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Abstract: Imaging of pressure-sensitive paint (PSP) for pressure measurement on moving surfaces
is problematic due to the movement of the object within the finite exposure time of the imager,
resulting in the blurring of the blade edges. The blurring problem is particularly challenging
when high-sensitivity PSP with a long lifetime is used, where the long luminescence time constant
of exponential light decay following a burst of excitation light energy results in blurred images.
One method to ameliorate this effect is image deconvolution using a point spread function (PSF) based
on an estimation of the luminescent time constant. Prior implementations of image deconvolution for
PSP deblurring have relied upon a spatially invariant time constant in order to reduce computational
time. However, the use of an assumed value of time constant leads to errors in the point spread
function, particularly when strong pressure gradients (which cause strong spatial gradients in the
decay time constant) are involved. This work introduces an iterative method of image deconvolution,
where a spatially variant PSF is used. The point-by-point PSF values are found in an iterative
manner, since the time constant depends on the local pressure value, which can only be found from
the reduced PSP data. The scheme estimates a super-resolved spatially varying blur kernel with
sub-pixel resolution without filtering the blurred image, and then restores the image using classical
iterative regularization tools. A kernel-free forward model has been used to generate test images
with known pressure surface maps and a varying amount of noise to evaluate the applicability of
this scheme in different experimental conditions. A spinning disk setup with a grazing nitrogen jet
for producing strong pressure gradients has also been used to evaluate the scheme on a real-world
problem. Results including the convergence history and the effect of a regularization-iteration count
are shown, along with a comparison with the previous PSP deblurring method.

Keywords: pressure-sensitive paint (PSP); temperature-sensitive paint (TSP); polymer/ceramic
(PC-PSP); deblurring; rotating surface pressure measurement

1. Introduction

Pressure-sensitive paint (PSP) is a non-contact, optical diagnostic for acquiring time-resolved
surface pressure distribution [1–3]. This sensor technology is based on capturing the quenching
phenomena of the excited state luminescence of oxygen-sensitive luminophores using a high-resolution
camera. PSP testing is particularly suitable for pressure measurement on rotorcraft blades where
conventional techniques such as pressure taps are difficult to implement and limit the spatial resolution
of valuable pressure information [4,5]. When rotating at high speeds, these rotorcraft blades can
experience highly unsteady transonic flows with shock waves of varying strength and positions.
High-resolution pressure information afforded by PSP testing can be used to identify the location of
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such sharp pressure differentials with high accuracy. However, the movement of blades during the
PSP data acquisition leads to erroneous measurements due to the blurring of the captured intensity
image [4,5]. To avoid errors induced by blurring in such situations, mirror-based derotation [6] and
deconvolution-based deblurring methods [7,8] have been recently developed. The focus of this work
is on improving upon the deconvolution-based method, which currently assumes a uniform blur at
all points on the image. This assumption is not appropriate when spatial variation in blur is present,
which will be the case when strong pressure gradients such as shock waves are present on the rotating
surface. To accurately resolve pressure information in such cases, an iterative blind deconvolution
method based on a spatially varying point spread function has been developed and is described in
this work.

PSP is comprised of luminophores supported on a suitable binder, which is first applied on a
blade and excited with a light source; then, the resulting luminescent emission is recorded using an
image-sensor such as a charge-coupled device (CCD) camera (Figure 1). The intensity of excited-state
luminescence is modulated based on the concentration of oxygen in the vicinity of the luminophores,
and this dependence of intensity on pressure is then exploited to quantify the pressure distribution.
Thus, every pixel on the CCD camera acts as a pressure probe by storing the luminescent intensity
information from a finite region on the blade, which is then converted to a pressure distribution data
through the Stern–Volmer equation:

Iref
I

= A + B
(

P
Pref

)
. (1)

here, Iref and Pref are the reference values of intensity and pressure, respectively, taken at a “wind
off” reference condition, in order to counter the spatial intensity variations due to non-uniform
paint thickness or illumination, which cancel out in the intensity ratio. The calibration coefficients
A and B are typically functions of temperature. Improvements in the oxygen permeability of
binders has led to the development of fast-responding versions of PSP (Fast-PSP), which enable
measurements of unsteady pressure fields [3]. Polymer–ceramic pressure-sensitive paint (PC-PSP) is
a commonly used Fast-PSP with response times as low as 100 µs [9,10], and has been used to study
unsteady aerodynamic phenomena acting on rotating surfaces [4,7,11]. To enable this application,
a single-shot lifetime method based on pulsed laser excitation was developed in order to counter
inherent problems such as the shot-to-shot variation of laser illumination, the cycle-to-cycle variation
of wind-on positions, and the qualification of unsteady content not periodic with rotation frequency.
This single-shot method employs a charge-coupled device (CCD) camera with a short first exposure of
controlled duration, for referencing the subsequent long open-ended second pressure-sensitive gate.
For resolving helicopter aerodynamic problems of interest using this self-referencing lifetime-based
method, platinum porphyrin (PtTFPP) in polymer/ceramic has been used for the PSP [9], which has
good sensitivity at the cost of a longer lifetime of luminescent emission. Temperature-sensitive paint
(TSP) operates using the same principle of luminescence quenching, but due to thermal effects, has also
been used on rotor blades in single-shot mode for temperature measurements [11,12].
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Figure 1. Schematic of basic pressure-sensitive paint (PSP) (adapted from Gregory et al. [3]).



Sensors 2018, 18, 3075 3 of 22

When the single-shot implementation of PSP/TSP is used on high-speed rotating surfaces, image
blurring is inevitable. A pixel of the CCD imager that would capture emission from a single finite
region on a stationary blade ends up accruing luminescence intensity from several finite regions on the
surface as the blade moves. In several studies, longer lifetime PSP is used [7,11,12] to improve upon the
sensitivity of the pressure measurements, which further exacerbates the blurring problem. Blurring also
arises in continuous illumination PSP measurements [13] where longer exposure times are usually used
to improve the signal-to-noise ratio (SNR). For an ideal case—where the rotating blade has uniform
illumination, uniform paint thickness, and uniform pressure throughout—every point on the blade
would emit an equal number of photons at any instant. In this degenerate case, the blurred intensity
captured by an Eulerian probe such as a CCD camera pixel can be accepted as the Lagrangian intensity
emitted by the corresponding region. However, this does not hold in the real-world case of spatially
varying pressure fields, because the Eulerian and Lagrangian measurements would be different. This is
particularly not true for regions near the edges of the rotating surfaces. Since pressure information is
extracted by the amount of luminescent intensity captured by each pixel in the recorded image, it is
critical that the correct intensity value be restored through spatially resolved deblurring techniques.

Three techniques have recently been developed in order to counter the blurring issue: (1)
short-exposure double-framing from modified interline-transfer CCD cameras [14,15], (2) mirror-based
derotation [6], and (3) deconvolution-based deblurring [7,8]. In the field of camera architecture,
Geisler [14] and Weiss et al. [15] developed a firmware modification for interline-transfer CCD cameras
that enables the independent determination of the timing events for the two successive image frames.
Thus, the requirement of an open-ended second image of the interline camera is obviated, and the
user has direct control of the exposure of both frames. This is a very effective approach for controlling
the image blur for single-shot lifetime PSP measurements. However, this development has not yet
proliferated to all of the commercially available camera architectures. Furthermore, there remain many
measurement situations when a longer exposure is desirable (or even required), but with a concomitant
susceptibility to image blurring that must be addressed.

Mirror-based blur prevention techniques are physical methods that employ a moving mirror that
ensures that each pixel on a fixed camera sees the same finite region on the moving surface throughout
the exposure period. For a particular blur type, mirror movement needs to be predetermined, and a
mirror that can follow the required trajectory during the exposure period needs to be designed before
the wind tunnel measurements can be performed. For rotor measurements, the mirror can be either
co-aligned with the rotor axis (on-axis), or it can be off-axis with the axes of rotation of the mirror and
rotor coinciding at the rotor hub. A detailed comparison study was performed by Pandey et al. [16] to
compare the mirror-based derotation and deconvolution-based deblurring techniques for single-shot
TSP measurements. It was found that while the on-axis configuration of the mirror is easier to use,
it increases the distance between the camera and the rotor blade, which reduces the PSP luminescence
signal levels captured by the camera. On the other hand, the off-axis configuration requires the use
of a selective trigger (since the rotor rotational rate is not an integer multiple of the mirror rotational
rate in this configuration) or a galvanic mirror (which is usually expensive and does not move at
the appropriate speeds required in rotorcraft studies). However, as demonstrated first by Raffel and
Heineck [6], it was found that if an appropriate mirror can be obtained and aligned, derotation is very
effective at preventing the blur in rotor measurements, and when the luminescent signal levels are low,
it is a much better option than the post-processing blur removal [16]. This technique has subsequently
been used in continuous light TSP [17] and infrared measurements [18].

Deconvolution-based deblurring methods, on the other hand, are post-processing methods that
seek to minimize the blur in the captured images. Since no camera–mirror alignment is required,
these methods are economical and save wind-tunnel testing time. These are also applicable at different
speeds and movement types, where a particular type of mirror might fail. In the comparative study of
Pandey et al. [16], it was shown that when working with good luminescent signal levels, both derotation
and deblurring methods are equally effective at blur elimination. This technique has been used in
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single-shot PSP [7,8,11,12] and TSP measurements [12,16]. The focus of this work is on improving
upon the deconvolution-based method for application with sharp pressure gradients such as the
identification of the location of a shock on a rotor blade. The deblurring method currently being used
assumes a uniform invariant blur at all of the points on the image. However, in actuality, the blur at
every pixel dependents on the local pressure, which is spatially varying, and the invariant deblurring
method fails when sharp pressure differentials are present [8]. Moreover, the assumed value of point
spread function (PSF) might not be appropriate, which would lead to an inaccurate restoration of the
blurred image. In the following section, the motivation for the current work is provided by reviewing
the technical difficulties of the problem at hand, and the inadequacy of the current state-of-the-art
deblurring algorithms at addressing it.

2. Image Deblurring and Need for Current Work

Image deblurring belongs to an important class of ill-posed linear inverse problems that take up
the form of Fredholm integral equations of the first kind [19]. The discretized general blurring model
of the forward problem is represented as:

L = K ∗ S + n (2)

where S is the sharp image, K is the blurring kernel composed of the point spread functions (PSFs) that
convolve (*) with S to produce the blurred image L, and n is the additive noise during this imaging
process. Image deblurring is the inverse problem of obtaining S from L. A major issue leading to the
ill-posedness of such problems is stability: the singular values of K in image deblurring problems
tend to decay to zero and amplify the high-frequency noise, which corrupts the restored image with
significant noise [20]. If the kernel is invariant and favorably structured, and if the blurred image is
noise-free, fast Fourier transform (FFT)-based fast deconvolution can be employed [21]. However,
more realistic (noisy) inverse problems are very sensitive to noise amplification, and require the
appropriate use of regularization techniques such as truncated singular value decomposition (SVD),
Tikhonov, or Weiner methods to spectrally filter noise-dominant frequencies [20]. For larger images,
since it is computationally infeasible to obtain the SVD of the associated K matrix, either a variational
form of regularization or iterative methods [22–24] are used. In the present work, iterative tools
developed by Nagy and coworkers [25,26] have been used.

Apart from the challenges of noise and image size, the complexity of the image deblurring
problem also depends on the knowledge and structure of the blurring kernel. The spatially varying
image blurring model first formalized by Lohmann and Paris [27] represents a more general problem
in which the PSFs in K are not invariant, but depend on the location of a pixel in S. Previously,
the problem has been made tractable through the use of a coordinate transformation to make the blur
invariant [8,28,29], or by using the invariant restoration of sections of the image, which are subsequently
stitched together [30]. A similar approach of invariant sectioning was introduced with PSFs instead for
a smoother restoration [31], and the resulting problem was solved using the preconditioned conjugate
gradient method (CGLS). Blind deconvolution problems arise when the information about the PSFs,
and hence the blurring kernel K, are not known completely. In this severely ill-posed problem, both S
and K in Equation (2) have to be found out from only L and an estimate of noise. In the field of blind
deconvolution, many state-of-the-art algorithms assume invariant blurring [32,33] to simplify the
problem; however, as expected, this assumption is often violated [34].

Spatially varying blind deconvolution problems have relied on measures to increase the amount
of available information through either multichannel methods, which use multiple images of the
same sharp scene but blurred differently [35,36], or through supplemental sensors to help define the
blurring kernel [37]. Single image approaches [38–40] try to recover a variant blur kernel based on the
detection of edges and prediction of the underlying sharp edges. Shan et al. [40] found the rotational
blur kernel for a single image by separating the foreground (rotating object) from the background
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(fixed plane), which was then used to define a transparency map-based motion descriptor. However,
their assumption that the transparency map between the foreground and background could be used to
estimate the blur will fail for PSP deblurring with pressure gradients. In spatially varying pressure
fields, the PSF estimated from the edge-based estimator will not be sufficient for deblurring PSP
luminescence in the interior of a blade surface, since it would be different from that at the edges.
As pointed out by Sroubek and Milanfar [41], the common approach of state-of-the-art single-image
deblurring methods is to predict strong edge; however, the absence of salient edges or corruption by
noise leads to their failure.

The application of PSP on rotating surfaces leads to blurring that can be depicted accurately only
through a spatially varying blur kernel. The blurring kernel is comprised of PSFs that depend not
only on the frequency of rotation and second gate exposure of the CCD, but also on the local emission
lifetime. Although the first two are known for a wind tunnel run, the time scan of intensity emitted
by a point is inherently unknown, since it depends on the pressure experienced by the point during
the receptive second gate. The exponential decay of intensity undergoing rotational blur also makes
PSP blurring more complex than a simple solid-body rotational blur. A first-order technique was used
by Juliano et al. [7] and Disotell et al. [11], where a radially varying and column-wise constant PSF
was assumed, and used for deconvolving the blurred PSP image. Coordinate transformation was
introduced by Gregory et al. [8] to convert the blur to only one coordinate, and an assumed invariant
kernel was then used to show effective results for the images of small pressure differentials. However,
both of these deblurring approaches eschew the estimation of the blur kernel by using an assumed
value of pressure (which itself is to be measured) to determine the PSFs at each point. In order to reap
the benefits of a self-referencing lifetime-based method, effective methods to remove the rotational blur
of spatially varying exponentially-decaying intensities need to be developed. Variation in illumination,
paint thickness, and surface pressure over the rotating surface cause variations in the local lifetimes of
emission, which makes it necessary that pixel-to-pixel spatially varying blind deconvolution methods
be used for the effective deblurring of PSP images. A review of image deblurring methods reveals
that there is no spatially-varying blind deconvolution technique, that can be effectively employed on
only a single (second-gate) PSP image, to accurately resolve the surface pressure maps on rotating
surfaces. Motivated by this necessity, the present work was undertaken to understand the mechanism
of blurring in single-shot PSP images on rotating surfaces, and develop a reliable deblurring scheme.
In this work, an iterative scheme has been developed that converges, with great accuracy, to the sharp
pressure profile while using regularization to curb the effect of noise in the imaging process.

3. Approach to Iterative Deblurring

The iterative scheme is based on the lifetime characteristics of PSP, which form the basis of the
single-shot measurement method. So, in the first subsection, the workings of the single-shot method
and PSP calibration are explained. The subsequent subsection provides detail about blurring kernels,
and then explains the procedure to generate one when the correct point spread functions of the image
are known. The concluding subsection provides details of the iterative scheme—i.e., the procedure of
iteratively obtaining the point spread functions along with the regularization tools used in this work
for the suppression of noise from corrupting the deblurring process.

3.1. Single-Shot Method and PSP Characteristics

The single-shot method is based on the self-referencing of PSP images that are recorded
after a single shot of high-intensity laser illumination. The technique (Figure 2) comprises two
exposures: G1 represents the intensity captured during Gate 1 of a CCD camera; it integrates the
initial pressure-insensitive light emission from the PSP (IGate1) and serves as reference for the long,
open-ended pressure-sensitive Gate 2 (G2), which picks up the photons emitted during the lifetime
decay of luminophores from their excited state (represented as IGate2). CCD cameras have an inherent
time delay between the two gates, which leads to a loss in captured intensity (Idelay). The exposure
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duration of Gate 1 may be adjusted on a double-framed camera to balance the light intensity in both
gates at ambient conditions, capturing maximum pressure sensitivity while minimizing the effects
of imager shot noise. A wind-off reference ratio with same imager setting is mapped to the wind-on
ratio to further eliminate the spatial variation with the resulting ratio-of-ratios used in the modified
Stern–Volmer equation:

(IGate2/IGate1)ref
(IGate2/IGate1)

=
(G2/G1)ref
(G2/G1)

= A(T) + B(T)
P

Pref
(3)
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For a detailed procedural flowchart for data acquisition and post-processing of the single-shot
method, refer to Juliano et al. [7]. A complete knowledge of the PSP calibration is a critical input to not
only the iterative scheme, but also for the conversion of intensity to pressure data. These characteristics
include pressure and temperature sensitivities along with the lifetime constant as a function of pressure.
Figure 3 shows the luminescent lifetime variation (with pressure) for the PSP used in this work (PtTFPP
on polymer/ceramic). For details on the calibration process and other calibration characteristics of
this PSP formulation, the reader is referred to Gregory et al. [8]. It can be noted that as the pressure
increases, the higher partial pressure of oxygen increases the probability of quenching of luminophores,
thereby reducing the apparent emission time scale of PSP. This modulation of local PSP lifetime by
local surface pressure manifests as a variation in PSFs across a blurred single-shot image. Since the
decay lifetime of PtTFPP PSP is usually shorter than the temporal azimuthal pressure differential over
a rotating surface, it can be safely assumed that a point experiences a constant pressure throughout
its lifetime, and the spatial variance in decay rate arises only due to the different surface pressure
experienced by different points. A sharp change in pressure such as due to a presence of a shock
wave can cause large changes in local lifetimes (and thus PSFs) across the shock. Based on the lifetime
characteristics (Figure 3), one can expect that blurring would increase if the pressure is lower; this
relationship between lifetime and PSF is detailed in the next section.
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3.2. Spatially Varying Kernel

A general blurring model takes the generic form [20]:

l(x) =
1∫

0

1∫
0

K(x, y)s(y)dy1dy2, y ∈ [0, 1]× [0, 1] (4)

where x and y are coordinates of the blurred and sharp images, respectively (assuming the domain
to be [0, 1]). This linear relationship between a blurred image l and its latent image s, through the
blurring kernel K, allows discretization and representation in matrix terms. The resulting kernel-based
forward model (Equation (2)) provides an approach to model the blurring process by positioning
appropriate PSFs at accurate locations in the kernel. In complex motion blur schemes such as rotational
motion with varying intensity, a kernel-based model is difficult to implement due to a need for a
sub-pixel working regime to accurately model the contribution of each pixel in the sharp image to the
overall blurriness [27,42]. However, the effective transformation of coordinates [8,29] and change of
orientation of the blurred PSP image for converting the circumferential blur to one-dimensional poses
an easier initial working problem.

For transforming a PSP image to polar coordinates, the part of the image that completely
circumscribes the rotating surface is selected such that there is sufficient information to recover
the potential (degraded) information. The polar lattice used has a sufficiently higher resolution to
ensure the sub-pixel working regime, and follows a θ-r convention that ensures column-wise blur
instead of row-wise. Resolution depends on the computational ability; however, high resolution in the
theta direction was ensured to capture the blur accurately. Following Equation (2), the column-wise
lexicographically stacked vector-form of this transformed image is denoted by L. Each pixel of L is
obtained from a weighted sum of the corresponding pixel and its neighbors in the sharp image (S),
and these weights are given by the elements in the blurring kernel (K). The alignment of PSFs in K can
be conceptualized as described in Hansen et al. [43]:

Kei = K(:, i) = column i of K (5)

where ei is the ith unit vector consisting of all of the zeros with 1 only at the ith location. For our
column-wise one-dimensional blur, the ith column of K contains the PSF of the ith pixel that starts
from the main diagonal and contains the weights that describe how its intensity affects the pixels
below it. If the pressure value at a point is known, as is the case for a non-blind deconvolution
problem, the PSF can be constructed using the information about lifetime curves, rotation frequency,
sub-pixel resolution in the circumferential direction, and the exposure period [8]. A typical normalized
point spread function for atmospheric pressure with a rotational speed of 269 Hz and an angular
resolution of 0.1/pixel is shown in Figure 4. The lengths of the PSFs were extended over 10 lifetimes
at every pressure beyond which the intensity was assumed to be negligible; the resulting PSF was
then normalized. This process was automated with a MATLAB function that readily generates the PSF
vector when provided with appropriate inputs for a pixel-to-pixel spatially variant kernel.
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Both the reconstruction of an image and the structure of the K matrix depend on the type of
boundary condition used, which specifies the behavior of the scene outside of the boundaries of the
given image. Since safe radial and azimuthal margins have been used in this work before converting
the PSP image to polar coordinates, no information would be lost if the zero boundary condition were
used, i.e., if the exact image was black (zero intensity) outside the boundary. Upon employing this
boundary condition, a lower block triangular K matrix with triangular blocks is obtained such that
the PSFs corresponding to every column of the image form a block. This can be readily solved by
forward substitution for a sharp image if the imaging process is noise-free or when the condition
number is low enough. Diagonal elements, which are the first elements of every PSF, become the
eigenvalues of the K matrix. Since K is not a normal matrix, the eigenvalues cannot be used to calculate
the condition number; instead, MATLAB functions such as rcond and condest can be used to estimate
the ill-posedness of the problem. These functions use an iterative algorithm to estimate the norm of
the K−1 matrix without directly estimating K−1.

The use of sub-pixel resolution leads to a K matrix that is of huge dimension, but only with small
support. Such a matrix can be efficiently represented by using the sparse matrix representation in
MATLAB, which would have been otherwise infeasible (a K matrix for images of 600 × 800 dimension
would have 480,000× 480,000 elements, which is well beyond the maximum real double-array holding
capacity of a standard PC). MATLAB uses a compressed-column data structure to store sparse matrices,
and thus solves the noise-free problem by accessing the K matrix column-wise instead of by forward
substitution. Although blurring is said to be worse when the support gets wider as singular values
decay faster, even for narrow PSFs with a slow decay in singular values, the condition number becomes
large for larger images, requiring the use of regularization tools [43].

3.3. Iterative Scheme

The iterative blind deconvolution scheme presented in this paper is based on the monotonic
calibration curves of PSP formulations. The iterations require the same four images—wind-on and
wind-off Gate 1 and 2 images—that are conventionally used in single-shot PSP experimentation to
extract pressure information. However, it should be pointed that the scheme is still a single image
blind deconvolution, because only the blurred wind-on Gate 2 image contains the information about
the sharp Gate 2 image. This is in contrast to multichannel deblurring algorithms that use several
differently blurred images of the same scene [41]. The other three images are also transformed to polar
coordinates using the same sub-pixel resolution as that of the blurred image.

The scheme starts by initializing K with an invariant atmospheric pressure assumption. PSFs
are generated, and the K matrix is filled with the zero boundary condition. The polar transformed
blurred wind-on Gate 2 image is then deconvolved with K to perform a first-order deblurring, as in
Gregory et al. [8]. This restored image is processed to extract pressure information in the following
steps: it is first median-filtered to suppress the white noise while preserving the edges, and then
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it is registered over the polar transformed wind-on Gate 1 image to obtain a ratio of intensities,
after which this ratio itself is registered on the polar transformed wind-off intensity ratio to extract the
pressure information through the Stern–Volmer equation (Equation (3)) and calibration curve (Figure 3).
This pressure data at every pixel is then used to create PSFs for the K matrix of the next iteration,
as discussed in the previous section. The updated K matrix is used to deblur the polar wind-on Gate 2
image to generate an improved restored image, which again goes through the same processing steps
before the next iteration. The monotonic lifetime calibration curves ensure convergence to the sharp
Gate 2 image, and a reasonably fine pressure change at every pixel can be used as a stopping criterion
of the iterations.

The fundamental difference between this scheme and other state-of-the-art, single-channel
deconvolution methods is that the blurred image is not altered at all. Since valuable pressure
information is present in the wind-on Gate 2 image, the use of filters, as done in spatial domain
methods [39] to suppress noise and overemphasize the edges, should be avoided. In the present
scheme, the same unfiltered wind-on Gate 2 image is restored over all of the iterations, albeit with an
improved kernel that is obtained through the processing work on the restored image of the previous
iteration. Image registration is carried out through the control point registration of the Image Processing
Toolbox in MATLAB. To ensure the automation of the iterative process, the control points are selected
and saved during the initialization step; then, the same points are used over subsequent iterations.
Image registration is carried out in polar coordinates rather than after transforming our deblurred
image to Cartesian, in order to obtain a pressure map that is highly resolved. This sub-pixel resolution
of PSFs enables single-image super-resolution by deconvolving upsampled images with the recovered
blur kernel [38].

There are significant numbers of pixels in the polar-transformed image that capture the stationary
background of the experimental setup due to the safe margins employed before transformation.
Since PSP experimentation is carried out in the dark, these pixels have very low intensity. A unit vector
with one at the main diagonal can be used as the PSF for these pixels to represent that they do not
spread. A circumscribing mask created from the Cartesian Gate 1 image with ample room for rotation
of the blade during first exposure can be used for bodies that do not present easier geometry when
transformed to polar coordinates. This mask can then be transformed to polar coordinates using the
same grid to locate the pixels that correspond to the background. To ensure convergence, upper and
lower bounds on the pressure range are enforced such that unreasonable intensities (if present due
to ringing at blade edges) are eliminated. Bound limits can be problem-specific, and were set at 50%
higher (lower) than the corresponding intensity values for the maximum (minimum) expected pressure
values. Thus, there are two categories of neglected pixels: the first category captures the background
pixels, and the second category includes all of the pixels with values that are out of bounds. In order to
ensure convergence, the kernel must be specifically tailored to handle each category of pixels, which is
described as follows.

Filling the K matrix for the first category (background pixels) is straightforward, as a sparse
diagonal matrix is used that has ones for the columns corresponding to the background pixels and
zeros for the rest. For the second category (out-of-bounds pixels), the contribution to the K matrix is is
formed using a sparse invariant blur matrix which is then post-multiplied with a positioning matrix.
The sparse invariant matrix is created with the PSF obtained from the mode of the pressure values in
the out-of-bounds category. A code was made to readily fill this invariant matrix while preserving
the block triangular form of the zero boundary condition. The positioning matrix is a sparse diagonal
matrix comprising ones for the columns that need to be preserved and zeros for the columns that
should be eliminated. The positioning matrix for the out-of-bounds pixels is then multiplied to the
invariant matrix to clear the columns that do not correspond to these pixels. The resulting sparse
matrix is then added to the K matrix from the first category to update the columns.

The efficient filling of the remainder of the K matrix is done by first creating a triplet of a kernel
value vector, a row location vector, and a column location vector, and then calling sparse in MATLAB



Sensors 2018, 18, 3075 10 of 22

instead of updating the K matrix every time [44]. The kernel value vector comprising stacked PSFs
is obtained by concatenating the PSFs as they are calculated from the pressure value of the pixels,
while the location vectors ensure that every PSF starts at the main diagonal of the K matrix and extends
below it. It should be noted that the first category of pixels (background) were pre-filled in order
to reduce the computational effort in concatenating PSFs. Due care should be taken that only those
pixels that can be confidently ascertained as background be used. Since PSFs are generated from the
pressure map and the pressure values that correspond to background pixels are meaningless, these can
be discarded if it is feasible to reduce the computational effort without any loss of accuracy. On the
other hand, the failure to identify all of the background pixels will only produce trivial error, due to
the negligible intensities that get spread with the PSFs corresponding to those pressures.

Once the complete K matrix is generated, the transformed blurred Gate 2 image is deblurred using
the iterative restoration methods developed by Nagy and coworkers [25,26]. The use of regularization
over every step of kernel estimation to suppress noise amplification is fundamentally different from the
blind deconvolution methods that neglect noise while estimating the kernel and then apply a classical
method for restoration. These algorithms are vulnerable to noise and break down with even moderate
levels of noise [41]. SVD-based direct filtering is impossible for large matrices, since even though K is
sparse, the orthogonal matrices obtained by the SVD are not. Moreover, iterative methods have the
advantage of imposing new constraints such as non-negativity, or can be used with preconditioners.
The regularization is based on the semi-convergence behavior of iterative methods with respect to
relative error when applied to the least squares problem:

min
s
‖l − Ks‖2 (6)

The index for stopping the iterations acts as the regularization parameter by defining the size
of the singular values that are to be neglected. Since the SNR in PSP images is subject to huge
variations, it can be experimentally determined and set in the initialization step, and then the same
value is used in the subsequent iterations to ensure automation. The choice of iterative method
was made by its applicability to the blind iterative scheme developed here. Although Krylov
subspace-based methods—such as the conjugate gradient method for least squares (CGLS) or the
bidiagonalization-based least squares (LSQR)—converge very quickly, they also exhibit a sharp increase
in noise amplification after achieving this semi-convergence [42,45]. On the other hand, Richardson
iterations being inherently slow are also significantly gradual in reconstructing higher frequency detail,
and thus, the amplified noise dominates the reconstructions at a much slower rate. Since this work uses
a preset value for the regularization parameter, which might not be accurate over all of the iterations,
it is prudent to use a method that does not exhibit sharp amplification of noise after achieving the
semi-convergence, especially while using it with a low SNR experiment. Consequently, every iteration
of the blind deconvolution scheme employs the steepest descent implementation of the Richardson
method. More about this classical iterative method and how it can be interpreted as SVD filtering is
described by Berisha and Nagy [25], along with the MATLAB notes on its implementation.

4. Methodology for Assessment of the Deblurring Technique

In order to test the deblurring scheme, both numerically generated test images with known
pressure fields and experimental images have been used in this work. The first subsection explains
the numerical approach; a forward model of blurred image generation along with the technique of
simulating the effects of a CCD camera (splitting of intensity due to the gating process and the addition
of imaging noise) has been described. The subsequent subsection explains the experimental framework
that is used to obtain a blurred image with a sharp pressure gradient for testing the scheme on a
real-world problem.
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4.1. Forward Model

In order to test the blind deconvolution scheme developed in this work, an experimental Gate
2 image would suffice as an input. However, in order to validate the resolution and accuracy with
which the pixel-to-pixel intensities are restored, both the blurred image as well as its latent sharp form
are needed. Thus, numerically-generated pseudo-pressure images are generated and run through
a blurring routine (termed a forward model) in order to generate a known data set of sharp image,
blurred image, and blurring parameters. However, “Inverse Crime” is referred to as the mistake of
using the same precise model both to generate the test data and compute the reconstructions [20].
Kernel-based deblurring has been used in this work to restore images; thus, blurred images have been
generated using a kernel-free forward model. The forward problem of creating a blurred image from a
known sharp image also helps with understanding the blurring process in PSP images.

Every pixel in a recorded image is proportional to the number of photons accumulated by the
corresponding pixel sensor over the exposure period of the imager. An image formation model can be
assumed as a binning of these photons into infinitesimally small time intervals, such that the formed
image is an integral of the sub-images projected from the real world onto the two-dimensional plane.
A discrete form of this model with a sufficiently high number (N) of sub-images (S) can safely represent
the image (L) logged in the camera during its exposure time.

L =
N

∑
i=1

Si (7)

This image formation model can be used to simulate the blurring process [42] provided that
the sub-images that represent the motion of the body during the exposure period can be accurately
constructed. This kernel-free image degradation model (Equation (7)) is fundamentally different from
kernel-based models (Equation (2)), and is more physically intuitive in complex blurs such as rotation.
Blurred PSP images of rotating surfaces can be constructed in a similar way using the discretized
locations and intensities of the sub-images over the second exposure. Following Tigkos [42] and Whyte
et al. [46], this can be represented as:

L(x) =

(
N

∑
i=1

I0(Hix)ωi

)
/

(
N

∑
i=1

ωi

)
+ n (8)

where the summations are done over all of the sub-images (i = 1 to N) with Hi being the homography
induced by the planar rotation of a sharp PSP image with intensity I0. ωi are the weights of the
summation that model both the time spent at the ith sub-location and the intensity value at that
sub-location, and n is simulated noise. For steady frequency rotations, the time spent at each location
is the same, while exponentially varying weights can be used to model the decay of intensity. x is the
homogeneous vector used to denote points on the sensor (points on the observed blurry image L).
Since the same numbers of photons are captured during the blurring process as would have been for
a sharp image, the sum of the weights is used to normalize the intensity to that of the sharp image
(I0). For the construction of sub-images in this work, bilinear interpolation with a large number of
sub-images has been used, which provides fine accuracy in modeling the degradation [42].

The heuristic image model (Equation (8)) has been modified to simulate the splitting of the overall
intensity I0 of luminescent emission into sharp Gate 1 and Gate 2 images:

G1(x) =

(
N1

∑
i=1

I0(Hix)ωi

)
/

(
N

∑
i=1

ωi

)
+ n1 (9)

G2(x) =

(
N

∑
i=N1+1

I0(Hix)ωi

)
/

(
N

∑
i=1

ωi

)
+ n2 = I0 − G1 − Idelay (10)
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where the numerator in Equation (9) and Equation (10) are summed over the first and second exposures,
respectively, while the denominator is summed over both the gates and delay. To avoid the usual
image registration steps done with PSP images for extracting pressure information, a sharp G2 image
has not been rotated to a position that the rotating surface would have achieved after rotating over
the period of the first exposure and camera delay. The accurate splitting of intensities in Gate 1 and
Gate 2 is critical to the working mechanism of PSP, since their ratio is used to extract the pressure
information from Equation (3). The camera delay between gates 1 and 2 in modern CCD cameras
is of the order of 1 ns. To simulate the loss in captured intensity (Idelay) due to this delay, a forward
model was made using 109 images per second, and then, a single image was deliberately neglected.
The intensity split with such a high number of images can be readily obtained from a single pixel of
intensity 1; the resulting fractional gate intensities can then be multiplied to the sharp image with
intensity I0 to obtain the sharp G1 and G2 images.

The short first exposure of the CCD imager in single-shot lifetime PSP experimentation is set such
that the intensity is distributed approximately equally in both images. The lifetime decay of PtTFPP in
polymer/ceramic, although longer than other PSP formulations, is still short enough that it loses half
its intensity in 6 µs at atmospheric pressure. Hence, Gate 1 PSP images experience negligible blurring,
and only the sharp Gate 1 images have been used in this study. However, the blind deblurring scheme
developed here can also be used for deblurring Gate 1 images, if required for longer-lifetime PSP
formulations. Estimation of the Gate 1 blur kernel, once the Gate 2 blur kernel has been derived,
is trivial. The blur kernels will be similar in the sense that the point spread functions depend on the
pressure experienced during the exposure, which will be the same for both gates 1 and 2, but their
lengths will be different, depending on the exposure period. The two blur kernels can be improved
simultaneously in an iteration of the scheme described in the previous section.

The degraded Gate 2 image is obtained from Equation (10), with both the summations running
only over the second exposure. Since spatially variant blurs are also linear [27], spatially variant
degradation can be simulated by the superposition of separately blurred patches of a single image.
This procedure can be used to model complex surface pressure phenomena such as a rotor blade
with a shock present. For modeling experimental error, noise may be added to the noise-free blurred
image using the imnoise function in MATLAB’s Image Processing Toolbox or the built-in randn

function. A commonly used additive noise model [43] for CCD arrays includes (1) Poisson noise,
which models the corruption due to background photons, and (2) Gaussian noise, which represents
the independent and identically distributed readout error for every pixel. SNR, which is commonly
defined as the ratio of mean signal strength to standard deviation [21], has been documented as 24.6
for a previous single-shot PSP study on a hemispherical dome [47]. This corresponds to 4% noise
(standard deviation = 0.04), which was added as random perturbations (‖e‖2/‖G2blurred‖2) to the
blurred images following Hansen et al. [43]. To simulate the discretization error from the real world to
the image plane, the images were constructed and blurred at a resolution of 3000 × 4000, and then
downsampled to 600 × 800.

Samples of the forward-modeled sharp and blurred images used in this work are shown in Figure 5.
For generating these, an image of a wedge-shaped region of PSP on a spinning disk is represented by
pixels that have a value of 1 inside the paint, and 0 otherwise. This was used to represent the total
luminescence intensity that each point on a uniform PSP disk emits after a single shot of pulsed laser.
Depending on the pressure experienced, the lifetime of emission at each point varies and gets split
into the two gates of the single-shot method, as described earlier. Three regions of pressures were
selected in this elementary image—70 kPa (outer part of the leading edge), 90 kPa (the middle patch),
and 110 kPa (remainder of the disk)—which produce the sharp Gate 1 and Gate 2 images, as shown
in Figure 5a,b, respectively. It can be observed that depending on the pressure, the intensity of the
regions is different, as captured in Gate 1 and Gate 2 images. To simulate anticlockwise rotation at
269 Hz, the three separate patches of the sharp Gate 2 image were then blurred separately as described
earlier, and then superposed to form the blurred Gate 2 image. This high-definition blurred Gate 2
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image (3000 × 4000) was then downsampled (600 × 800) to model the discretization error, and 4%
noise was added to obtain the test image, as shown in Figure 5c.
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Figure 5. (a) Sharp Gate 1 image (3000 × 4000), (b) Sharp Gate 2 image (3000 × 4000), and (c) Blurred
Gate 2 image for the rotating disk at 269 Hz downscaled (600 × 800) and with 4% noise added.
Colors represent the intensity captured by the Gate 2 image. Rotation is counterclockwise; images are
in Cartesian coordinates.

4.2. Experimental Image

It has been pointed out by Levin et al. [34] that several classic papers on blind deconvolution do not
work with real-world images. Hence, it is important to check the algorithm that has been developed in
this work on images generated by actual PSP experimentation. In previous work, Gregory et al. [8] used
an experimental image from a rotating disk setup to test the invariant deblurring scheme developed
there; this same image experimental image will be used in the present paper to assess the spatially
variant iterative scheme developed here.

The setup consisted of a spinning disk (radius of 101.6 mm), a segment of which was painted with
PSP and imaged using a camera mounted above the disk in the laboratory frame. Since the radius of
rotation was much smaller in comparison to a large scale rotor, a high rotational rate (134 Hz) was used
to produce a comparable blur. In order to induce a sharp-edged gradient in local oxygen concentration
(thus, emitted intensity), the setup had a provision for the tangential injection of a nitrogen jet across
the disk surface. Thus, the setup allowed for the evaluation of a deblurring algorithm when applied to
images with non-smoothly varying PSFs. The previous study [8] exposed the limitation of an assumed
spatially invariant PSF for the restoration of such an image with sharp pressure gradients. The same
blurred image has been used in this work to evaluate the iterative scheme developed here. For details
about the experimental setup, the reader is referred to Gregory et al. [8].

Figure 6 shows the blurred Gate 2 experimental image with colors representing intensity captured
by the 14-bit camera. It can be observed that the presence of PSP on the disk enabled the visualization
of the colorless nitrogen jet, and the finite exposure time of the camera produced the blurring and
smoothing of the jet profile. With respect to the PSP, the presence of the nitrogen jet has the same
influence as a sharp decrease in pressure: it causes a decrease in the partial pressure of oxygen,
and hence less oxygen-quenching. This leads to a longer lifetime of decay, giving a higher split of
intensity in the second exposure. Even though the nitrogen jet follows a straight path upon exiting
the rotating nozzle (when viewed in the inertial frame), the indicated jet trajectory is curved away
from the direction of motion, since PSP visualizes the streaklines of the rotating jet. For computing the
SNR, the technique proposed by Fang et al. [47] was used, in which a small patch (10 × 10 pixels) in a
constant-intensity region was identified for ratioing the mean signal strength over standard deviation.
The SNR in the recorded images was found to be as high as 90. Such a high SNR was one of the reasons
(along with the low condition number of the blur kernel) that Weiner deconvolution, even without
accounting for noise, produced reasonable reconstructions in Gregory et al. [8]. To study such large
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variations in SNR, two forward-modeled images, one with a SNR as low as 25 and another totally
noise-free, have been used along with this experimental image (SNR of 90).
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Figure 6. Blurred image of nitrogen jet grazing on rotating disk. Rotation is clockwise; image is in
Cartesian coordinates. Colors represent intensity captured by Gate 2 of the 14-bit camera (adapted
from Gregory et al. [8]).

5. Results and Discussion

All of the figures (numerical and experimental) in this work have blades that were rotated
in the counterclockwise direction. The first test case was used to simulate the application of the
blind deconvolution scheme to experiments conducted at a low SNR, and understand the effect
of regularization on the scheme. The elementary disk-shape forward-modeled image generated in
Figure 5 was used for this purpose. The disk experiences three separate pressures with sharp changes
in between them (Figure 5b), the precise locations of which cannot be ascertained in the downscaled,
blurred, and noisy image (Figure 5c). A part of the blurred image that safely captures all of the
luminescent decay is then transformed to polar coordinates with a radial resolution of 0.5 per pixel and
an angular resolution of 0.1 per pixel to obtain a one-dimensional column-wise downward blurring.
Figure 7 shows both the sharp Gate 2 image (a) and the blurred image (b) in polar coordinates.
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The importance of regularization is apparent, as noise amplification renders the spatially 
invariant deblurred image (Figure 8b) unintelligible. On the other hand, the blind scheme in 
conjunction with regularization tools restores the intensities to great accuracy while preventing the 

Figure 7. (a) Sharp image that is to be recovered in polar coordinates, and (b) blurred Gate 2 image
(as in Figure 5c) in polar coordinates. Colors represent the intensity captured in the Gate 2 image.
The image x-axis is pixels in the r-direction, and the y-axis is pixels in the θ-direction. Rotation is
downward; images are in polar coordinates.

The degraded image was restored using first the invariant-assumed deblurring [8] with a pressure
of one atmosphere and without any regularization; then, it used the blind iterative scheme in
conjunction with steepest descent implementation of Richardson method as described by Berisha and
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Nagy [25]. The results in polar coordinates are shown in Figure 8; Figure 8b is the unregularized result
based on the spatially invariant PSF. Figure 8c,d show the results after nine iterations of the blind
scheme with either five or 15 iterations of iterative regularization over each iteration, respectively.
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Figure 8. (a) Sharp image to be recovered, (b) result obtained using assumed P deconvolution without
regularization, (c) polar restored image after nine iterations with five iterations of steepest descent, and
(d) polar restored image after nine iterations with 15 iterations of steepest descent. Colors represent
intensity. Dashed black line represents r/R = 0.95 used to plot profiles in Figures 9 and 10. Axes are the
same as in Figure 7. Rotation is downward; images are in polar coordinates.

The importance of regularization is apparent, as noise amplification renders the spatially invariant
deblurred image (Figure 8b) unintelligible. On the other hand, the blind scheme in conjunction with
regularization tools restores the intensities to great accuracy while preventing the noise amplification
(Figure 8c,d). Since the number of iterations acts as a regularization parameter in iterative methods,
it can be observed that Figure 8d preserves high frequency information such as edge locations better,
albeit with elevated noise. Figure 8c is much smoother, but the deblurring has also smoothed out the
sharp intensity changes. Figure 9 shows a plot of intensity values at r/R = 0.95 (location identified by
the dashed black line in Figure 8).
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Figure 9. Effect of regularization iterations on restoration after nine iterations at r = 0.95. The x-axis
represents pixels along the chord in polar coordinates. Rotation is toward increasing pixel values.

A zoomed-in version at the leading and trailing edges is shown in Figure 10 to show this effect of
iteration count. High-spatial resolution reconstructions with high-frequency information are possible,
as long as elevated noise levels can be tolerated (such as in high SNR experiments). The invariant case
was excluded from this comparison due to the large amount of noise in the ‘restored’ image, but is
considered in the next noise-free test case. Another feature to be noted is the effect of 2-norm-based
regularization (Equation (6)) on the leading edge of the image. It has been known that 2-norm-based
methods do not allow sharp gradients and produce smoother results [20]. Since important flow physics
often have a first-order effect on the surface pressures near the leading edge of an airfoil, it is critical
that a form of regularization that does not smooth out the intensity values be used to acquire the
pressure information there. The total variation smoothing norm, which is based on 1-norm of the
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image gradients [48,49] is less harsh on gradients, and may be used to preserve the leading edge
information in future work.
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Figure 10. Comparison at the interface of 90 kPa and 70 kPa at r/R=0.95 at the (a) leading edge and
(b) trailing edge. Rotation is toward increasing pixel values.

A second test case was constructed using a pressure profile that is more representative of an actual
aerodynamic test. The numerically generated image considered the case when a shock wave is present
on a rotating blade, e.g., on an advancing blade in a high-speed wind tunnel. Figure 11 shows the
outer edge (20% of the span is visible) of the sharp Gate 2 image of the propeller blade, where the blade
is rotating in the counterclockwise direction. This intensity profile (which is inversely proportional
to the pressure profile) is much smoother than that considered in the previous case (which only had
two sharp discontinuities). Since resolution in noisy images depends on the regularization method
employed, no noise was added in this test case in order to observe the intrinsic resolution of the blind
deconvolution scheme.
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Figure 11. Sharp shock profile on a simulated propeller blade (to be recovered). Colors represent the
intensity captured in the Gate 2 image, and axes represent pixels of the image in Cartesian coordinates.

The polar lattice had a resolution of 0.5/pixel and 0.1/pixel in the radial and azimuthal directions,
respectively. Due to the absence of noise, both invariant-supposed and spatially varying blind
deconvolutions were simply carried out through the backslash operator in MATLAB. The results
are shown in Figure 12. It can be observed that the assumed pressure of one atmosphere, as shown
in Figure 12 c, is unable to restore the location of the shock, and brings to attention the inability of
the invariant deblurring method when applied to PSP images with strong variations in pressure.
On the other hand, the iterative method shows both qualitative and quantitative similarity to the
initial intensity profile as not only the location, but also the intensity values are restored. This is more
prominently seen in the intensity plot at r/R = 0.95 (Figure 13). The quality of restoration is very
fine, as all of the pressure differentials are restored to correct locations, although a few differences
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in intensity values can be observed (particularly near the shock front). The intensity values after
the first six iterations are shown in Figure 14, which shows that the convergence to a sharp image
is expeditious.
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Figure 12. (a) Sharp intensity to be recovered, (b) blurred Gate 2 image obtained for blade rotation
frequency of 269 Hz, (c) deblurred result as obtained from an invariant deblur with an assumed
pressure of one atmosphere, and (d) recovered image after 13 iterations. Colors represent intensity.
The dashed black line identifies the location (r/R = 0.95) used to plot profiles in Figures 13 and 14.
Axes are the same as in Figure 11. Rotation is counterclockwise; images are in Cartesian coordinates.
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The rotating disk image with a grazing nitrogen jet serves as a real-world problem for assessing
the robustness and quality of the deblurring schemes. Since a rotating disk has a theoretically uniform
pressure of one atmosphere, invariant deblurring is able to produce reasonable results over much
of the surface of the disk. It can be seen in Figure 15a that the registration holes are restored back
to their circular shape. However, the presence of the nitrogen jet on the disk changes the pressure
values, which stipulates that appropriate PSFs should be used to reconstruct the correct jet profile.
The blind iterative scheme finds these pressure values and employs the corresponding PSFs to restore
the sharpness of the jet profile that was blurred during the second exposure. The results, which are
shown here after 16 iterations (Figure 15b), can be used to locate the exact position of the pressure
change. The resolution of the polar lattice that is used to transform the blurred image (Figure 6) was
0.5/pixel and 0.1/pixel in the radial and azimuthal directions, respectively. Since a high SNR of 90 was
found in this experiment, 50 iterations of the Richardson method over every iteration of the blind
scheme has been used to suppress the noise in the reconstructions.Sensors 2018, 18, x FOR PEER REVIEW  18 of 22 
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Figure 15. Comparison of (a) invariant and (b) iterative restorations for the rotating disk.
The dashed black line represents the location that was used to plot the profile in Figure 16.
Color represents the intensity captured in the Gate 2 image. Rotation is counterclockwise; images are
in Cartesian coordinates.

The intensity values of pixels on a section passing through the jet tangential to the sense of rotation
are plotted in Figure 16. For comparison, the intensity profile from Gate 1 is also plotted, since it
undergoes negligible blurring due to the short exposure of 5 µs, and when normalized serves as the
true intensity profile that needs to be recovered. Since the accumulated intensity is different in the two
gates, Gate 1 has been normalized by itself, whereas the blurred and deblurred Gate 2 profiles have
been normalized by the iteratively deblurred profile. The plot demonstrates that due to the spatial
variation in pressure, invariant deblurring using a PSF based on the assumption of uniform pressure
of one atmosphere is unable to restore the intensity values to their original location. Correspondingly,
the location of the sharp gradient is erroneous, and is close to that indicated by the blurred image.
On the other hand, iterative deblurring is able to identify the exact location of the sharp pressure
change, and the profile matches closely with the unblurred Gate 1 profile.

Another issue with invariant deblurring can be observed; the use of a smaller PSF for one
atmosphere pressure is unable to restore the longer decay that is associated with smaller pressure in
the nitrogen jet, and thus exhibits about 10% smaller intensity values. This could lead to significant
errors in indicated pressure if iterative blurring is not used. A sharp excursion at the beginning
and the end of the profile is observed, which was attributed to the Gibbs ringing phenomena in
Gregory et al. [8] and is commonly observed in image deblurring studies with sharp gradients.
The rotating tube through which the jet is emanating undergoes a more complex blur as it collects
and emits luminescent intensity from various points on the nearby surface. Hence, the PSFs at those
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locations are not accurate. However, since this feature will not be encountered in an actual PSP
experimentation, it is here deblurred by the same procedure.
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6. Conclusions

An iterative blind deconvolution method with a pixel-to-pixel spatially varying blur kernel is
developed in the present work in order to restore the long second-exposure images of rotating surfaces
in a single-shot method of PSP experimentation or other long-exposure PSP studies. The algorithm
deblurs a single blurred Gate 2 image using the same three complementary images—wind-on Gate 1
and wind-off gate 1 and 2—that are needed in the single-shot method to obtain the pressure information.
Since the blurred image contains pressure information, it is not subjected to any filtering in the
deblurring scheme, and all of the processing is done on the restored image to generate an improved
blur kernel. Paint characteristics, including pressure sensitivity and decay constants, are a necessary
input to this scheme.

The convergence of this scheme to the sharp Gate 2 image is ensured by the monotonic behavior
of lifetime decay with respect to pressure. Since only a part of the PSP image captures the blurred
rotating surface, a highly resolved surface pressure map is obtained by processing this part of the
image in upsampled polar coordinates. This resolved surface pressure map enables the creation of
sub-pixel PSFs for the refined restoration of the blurred image. The restored image is then transformed
to the same Cartesian coordinates by padding zero-intensity pixels for representing the background,
which was not transformed to polar coordinates. The zero boundary condition is used to create the blur
kernel, which results in a block triangular sparse matrix with triangular blocks. PSFs are positioned at
the main diagonal of this lower triangular matrix.

A kernel-free forward model was used to simulate the splitting of intensity between the two
exposures, as well as the blurring process during the second exposure for producing degraded images
with known pressure and intensity values. Noise was added in the images to account for the errors
and variations in the SNR in the PSP experimentation. Since image deblurring is an ill-posed problem
and SVD-based filtering is infeasible for large data sizes, the Iterative Regularization Tools of Nagy and
coworkers [25,26] were used over every iteration of the blind scheme to suppress noise amplification.
Test images corresponding to a low SNR of 25 were used to show the effect of regularization iteration
count on the reconstructions. As expected, a lower count leads to a smoother image, but cannot be
used to accurately locate a sharp pressure change, whereas a higher count preserves high-frequency
information, but with higher noise. The inherent resolution of the blind scheme was evaluated on a
noiseless shock profile, which revealed the high accuracy of the reconstructions and improvement
over the previously used invariant restoration in PSP images. A real-world problem was then used to
show how this deblurring method can help find the accurate location of the pressure differential and
their values.
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Although this specific algorithm is limited to PSP and TSP data images, it presents an effective
solution to the deblurring requirement in single-shot method, which could not be met by any other
restoration algorithm. The deblurring work done in this paper may lead to the development of longer
lifetime PSPs with confidence for improved sensitivity, which will help resolve flow physics not being
captured by current PSP formulations.
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