the frying
temperature of 150◦C, the oil uptake for untreated and PEF pre-
treated samples were Of = 0.28 g/gDM and Of = 0.24 g/gDM,
respectively (Figure 5A). It is in accordance with the previously
reported results for frying potato products (27, 46). The reduction
of oil uptake may be related to the electroporation of potato cell
membrane induced by the PEF pre-treatment which enhances the
diffusion of water from the core to the surface. At the same time,
a thicker water vapor layer on the surface was formed, thereby
decreasing the oil absorption during the frying process (50, 51).
Furthermore, a smoother surface of the PEF pre-treated samples
with less surface area may lead to a reduction in the adhesion
of oil during the removal from the surface as it can drip off
easier (49).

Figure 5B presents the oil uptake of the sample fried
at 150◦C with the preliminary VD for untreated (U) and
PEF pre-treated (PEF) samples. The oil uptake of the sample
significantly decreased with the PEF pre-treatment; furthermore,
the reduction of the oil content was more pronounced with
the presence of preliminary VD. The oil content of the final
product was decreased by up to 71% compared with the sample

FIGURE 5 | Oil uptake, Of , vs. the frying temperature (A) and the moisture
ratio after VD, MRv (B) for U and PEF pre-treated samples. All samples were
fried to MRf = 0.1 (p < 0.05).

untreated by PEF and undehydrated by VD. In the previous
studies, the drying process effectuated prior to frying led to a
significant reduction of oil uptake in different products such as
banana chips and French fries (52, 53). A possible reason for
the reduction of oil content by preliminary drying during the
frying process could be explained by the formation of a crust layer
on the surface, which increases the hardness of the sample and
prevents the penetration of oil in the product during the frying
process (54).

Growing evidence show that AA is a process contaminant
and neurotoxic of cancer in human (55). AA content in the
fried sample (MRf = 0.1) vs. the frying temperature was shown
in Figure 6A. It can be seen that the increase of the frying
temperature dramatically increased the amount of AA in both
untreated and PEF pre-treated samples although the higher oil
temperature favored a decrease of the frying time (Figure 1),
which, in turn, resulted in a proper environment for the Maillard
reaction during the frying process (56, 57). The toxic compound
AA was one of the products from the Maillard reaction of
reducing sugars and amino acids during thermal processing
(58). Hence, the reduction strategies of AA can be explored
either by decreasing the AA precursors or by hindering the
Maillard reaction pathways (59, 60). The extent of the Maillard
reaction depends on the presence of reaction substrate, frying
temperature, and frying time (61–65). It was noticed that the
higher oil temperature of 170-190◦C is adequate to bring the
surface temperature above 120◦C along with a sufficient moisture
loss and thereby favoring the AA formation (66–68). In the
study of Liyanage et al. (69), AA content was reduced about
90% with the frying temperature that decreased from 190 to
160◦C. Moreover, the application of PEF pre-treatment could
significantly decrease the amount of AA by up to 59.7, 70, and
26.15% compared to untreated samples at the frying temperature

Frontiers in Nutrition | www.frontiersin.org 6 July 2022 | Volume 9 | Article 919634

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-919634 July 5, 2022 Time: 16:12 # 7

Liu et al. Mitigation of Acrylamide

FIGURE 6 | Acrylamide content vs. the frying temperature (A) and vs. the
moisture ratio after VD, MRv (B) for U and PEF pre-treated samples. All
samples were fried to MRf = 0.1(p < 0.05).

of 120, 150, and 180◦C, respectively (Figure 6A). It can be
explained by the increase of mass and heat transfer with the
PEF pre-treatment (shorter frying time, Figures 1, 2), as well
as the decrease of the Maillard reaction substrate reducing
sugar so as to decrease the AA content (70). Genovese et al.
(23) compared the effect of the PEF treatment (1.5 kV cm−1,
10 ms, 100 Hz) with hot water blanching (85◦C, 3.5 min)
on AA reduction efficacy in potato chips. They reported AA
reduction due to the PEF treatment was nearly 30%, which
was significantly higher than the traditional hot water blanching
treatment (17%).

Figure 6B presents the AA content in the fried sample
(MRf = 0.1) with the different level of VD dehydration
(MRv = 1.0, MRv = 0.5, MRv = 0.2) before frying. First,
the amount of AA significantly decreased from 2,220 µg/kg
(MRv = 1.0, U) to 364 µg/kg (MRv = 0.5, U) and then increased
to 524 µg/kg (MRv = 0.2, U). The same increase/decrease
tendency was found in Figure 3B, this phenomenon could
suggest that there was a relationship between the AA content
and the evolution of the color parameter (carcinogenic a∗)
of the sample, which is in line with the previous research
that reported that the change in color had a good correlation
with the AA content in potato chips (13). Mesias et al. (40)
analyzed the relativity of samples’ color and AA exposure
during the preparation of French fries, they exposed that color
parameter (a∗) significantly linked with AA, which allows for
the assessment of potato-based products’ AA content below
or above the benchmark level. In the research of Pedreschi
et al. (45), they found that when the sample was pre-dried
to moisture content of 60% (wet basis), then fried at the
temperature of 180◦C, the AA content could be reduced around
22 and 44% compared with the Moms and Frito Lay commercial

chips, respectively. When the frying temperature was 150◦C
and MRV = 1.0 (Figure 6B), application of PEF pre-treatment
noticeably (p < 0.05) decreased the AA content from 2,220
to 666 µg/kg. Nevertheless, there was no significant difference
(p > 0.05) in AA content in the sample with preliminary
dehydrated level of MRv = 0.5 and MRv = 0.2 for untreated
and PEF pre-treated samples. The pre-treatment with PEF on
cell membrane could modify the diffusion of intra- and extra-
cellular media during the frying process, and that modification
was more complex with the preliminary VD. The combination
of VD and PEF pre-treatment before frying modifies the surface
structure and forms a low permeability external crust that
resists the oil absorption (Figure 5) and reduces the frying
time (Figure 2) for achieving same final moisture ratio, which
ultimately decreases the heat transfer coefficient resulting in less
AA formation (71).

CONCLUSION

The effects of preliminary VD and PEF pre-treatment on
manufacturing of potato chips were confirmed during this
investigation. The frying curves of all temperatures could be
properly fitted by the model of Henderson and Pabis (R2

= 0.978
∼ 0.901). Cell electroporation phenomenon and structural
modifications induced by PEF pre-treatment favors the mass
and heat transition during frying processes so as to reduce
the frying time and a further improvement on product quality.
The application of PEF pre-treatment could also preserve
the color of potato chips with a higher L∗ and a lower a∗
compared to the untreated samples. Moreover, it was revealed
that the oil uptake was distinctly reduced from 0.28 to 0.08g/g
DM by the application of PEF pre-treatment (E = 600 V,
tPEF = 0.1 s) and preliminary VD (MRv = 0.2) at the frying
temperature of 150◦C. The potato chips made of the material
pre-treated by PEF and pre-dried by the vacuum processes
had noticeably less toxic compound of AA (around decreased
85.9%) than the untreated ones. Thereby, it can be presumed
that PEF pre-treatment is able to limit the Maillard reaction,
thereby decreasing the AA content. Additional investigations
are needed to determine the synergetic mechanism of the
combination of pre-drying and PEF pre-treatment on the
formation of AA and the absorption of oil in potato chips for
industrial applicability.

NOMENCLATURE

a∗: color coordinate redness or greenness at time, t; A:frying
coefficient; b∗:color coordinate yellowness or blueness at time,
t; B: corresponding mass of AA of the ratio of the peak area of
the AA (m/z 55) peak and the 13C3-acrylamide internal standard
(m/z 58) peak, ng; E: electric field strength, V/cm; Ea: activation
energy of the moisture diffusion, kJ/mol; f : conversion factor of
the internal standard addition quantity in the sample; k: drying
rate constant, s−1; k0: Arrhenius factor, s−1; L∗: color coordinate
whiteness or brightness at time, t; m: mass of a sample, g; mi:
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mass of the initial sample, g; md: mass of the dry matter, g; mo:
mass of oil uptake, g; M: sampling quantity when adding the
internal standard, g; MRv: moisture ratio after VD; MRf : moisture
ratio after frying n: number of pulses; N: number of trains;
Of : oil uptake after frying, g/g DM; R: universal gas constant,
kJ·mol−1

·K−1; tf : time of frying, s; ti: pulse duration, µs; tPEF :
time of PEF treatment, s; 1t: interval between pulses, ms; Ta:
absolute drying air temperature, K; Tf : frying temperature, ◦C;
Tv: temperature of preliminary VD; X: AA content, µ g/kg.
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