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Abstract

CMYA1 (cardiomyopathy-associated protein 1, also termed Xin) localizes to the intercalated
disks (ICDs) of the myocardium and functions to maintain ICD structural integrity and support
signal transduction among cardiomyocytes. Our previous study showed that CMYA1 overex-
pression impairs the function of gap junction intercellular communication processes. Successful
model generation was verified based on PCR, western blot analysis, immunohistochemistry, and
immunofluorescence analysis. Myocardial CMYA1 expression was confirmed at both the mRNA
and the protein levels in the CMYA1-OE transgenic mice. Masson’s trichrome staining and electron
microscopy revealed myocardial fibrosis and uneven bead width or the interruption of ICDs in the
hearts of the CMYA1-OE transgenic mice. Furthermore, the Cx43 protein level was reduced in the
CMYA1-OE mice, and co-immunoprecipitation assays of heart tissue protein extracts revealed a
physical interaction between CMYA1 and Cx43. Electrocardiogram analysis enabled the detection
of an obvious ventricular bigeminy for the CMYA1-OE mice. In summary, analysis of our mouse
model indicates that elevated CMYA1 levels may induce myocardial fibrosis, impair ICDs, and
downregulate the expression of Cx43. The observed ventricular bigeminy in the CMYA1-OE mice
may be mediated by the reduced Cx43 protein level.
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Introduction

CMYA1 (cardiomyopathy-associated gene family-1), also known
as XIRP1 (Xin actin-binding repeat containing protein-1), which
is located on chromosome 3p22.2, was originally discovered as a
downregulated gene during cardiac development in chicken embryos
[1]. CMYA1 has been shown to be highly expressed in interca-
lated disks (ICDs) in mouse and pig hearts [2–5]. CMYA1 functions
in the cyclization process of cardiac development and myocardial
contractility [6]. CMYA1 knockout during mouse embryonic devel-
opment demonstrated that CMYA1 also plays a role in mammalian
myocardial wall development and morphogenesis [2].

Many subsequent studies explored the function of the CMYA1
gene and demonstrated that the CMYA1 protein, which localizes
to the ICDs of the heart, functions in the regulation of postnatal

cardiac development and growth [2,6–12]. The results from our pre-
vious study showed an increased expression level of CMYA1 in the

heart tissues from patients with left ventricular noncompaction car-

diomyopathy (LVNC), and this was accompanied by a decreased

expression level of the connexin 43 (Cx43) protein [13]. Further-

more, CMYA1 overexpression in a cell model indicated that CMYA1

overexpression impairs the function of gap junction intercellular
communication (GJIC) processes by inhibiting Cx43 expression
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[13], which offers a potential explanation for the abnormal heart
development and arrhythmia that occur in LVNC.

In the present study, based on our previous observations from
LVNC patients and a cardiomyocyte model of CMYA1 overexpres-
sion, we aimed to gain further insight into the effects of CMYA1
overexpression on cardiac structure and function by establishing a
mouse model of CMYA1 overexpression.

Materials and Methods

Creation of CMYA1 overexpression transgenic mice
This project was approved by the Institutional Ethical Review Board
of Fuwai Hospital (Beijing, China). Procedures for the creation
of a transgenic mouse model were approved by the Institutional
Animal Care and Use Committee of the Chinese Institute of Lab-
oratory Animal Science. To create the transgenic mouse model
of CMYA1 overexpression, the cDNA (615-bp fragment) of the
human CMYA1 gene (GenBank No. V2 NM_001198621.3) was
cloned into a commercialized expression plasmid under the α-MHC
promoter (Hanheng, Shanghai, China). The specific primers for
the human CMYA1 cDNA are as follows: CMYA1-V2-forward,
5′-GAAGTGGTCCCTGGTGATGTC-3′; CMYA1-V2-reverse, 5′-
CCCTTCTTCTTTCTGTCGTTC-3′.

RT-PCR and quantitative real-time PCR analyses
The transgenic mouse lines were created by microinjecting the
recombinant plasmid into the male pronuclei of fertilized mouse
oocytes, which were then implanted into pseudo-pregnant females.
The transgenic founder mice were mated with wild-type C57BLmice
to produce F1 generation of transgenic mice. For genotype identifica-
tion, transgenic mice of several generations were examined by PCR
using specific primers for the human CMYA1 cDNA and genomic
DNA from tail biopsies of CMYA1-OE transgenic and wild-type
littermate control mice as a template [14,15].

Western blot analysis
The heart tissues were harvested and washed twice with PBS and
then lysed with cool Radio-Immunoprecipitation Assay (RIPA) and
centrifuged at 12,000 g at 4◦C for 10min. The supernatants were
collected, and the protein content was assessed using a BCA assay kit
(Biyuntian Biology, Beijing, China), and western blot analysis was
performed as previously described [16–20]. Briefly, protein samples
were separated by SDS-PAGE (7% non-gradient) and transferred to
nitrocellulose (NC) membranes. The NC membranes were blocked
with 5% skimmed milk in tris buffered saline tween-20 (TBST) for
1 h and then incubated with primary antibodies overnight at 4◦C,
followed by incubation with the corresponding HRP-conjugated sec-
ondary antibodies (1:5000; CST Biotechnology, Beverly, USA) for
2 h at room temperature. The primary antibodies used were as fol-
lows: rabbit polyclonal anti-CMYA1 (1:1000; Santa Cruz, Santa
Cruz, USA), mouse monoclonal anti-GAPDH (1:1000; Proteintech,
Rosemont, USA), mouse monoclonal anti-Cx43 (1:1000; Abcam,
Cambridge, UK), and rabbit monoclonal anti-flag (1:1000; CST
Biotechnology) antibodies.

Immunofluorescence and immunohistochemistry
assay
The mouse myocardial samples were fixed in 10% neutral buffered
formalin. After that, a series of alcohol and xylene gradients were
used for dehydration. Then, the samples were washed with PBS for

10min and incubated with 5% normal goat serum (ZSGB-BIO, Bei-
jing, China) in PBS for 1 h at room temperature, followed bywashing
with PBS for 10min. After that, the samples were incubated with the
primary antibody overnight at 4◦C, followed by washing with PBS
for 10min. The tissues were incubated with fluorescein-conjugated
secondary antibody for 1 h and washed with PBS for 10min, fol-
lowed by observation with a Leica Sp8 confocal laser scanning
microscope (Leica, Wetzlar, Germany). The cell nuclei were coun-
terstainedwith 0.1%4′,6-diamidino-2-phenylindole. The antibodies
and dilutions used were as follows: rabbit polyclonal anti-CMYA1
(1:100; Santa Cruz), mouse anti-Sarcomeric Alpha Actinin (1:100;
Abcam), mouse monoclonal anti-CX43 (1:100; Abcam), Alexa 488-
conjugated goat anti-mouse IgG (1:500; Yeasen Biology, Shanghai,
China), Alexa 488-conjugated goat anti-rabbit IgG (1:500; Yeasen
Biology), Alexa 594-conjugated goat anti-mouse IgG (1:500; Yeasen
Biology), and Alexa 594-conjugated goat anti-rabbit IgG (1:500;
Yeasen Biology).

The immunohistochemistry assay procedure was similar to that
described above, but included blocking with 0.5% H2O2 (Yisheng
Biology). Then the samples were washed with PBS for 10min, and
after that, the samples were incubated with the primary rabbit poly-
clonal anti-CMYA1 antibody (1:100; Santa Cruz) overnight at 4◦C,
followed bywashingwith PBS for 10min. Then the tissues were incu-
bated with HRP polymer for 30min at room temperature, followed
by washing with PBS for 10min twice. And then 1ml DAB plus
substrate (Yisheng Biology) was added for 15min. The immunohis-
tochemistry images were acquired using a Leica DM750 microscope
at a magnification of 400×.

Masson’s trichrome staining
Left ventricle sections were fixed in formalin for about 24 h and
embedded in paraffin. After being deparaffinized and rehydrated,
the sections were incubated in 0.1mM potassium dichromate
for at least 16 h. Tissue sections were then subject to Masson’s
trichrome staining (Biyuntian Biology) and examined under a light
microscope.

Transmission electron microscopy analysis
Once anesthetized, mouse hearts were excised immediately and cut
into small pieces, then fixed in 5% glutaraldehyde solution, and
processed according to standard protocols for transmission electron
microscopy (TEM) sample preparation. Images were taken using a
Hitachi H-7500 Transmission Electron Microscope (Tokyo, Japan).

Co-immunoprecipitation assays
Co-immunoprecipitation assays were performed using a Pierce Clas-
sic Magnetic IP/Co-IP Kit (88804; Thermo Scientific, Waltham,
USA). Prior to lysis, heart tissues were pre-cooled to 4◦C, fol-
lowed by lysis and incubation of extracts at 4◦C for at least
16 h with 5µg of antibodies pre-bound to protein A/G-sepharose
beads. After incubation, the beads were washed three times
with cold washing buffer, followed by elution with 50mM Tris-
HCl (pH 6.8), 2% SDS, 0.1% bromophenol blue, 10% glyc-
erol, and 10mM dithiothreitol. The eluted sample was then
subject to SDS-PAGE and western blot analysis. The immuno-
precipitation (IP) antibody used was rabbit polyclonal anti-
CMYA1 antibody (5µg; Santa Cruz); the immunoblotting (IB)
antibody was mouse monoclonal anti-Cx43 antibody (1:1000;
Abcam).
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Echocardiography assessment of cardiac function
After being anesthetized via inhalation of isoflurane, animals were
placed on a warming platform in a supine position. The chests
were cleaned using hair removal cream. Images were obtained using
a Visual Sonics Vevo 770 high-resolution imaging system (Visual
Sonics, Toronto, Canada). M-mode echocardiography of the left
ventricle was recorded at the tip of the mitral valve apparatus using
a 30-MHz transducer (707B), as previously described [21].

ECG measurements
Surface electrodes were attached to the skin beside the chest. ECGs
(sp2006) were recorded in a 10-s rhythm strip that was obtained at a
paper speed of 50mm/s and a vertical ECG calibration of 20mm/mV.
Rhythm analysis was conducted by visual inspection. To avoid mea-
suring the complexes immediately preceding or following a noted
cardiac arrhythmia, each measure was recorded for three consec-
utive complexes, and the averaged heart rate was calculated based
upon the average of all R to R interval measurements during the 10-s
ECG rhythm strip.

Statistical analysis
All data were analyzed with SPSS 22.0 (SPSS Inc, Chicago, USA).
Student’s t-tests were used to assess differences between groups. In
all analyses, P<0.05 were considered to be of statistically significant
difference.

Results

Verification of CMYA1 overexpression in CMYA1-OE
transgenic mice
Pronuclei of fertilized wild-type C57 mouse oocytes were microin-
jected with a recombinant plasmid encoding the human CMYA1
cDNA fused with a FLAG tag to create the CMYA1 overexpres-
sion (CMYA1-OE) mice. Genotype identification was performed in
6- and 9month-old mice of F2 generation by PCR using human-
specific primers of CMYA1 cDNA. RT-PCR results showed that the
expression level of the humanCMYA1 gene was high in the CMYA1-
OE transgenic mice, but the expression of CMYA1 gene was not
detectable in the wild-type littermate control mice (Fig. 1A). We

Figure 1. Verification of CMYA1 overexpression in CMYA1-positive transgenic mice (A) PCR-based genotyping of the wild-type littermate control (wild-type C57
background) and CMYA1-OE mice using gDNA as the template. RT-PCR–based analysis of the expression level for the human CMYA1 gene: CMYA1 expression
was high in CMYA1-OE transgenic mice but was not detectable in the wild-type C57 mice. NTG: non-transgenic; TG: transgenic. (B) Western blot analyses using
an anti-FLAG antibody showed the obviously increased expression level of the CMYA1 protein in the CMYA1-OE transgenic mice (n=5) compared to the wild-
type mice (n=4). **P<0.01. GAPDH was used as the loading control. (C,D) Immunocytochemistry (scale bar: 100µm; C) and immunofluorescence (scale bar:
25µm in the upper panel and 10µm in the lower panel; D) assays both showed the increased CMYA1 expression level in the CMYA1-OE transgenic mice and
the localization of CMYA1 expression at the ICDs of the myocardium (marked by white arrows). The white boxed areas in the upper panels are enlarged in the
lower panels. ACTN2: α-actinin 2.
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Figure 2. Pathological changes in CMYA1 overexpression transgenic mice (A) Masson’s trichrome staining revealed obvious fibrosis in heart tissues from the
CMYA1-OE transgenic mice; no fibrosis was evident for the wild-type control mice. The extent of fibrosis increased with time between the 6- and 9-month age
time points. **P<0.01, n=5 for each group. (B) The 9-month-old CMYA1-OE mice heart tissues showed uneven bead width or interruption. The red arrows
represent the intercalated disks and the mitochondria, respectively.

also observed an obviously higher expression level of CMYA1 pro-
tein in CMYA1-OE transgenic mice compared to that in wild-type
mice based on western blot analyses using an anti-FLAG antibody
(Fig. 1B). Moreover, both immunocytochemistry (Fig. 1C) and
immunofluorescence (Fig. 1D) analyses further confirmed CMYA1
protein expression in CMYA1-OE transgenic mice and showed
that the transgenic CMYA1 protein is localized at ICDs of the
myocardium.

Pathological changes in CMYA1 overexpression
transgenic mice
Using Masson’s trichrome staining, we observed obvious fibro-
sis occurring in the heart tissues from CMYA1-OE transgenic
mice; no fibrosis was observed in the wild-type mice (Fig. 2A).
Notably, the extent of fibrosis was increased with time, as the
fibrosis of 9-month-old CMYA1-OE transgenic mice was more
severe than that of 6-month-old CMYA1-OE transgenic mice
(Fig. 2A). But there was no significant heart morphology differ-
ence between the control and 9-month-old CMYA1-OE mice, and
the hematoxylin-eosin (HE) staining also showed no difference
between the two groups (Supplementary Fig. S1A). We also con-
ducted a TEM–based analysis of the ultrastructure of the heart
tissues. The heart tissues of the 9-month-old CMYA1-OE trans-
genic mice exhibited both uneven bead widths and interruption of

ICDs; no such disruption was found in the age-matched wild-type
mice (Fig. 2B).

Cx43 expression in CMYA1-overexpressing transgenic
mice
Western blot analyses showed that the Cx43 protein level was
decreased in the heart tissues of 9-month-old CMYA1-OE trans-
genic mice compared to age-matched littermate controls (Fig. 3A).
Furthermore, both the decreased Cx43 expression and the expected
localization of Cx43 at the ICDs of the myocardium were observed
in the immunofluorescence analysis (Fig. 3B). We also conducted
co-immunoprecipitation assays using protein extracts from heart tis-
sues. The results revealed that CMYA1 and Cx43 can physically
interact with each other (Fig. 3C).

Changes of cardiac function and electrophysiology in
CMYA1-overexpressing transgenic mice
Echocardiography examination of both 6- and 9-month-old mice
revealed no significant changes in the left ventricular ejection frac-
tion of CMYA1-OE and control littermate mice (Fig. 4A). Other
indexes of echocardiography are listed in the Supplementary Table
S1. However, electrocardiogram measurements of 6-month-old mice
revealed that CMYA1-OE transgenic mice but not littermate controls
exhibited a ventricular bigeminy (Fig. 4B).
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Figure 3. Cx43 expression in CMYA1 overexpression transgenic mice (A) Western blot analyses using anti-Cx43 antibody revealed a decrease in the level of
the Cx43 protein in the heart tissues from 9-month-old CMYA1-OE transgenic mice compared with that in age-matched littermate control mice. *P<0.05, n=3.
(B) Immunofluorescence analysis showed that the Cx43 protein is localized at ICDs of the myocardium. (C) Co-immunoprecipitation assays revealed a physical
interaction between CMYA1 and Cx43 in the extracts from heart tissues.

Discussion

The ICD between neighboring cardiomyocytes is fundamental to
both mechanical and electrical coupling, as well as transduction
of signals among cardiomyocytes [22]. Abnormalities in the ICD
structure or components have been implicated in some types of car-
diomyopathies, arrhythmias, and heart failure in patients and in
animal models of heart disease [23–33].

CMYA1 is highly and specifically expressed in striated mus-
cles, where it localizes to the ICDs of cardiomyocytes [2–5,12].
The CMYA1 protein functions to maintain both the structural and
functional integrity of ICDs [10,31,34,35]. Accordingly, the abnor-
mal expression of CMYA1 may affect the normal development,
structure, and/or function of the heart. Treatment with CMYA1
antisense oligonucleotides during chicken embryonic development
was shown to cause abnormal cardiac morphogenesis, including
myocardium thickening and multiple invaginations into the heart
cavity [7]. Work with a CMYA1-knockout mouse model showed
that mice lacking normal murine CMYA1 function exhibited a disor-
dered myocardium, abnormally sized heart, and lack of a ventricular
septum [9]. The findings from these previous studies together sug-
gest that CMYA1 is essential for proper cardiac morphogenesis
and development and that CMYA1 dysfunction may functionally
contribute to the development of certain cardiomyopathies.

Studies have revealed that there is a significant upregulation
of CMYA1 expression in the early stage of acute myocardial
infarction, and similar elevations have been observed in ischemia–
reperfusion, pressure overload–induced cardiac hypertrophy, and
inflammatory dilated cardiomyopathy [13]. Conversely, a downreg-
ulation of CMYA1 expression was detected in failing hearts from
patients with heart failure, idiopathic dilated cardiomyopathy, and

ischemic cardiomyopathy [22]. LVNC is one of the most prevalent
genetic cardiomyopathies, and LVNC is associated with the abnor-
mal embryonic development of the heart, which is characterized by
increased myocardial trabeculations and recesses.

The most common clinical presentations of LVNC are congestive
heart failure, cardiac arrhythmias, and thromboembolism [36]. The
pathogenic mechanism of LVNC is not well understood. Previously,
we observed that the hearts of LVNC patients have higher expression
levels of the CMYA1 protein compared to those of control subjects
[13]. Of note, the upregulation of CMYA1 in the hearts of LVNC
patients is not congruent with previous findings from some of the
aforementioned cardiomyopathies (wherein CMYA1 downregula-
tion is presumed to drive the pathology), suggesting the possibility
of distinct CMYA1 pathogenic mechanisms.

We here successfully established a transgenic mouse model of
CMYA1 overexpression, which can facilitate further investigation
of the impacts of CMYA1 overexpression on cardiac phenotypes at
the animal level. After confirming the successful expression and ICD
localization of the human CMYA1 protein in our murine model,
we detected myocardial fibrosis and uneven bead width or inter-
ruption of ICDs in the heart tissues from CMYA1-OE transgenic
mice. Of note, these pathological phenotypes in CMYA1-OE hearts
are similar to the presentations in the hearts of LVNC patients.
Myocardial fibrosis is the major cause of heart failure, arrhyth-
mia, and even sudden cardiac death [13,37,38]. Our results suggest
that elevated CMYA1 levels may drive myocardial fibrosis that pro-
motes heart failure or arrhythmia in LVNC, although the direct
causal relationship between elevated CMYA1 levels and myocardial
fibrosis requires to be established in further studies. Disruption of
the ICD structure is known to be one of the major causal factors
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Figure 4. Changes of cardiac function and electrophysiology in CMYA1-OE transgenic mice (A) Echocardiography examination of 6-month-old and 9-month-old
mice indicated no significant differences in the left ventricular ejection fraction (EF) between CMYA1-OE transgenic mice and age-matched littermate controls
(n=3). (B) Electrocardiogram measurements of 6-month-old mice revealed a ventricular bigeminy in the CMYA1-OE transgenic mice (n=3).

for hypertrophied human myocardium and dilated cardiomyopa-
thy [39,40]. Thus, the abnormal ICD shapes we observed in our
CMYA1-OE murine model support our understanding that the dis-
ruption of the ICD structures resulting from elevated CMYA1 levels
may contribute to LVNC pathogenesis.

Deficiencies in ICD components have been reported to lead
to many types of cardiomyopathy, arrhythmias, and heart fail-
ure in human patients and in various genetically engineered animal
models [23–31]. ICDs are known to contain adherens junctions,
desmosomes, and gap junctions, which collectively maintain the
integrity of the association between cardiomyocytes and also enable
the myocardium to function in synchrony [34]. Abnormalities in
the structure and function of gap junctions also commonly lead to
arrhythmias [41–44]. Cx43, a major gap junction protein in the ven-
tricular myocytes [45], is known to maintain conduction velocity in
ventricles. A study of Cx43 gene-deficient mice reported that the ven-
tricle conduction velocity was reduced by 38% when the ventricular
Cx43 level was reduced by 50% [46]. The results from our previ-
ous study showed an increase in the CMYA1 level in the heart tissue
from LVNC patients, which was accompanied by a decrease in the
Cx43 level. That study also included experiments with a cell model,
showing that CMYA1 overexpression impairs the function of GJIC
processes and revealing that this results from the inhibition of Cx43
expression [13]. Based on our previous results, we hypothesized that
decreased Cx43 levels may at least partially explain the abnormal
cardiac morphology and arrhythmia that occur in LVNC patients.

In the present study, we indeed observed that CMYA1 over-
expression reduced Cx43 levels and led to a ventricular bigeminy
(a type of arrhythmia), which further supports the aforemen-
tioned hypothesis. In summary, we demonstrated that CMYA1
overexpression in mice can induce myocardial fibrosis, impair
ICDs, and downregulate the expression of Cx43. The ven-
tricular bigeminy we observed in the CMYA1-OE mice may
be mediated by reduced Cx43 expression. Thus, our results
deepen our understanding of the influence of CMYA1 on the
pathogenesis of LVNC and raise new questions about how the
protein–protein interactions in ICDs lead to the occurrence of
arrhythmogenesis.

Supplementary Data

Supplementary data is available at Acta Biochimica et Biophysica
Sinica online.
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