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ABSTRACT: Serving as the premise to understand bulk
allotropes, boron clusters have been intriguing experimentalists
and theoreticians to study their geometries and chemical bonding.
Here, we designed a complete core−shell B160 cluster stuffed by
two B12 cores, which is energetically preferable over the bilayer
structure of the same size. The unprecedented peanutlike structure
with Ci symmetry has superior stability and exhibits superatomic
electronic configuration and spherical aromaticity. Our theoretical
work not only proposed the core−shell structure of dual
icosahedrons for the first time but also indicated the multi-B12
core−shell structural pattern in boron particles, bridging to boron
crystalline structures.

1. INTRODUCTION
The nature of electron deficiency in boron leads to unique
structures and unusual bonding in boron compounds and
related nanomaterials.1−3 Boron can form fascinating multi-
center two-electron bonds (mc−2e). Serving as the premise to
understand bulk allotropes, boron clusters have been intriguing
experimentalists and theoreticians to study their geometries
and chemical bonding.4−8 Particular attention was paid to the
structural evolution of boron clusters as their size increases:
small boron clusters within 19 atoms were characterized to be
planar or quasi-planar, and the structural transition from two
dimension to three dimension was found to occur at B20
tubes;4,5,9 Bn clusters of n ≤ 62 were extensively studied both
experimentally and theoretically, including the plane, irregular
cage, tube, and bilayer configurations.4−20 For large sizes,
Yakobson’s research group proposed a perfect B80 buckyball
based on the famous C60 fullerene in 2007.21 However, this
eye-catching structure with high symmetry (Th) has poor
stability, as demonstrated by later studies. For example, two
independent works revealed in 2010 that the core−shell B80
structure is more energetically favorable than the buckyball
cage, which were obtained using simulated annealing
incorporated with first principles molecular dynamics
(FPMD-SA)22 and the basin-hopping Monte Carlo algo-
rithm,23 respectively. Back in 2008, Prasad and Jemmis
constructed a few B98−102 clusters by stuffing icosahedral B12
in boron fullerenes,24 and these core−shell structures exhibit
higher binding energies than the B80 buckyball. The validated
density functionals also established that the core−shell
structural pattern is energy-preferred for B80.

25,26 Note that
the B12 core of core−shell Bn is not fully covered for 68 ≤ n ≤

84,22,23,25−27 and the B12 stuffed boron fullerenes around B100
were predicted to have complete core−shell configuration.24,25

Recently, Li’s group reported even larger clusters of B106−130
core−shell structures:28 B108−114 and B120−130 were built based
on the C70 fullerene cage with D5h symmetry and C80 with Ih
symmetry, respectively, and among them, B112 with Cs
symmetry has the highest binding energy. Beyond the core−
shell motif, the quasi-planar/tubular structure, bilayer, and unit
of boron crystals were also proposed for large boron
clusters,29,30 and the core−shell pattern is also prevailing for
the boron clusters sized in n = 92∼124.31 As the size increases,
B atoms will be overloaded to the shell for the core−shell
(icosahedral-B12 stuffed) structures; what will the stuffing be?
In this work, we successfully designed an unprecedented

dual-B12-stuffed B160 with Ci symmetry, in which dual B12 are
connected by a B−B bond. Note that for large sized boron
clusters, it is very challenging to locate the lowest structure;
however, the first prediction of the peanutlike geometric
feature is of great importance for the structural evolution from
boron clusters to boron crystalline structures.

2. COMPUTATIONAL METHODS
The structure optimization and frequency calculation were
performed using the combination of the TPSSh functional32
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and 6-311G(d) basis set as implemented in the Gaussian09
program,33 since such level of theory is capable of reproducing
the energy sequence of B20 isomers at high-level CCSD(T)
calculations.25 FPMD simulations were carried out in the NVT
ensemble at 300, 500, and 1000 K for 5 ps with a time step of 1
fs, respectively, using the DMol3 code,34 to assess the thermal
stability. Chemical bonding was characterized by the natural
bond orbital (NBO)35 and adaptive natural density partition-
ing (AdNDP) methods.36

3. RESULTS AND DISCUSSION
3.1. Structure and Stability. B160 was originated from the

D5h C100 fullerene (consisting of 12 pentagons and 34
hexagons) by replacing all C atoms to B atoms, two B12
icosahedrons connected by a B−B bond (highlighted in green
in Figure 1) were stuffed inside the D5h B100 cage, 22 B atoms

were added to the centers of the 22 hexagons in the middle
region (highlighted in blue in Figure 1), each of the 12
pentagons was individually capped by one B atom, and one
more B atom was added to each of the two end pentagons
(highlighted in red in Figure 1), forming two bipyramids. The
constructed B160 has Ci symmetry and a peanutlike shape
(Figure 1). Alternatively, Ci B160 can be regarded as the joint of
two trunked Th B96, which was obtained by substituting C60
fullerene to B60 cage and adding 12 B atoms to each pentagon
center and another 12 B atoms to the center of the 12
hexagons out of the 20 hexagons and then encapsulating the
icosahedron B12.

31 The optimized coordinates of Ci B160 are
provided in Table S1 of the Supporting Information.
Our designed B160 with Ci symmetry is a local minimum as

demonstrated by all positive frequencies (Figure S1 of the
Supporting Information). The binding energy (Eb) in this work
was defined as Eb = (nE1 − En)/n, where E1 and En are the
energy of a single B atom and the total energy of the cluster,
respectively, and n is the number of B atoms within the cluster.
The Eb of B160 was calculated to be 5.415 eV/atom. Noting
that the proposed bilayer B124−828 containing one or multiple
conjoined B72 bilayer hexagonal prisms can be viewed as
embryos of the newly reported most stable freestanding BL-α+

bilayer borophenes,37,38 we constructed a bilayer B160 (Figure
2), whose binding energy (5.366 eV/atom) is lower than the
value of our B160 at the same level of theory. Therefore, the

dual-icosahedron stuffed B160 is energetically favored than the
bilayer configuration.
Meanwhile, the FPMD simulations were carried out for our

constructed Ci B160 to further evaluate its thermal stability.
Through 5 ps FPMD simulations, the peanutlike structure was
well maintained at both 300 and 500 K (Figure 3); when the
temperature was increased to 1000 K, the heated structure was
almost identical to the initial one. Thus, B160 has very high
thermal stability.

3.2. Chemical Bonding Analysis. To gain further insight
into the high stability, detailed AdNDP bonding analysis was
explored for dual-icosahedral-B12-stuffed B160. The AdNDP
analysis revealed that each icosahedral-B12 core in Ci B160
possesses 13 completely delocalized σ bonds (Figure 4), thus
exhibiting obvious superatomic characteristic with the
electronic configuration of 1s21p61d101f8, which agrees well
with the results of B96,

31 B111
+, and B112 clusters.

28

In addition, the AdNDP bonding pattern of B160 depicted a
symmetry of Ci. It possesses 16 localized 2c−2e σ bonds in
radial directions of cores, one 2c−2e σ bond connecting the
dual-icosahedral B12 cores, 40 2c−2e σ bonds located on outer-
shell B136, 6 3c−2e σ bonds in radial directions of cores, 60
3c−2e σ bonds on the 12 B6 pentagonal pyramids, 52 3c−2e σ
bonds on the waist of peanut-shaped structure, 10 4c−2e σ
bonds on the two ends, 20 4c−2e σ bonds on 10 hexagonal
pyramids, 2 and 6 5c−2e σ bonds with Ci symmetry on the
waist and hexagonal pyramids, respectively, and one
completely delocalized 136c−2e bond on the outer shell. All
the bonds have ON of ∼2 |e|, and thus such bonding patterns
present spherical aromaticity to their high stability, which were
further demonstrated by the negative NICS (nucleus-
independent chemical shifts) value of −43.7 ppm at the
center of Ci B160.
Accordingly, a pronounced feature of a delocalized σ bond

can be seen in the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) of this peanutlike cluster (Figure 5a,b). The electron

Figure 1. Structure of B160. Atoms highlighted in red, blue, and green
balls are pentagon capped B, hexagon capped B, and core B,
respectively.

Figure 2. Top and side views of the bilayer B160 cluster. The inward-
buckled B atoms are highlighted in blue.
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localization function (ELF) results (Figure 5c,d) suggest the
existence of localized B−B and delocalized σ bonds among the
whole structure, while the ELFπ pattern shows the π-system on
the outer shell. The bonding picture provided by the frontier
MOs and the ELF is consistent with the AdNDP bonding
analysis, as displayed in Figure 5.

4. CONCLUDING REMARKS
To sum up, a highly stable B160 with a peanutlike structure was
constructed, as verified by its all positive frequencies, high
binding energy, and structural integrity during FPMD

simulations at high temperatures. B160 structurally stuffed by
two B12 icosahedron cores has higher binding energy than the
bilayer counterpart of the same size. The extraordinary stability
of dual-B12-stuffed B160 can be assigned to its superatomic
characteristic and spherical aromaticity. The dual-icosahedral-
B12 stuffing feature was unprecedentedly and successfully
proposed, indicating that larger boron clusters with multi-B12
cores are accessible as the embryo to form bulk boron
allotropes.
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