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Summary

We propose semi-parametric methods to model cohort data where repeated outcomes may be 

missing due to death and non-ignorable dropout. Our focus is to obtain inference about the cohort 

composed of those who are still alive at any time point (partly conditional inference). We propose: 

i) an inverse probability weighted method that upweights observed subjects to represent subjects 

who are still alive but are not observed; ii) an outcome regression method that replaces missing 

outcomes of subjects who are alive with their conditional mean outcomes given past observed 

data; and iii) an augmented inverse probability method that combines the previous two methods 

and is double robust against model misspecification. These methods are described for both 

monotone and non-monotone missing data patterns, and are applied to a cohort of elderly adults 

from the Health and Retirement Study. Sensitivity analysis to departures from the assumption that 

missingness at some visit t is independent of the outcome at visit t given past observed data and 

time of death is used in the data application.
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1 Introduction

In studies of the elderly, deaths occur frequently during follow-up and in most cases, 

truncate the outcome process. Several authors (e.g., Dufouil et al., 2004; Kurland et al., 

2009; Seaman et al., 2016) have stressed the importance of distinguishing between outcomes 

that are missing due to dropout and those that are missing due to death. Otherwise we might 

find ourselves unintentionally defining post-death outcomes, which may be philosophically 

problematic. Some statistical methods do not make this distinction (e.g., linear mixed-effects 

models, LMM), and consequently estimate the mean or distribution of an outcome in the 

whole cohort, including subjects who are no longer alive. In doing so, these methods 

explicitly or implicitly impute post-death outcomes, as though the outcome process 
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continued after death. Such methods are said to produce “immortal cohort inference” or 

“unconditional inference” (Dufouil et al., 2004). In contrast, methods that distinguish 

between dropout and death, and estimate the mean or distribution of the outcomes in the 

subjects who are alive provide “mortal cohort inference.”

Two forms of mortal cohort inference are “partly conditional inference” and inference about 

the average effect of an exposure on an outcome in the subpopulation who would survive 

regardless of their exposure status. The latter is known as the “survivor average causal 

effect” (SACE). In this article, we focus on partly conditional inference; the SACE is 

discussed in Web Appendix A. Partly conditional inference concerns the partly conditional 

mean, that is, the mean outcome (possibly conditional on covariates) at each time point in 

the subpopulation who are still alive at that time point. Estimating this mean for an outcome 

that is related to health-care need and how this mean depends on covariates can be useful for, 

for example, planning allocation of health-care resources, since it is this subpopulation who 

must be provided for.

The partly conditional mean can be estimated using Generalized Estimating Equations with 

an independence working correlation structure (IEE). IEE are valid if the missingness at a 

time point among those who are alive at that time point depends only on observed 

covariates. Kurland and Heagerty (2005) weaken this assumption by using inverse 

probability weighting (IPW) to weight observed outcomes by the inverse probability of 

observation among the subjects who are alive, given observed outcomes and covariates.

We are motivated by the Health and Retirement Study (HRS): a survey of adults 50 years or 

older in the United States. Data are collected every 2 years on aspects of life such as health, 

physical, and cognitive functioning, work, etc. In this article, we focus on data collected 

from 2004 (baseline) to 2012 and on adults 80 years or older at baseline. We aim to describe 

the average cognitive score of the subjects who are alive at each visit and to understand the 

factors associated with these subjects’ cognitive score while they were alive. One measure of 

cognitive function is total cognition score, which is the sum of total word recall and mental 

status summary scores, and has range 0–35.

Most statistical methods for missing data in cohort studies assume missing at random 

(MAR). The MAR assumption states that, conditional on observed data, missingness does 

not depend on the unobserved data (Seaman et al., 2013). However, Rotnitzky et al. (1998) 

and Scharfstein et al. (1999) (henceforth RRS) described semi-parametric methods for non-

ignorable missing data, where missingness can depend on unobserved data. These articles 

deal with estimating the mean of a repeated outcome (possibly as a function of covariates) 

for monotone missing data, and rely on a selection bias function that quantifies the residual 

association between an outcome at a visit and the probability of observing this outcome after 

accounting for past outcomes and covariates. The parameter of this selection bias function is 

known as a sensitivity parameter. Vansteelandt et al. (2007) (henceforth VRR) proposed a 

class of semi-parametric models to handle non-monotone, non-ignorable missing data. Their 

(double-robust) method provides an estimator that is consistent and asymptotically normal 

when either a model for the probability of non-response given current outcome, past 

Wen and Seaman Page 2

Biometrics. Author manuscript; available in PMC 2019 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



observed outcomes and covariates, or a model for the conditional mean of the missing 

outcome given past observed outcomes and covariates (or both) is correctly specified.

In a joint model for the outcomes and dropout, the sensitivity parameter can be estimated, 

but this estimate can be severely biased when the outcome submodel is misspecified (Robins 

and Rotnitzky, 1997). For this reason, RRS and VRR recommend assessing the effect on the 

estimate of interest by varying the selection bias function and/or sensitivity parameter.

RRS and VRR do not distinguish between death and other types of missingness. Wen et al. 

(2017) make this distinction and describe the assumptions of IPW for partly conditional 

inference, but only for monotone ignorably missing data. In this article, we adapt RRS and 

VRR’s methods to make partly conditional inference from monotone or non-monotone non-

ignorably missing data caused by death, dropout and possibly return after dropout. In 

Section 2, we provide details about the motivating example. In Section 3, we define the 

assumptions for monotone missing data and describe our methods to make partly conditional 

inference. In Section 4, we define the assumptions for non-monotone missing data and adapt 

the semi-parametric methods from VRR to make partly conditional inference. In Section 5, 

we provide simulation studies to compare bias, efficiency, and coverage of the methods 

described in this article. In Section 6, we apply these methods to data from the HRS ageing 

study. All proofs are in the Web Appendix.

2 Motivation

Suppose there are n subjects in the study and J planned visits for each subject. Let Di be the 

last scheduled visit before subject i dies, and Ait be his vital status at visit t (t = 1, … , J). 

Note that Ait = 1 if and only if Di ≥ t, and that Di = J if subject i is still alive at the end of the 

study. Let Yit be the outcome at visit t, Zi be a vector of fully observed baseline covariates of 

interest, and Xi0 be a vector that includes Zi and possibly other fully observed time-

independent auxiliary variables. Let Xit (t = 1, … , J) be a vector of auxiliary variables 

measured at time t (Xit can be empty). The auxiliary variables are variables that are not of 

direct interest but may be predictive of missingness or missing outcomes. Let Rit denote the 

response indicator (Rit = 1 if Yit is observed, Rit = 0 otherwise), and let Rit = (Ri1, …, Rit)
T .

We define Ai0 = 1 and Y i0 = ∅ . Henceforth, we omit subscripts i unless needed.

Our objective is to estimate the parameter β of a model for the mean outcome at each visit 

(possibly) given baseline covariates Z in those who are still alive at that visit: μt = μt(Z) = 

E(Yt | Z, At = 1). In the HRS data analysis, we consider the model

μt = β0 + βtyeart + β
t2

yeart
2 + βageage + βsexsex + βeduedu + βtageyeart · age + βtsexyeart

· sex + βteduyeart · edu

(1)

for the dependence of the expected cognitive function (Yt) at visit t on time (years from 

baseline, denoted yeart), age at recruitment, sex (sex = 1 if female), years of education, and 

the interactions between time and age, sex, and education. Table 1 shows the results of 
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applying LMM and IEE to the observed data. Since unhealthier subjects (those with lower, 

that is, worse cognitive function) are more likely to miss a visit than healthier subjects, the 

estimates from IEE are based on subjects who are healthier than average. On the other hand, 

the estimates from LMM are based on all subjects, and all the missing cognitive scores are 

implicitly imputed. If subjects are still alive, these imputed scores tend to be lower on 

average than in subjects who have not dropped out, otherwise they correspond to post-death 

outcomes. Hence, estimates from LMM suggest that the mean cognitive function declines 

more rapidly than do the estimates from IEE. However, LMM does not distinguish between 

death and other reasons for missingness, and IEE rely on strong assumptions about the 

missingness process. In the next two sections, we discuss methods that require weaker 

assumptions. Further results from this HRS example can be found in Section 6.

3 Non-Ignorable Monotone Missing Data in a Mortal Cohort

Under a monotone missing data pattern, when an outcome is missing at some visit s then all 

subsequent outcomes will also be missing (i.e., Rt ≤ Rs, for 1 ≤ s < t ≤ J). This type of 

missingness pattern occurs in cohort studies where subjects drop out but never return. 

Throughout this section, we let Ot = (X0, X1, …, Xt, Y1, …, Y t) (t = 1, …, J), let O0 = X0, and 

assume the following (“Assumption 1”) holds:

P(Rt = 1 Rt − 1 = 1, Ot − 1, Yt, At = 1) > 0, ∀t with probability 1

We define “mortal-cohort non-future dependence (NFD)” as

P(Rt = 0 | Rt − 1 = 1, Ot − 1, Yt, …, YD, D) = P(Rt = 0 | Rt − 1 = 1, Ot − 1, Yt, At = 1), ∀t ≤ D

Mortal-cohort NFD says that the probability of dropout at visit t, conditional on survival to 

visit t, can depend on past outcomes and the outcome at visit t but not on future outcomes or 

D. In ageing studies, it is not unlikely that someone’s mental state at a given time could 

affect their ability to participate in the study at that time. The rest of this section describes 

methods that yield consistent estimates under mortal-cohort NFD. The first method weights 

up outcomes from observed subjects to represent subjects who are still alive but have 

dropped out (IPW), the second method imputes pre-death missing outcomes (conditional 

mean outcome regression, CMOR), and the third method combines these two methods to 

offer double protection against model misspecification (Augmented IPW, AIPW).

3.1 Inverse Probability Weighting

Dufouil et al. (2004) first used IPW to make partly conditional inference for monotone 

missing data under non-ignorable dropout but did not describe the assumptions underlying 

their method. Below we clearly state the assumptions and the IPW estimating equations for 

making partly conditional inference. Let πt(Ot − 1, Y t; αt, γ) be a model for 

πt(Ot − 1, Y t) = P(Rt = 1 Rt − 1 = 1, Ot − 1, Y t, At = 1) (t = 1, …J) with finite-dimensional 

parameters, αt and γ. For example, we could assume
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1 − πt(Ot − 1, Y t; αt, γ) = expit(α0t + α1tY t − 1 + α2tX + γY t) (2)

More generally, we assume the missingness model can be written as

1 − πt(Ot − 1, Y t; αt, γ) = expit ht(Ot − 1; αt) + qt(Ot − 1, Y t; γ) (3)

where qt(Ot − 1, Y t; γ) is a known selection bias function with parameter γ specified a priori, 

ht(Ot − 1; αt) is a known function with unknown parameter αt, and expit(a) = { 1 + exp(−a)}

−1. The function qt(Ot − 1, Y t; γ) describes the residual effect of the outcome at visit t on the 

probability of observing that outcome after adjusting for the observed data and missingness 

pattern up to visit t − 1. Note that if qt Ot − 1, Y t; γ = 0, there is no residual dependence of the 

outcome at visit t on dropout. For monotone missing data this special case is referred to as 

unconditional-MAR in Wen et al. (2017), and details about its relationship with mortal 

cohort NFD can be found in Web Appendix H.

Let αt be the estimator of αt that solves

∑
i = 1

n
Qit(αt) = ∑

i = 1

n ϕt(Oi, t − 1)AitRi, t − 1
πt(Oi, t − 1, Yit; αt, γ) × Rit − πt(Oi, t − 1, Yit; αt, γ) = 0, ∀t

where ϕt(Ot − 1) is a function of Ot − 1 that has the same dimension as αt. For example, for 

model (2), ϕt(Ot − 1) could be (1,Yt−1, X)T. If mortal-cohort NFD holds, the selection bias 

function and the sensitivity parameter γ are correctly chosen, and the missingness models 

are correctly specified, then αt will be consistent.

Let α = (α1, … , αJ) and α = (α1, …, αJ) . The parameter β in the model of interest can be 

estimated by solving the following set of estimating equations:

∑
i = 1

n
∑
t = 1

J ∂μit
∂β

AitRit(Y it − μit)
λt(Oi, t − 1, Y it; α, γ) = 0 (4)

where λt(Ot − 1, Y t; α, γ) = ∏l = 1
t πl(Ol − 1, Y l; αl, γ) .. If mortal-cohort NFD holds, the selection 

bias function and the sensitivity parameter γ are correctly chosen, and the missingness 

models are correctly specified, then the estimator β that solves estimating equations (4) will 

be consistent.

3.2 Conditional Mean Outcome Regression

Here, we briefly outline the CMOR method; full details are in Web Appendix C.
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Provided that Assumption 1 holds, equation (3) implies the following relation between the 

expected outcome (given history Ot − 1) at visit t in survivors who drop out just before visit t 

and in survivors who are observed at visit t.

E(Y t | Ot − 1, Rt − 1 = 1, Rt = 0, At = 1) =
E Y texp qt(Ot − 1, Y t) | Ot − 1, Rt = 1, At = 1
E exp qt(Ot − 1, Y t) | Ot − 1, Rt = 1, At = 1 (5)

In particular, if qt Ot − 1, Y t; γ = 0, then conditional on Ot − 1 and survival at visit t, subjects 

who drop out just before visit t have the same mean outcome at visit t as those who are 

observed at visit t. If qt(Ot − 1, Y t; γ) is an increasing (decreasing) function of Yt, then subjects 

who drop out just before visit t tend to have larger (smaller) Yt than those who are observed.

In the CMOR approach, the missing values of Yt in those who are alive at visit t but drop out 

just before visit t are imputed as E(Y t Ot − 1, Rt − 1 = 1, Rt = 0, At = 1) . Since this expectation 

is unknown, a model mt(Ot − 1; θt, t − 1), with parameters θt,t−1, is specified for it (t = 1, … , 

J). By exploiting equation (5), θt,t−1 can be estimated from the outcomes on subjects who are 

observed at visit t.

Next, provided Assumption 1 is true and mortal-cohort NFD holds, it can be shown that the 

mean outcome at visit t in survivors who drop out just before visit t − 1 is related to the 

mean outcome in survivors who are observed at visit t − 1 by:

E(Y t |Ot − 2, Rt − 2 = 1, Rt − 1 = 0, At = 1)

=
EYt − 1

E Y t | Ot − 2, Y t − 1, Rt − 1 = 1, At = 1 exp qt − 1(Ot − 2, Y t − 1) | Ot − 2, Rt − 1 = 1, At = 1

E exp qt − 1(Ot − 2, Y t − 1) | Ot − 2, Rt − 1 = 1, At = 1

.

(6)

Let mt(Ot − 2; θt, t − 2) be a model for E(Y t Ot − 2, Rt − 2 = 1, Rt − 1 = 0, At = 1) (t = 2, …, J) .. By 

exploiting equation (6), θt,t−2 can be estimated from the observed outcomes of survivors 

who are observed at visit t, and the already imputed outcomes of survivors who drop out just 

before visit t, that is, mt(Ot − 1; θ t, t − 1) . The missing values of Yt in those who are alive at 

visit t but drop out just before visit t − 1 are then imputed as mt(Ot − 2; θ t, t − 2) .

The same idea is then used to impute missing Yt in subjects who are alive at visit t but drop 

out just before visit t − 2, then those who drop out just before visit t − 3, and so on. This 
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method requires a model mt(Os; θt, s) for each E(Y t Os, Rs = 1, Rs + 1 = 0, At = 1)(0 ≤ s < t ≤ J) .

Note that post-death outcomes are not imputed.

Finally, having imputed all the missing pre-death outcomes, the parameter β in the model of 

interest is estimated by applying IEE to the imputed data set. If mortal-cohort NFD holds, 

the selection bias function and the sensitivity parameter γ are correctly chosen, and the 

regression models mt(Os; θt, s) are correctly specified, then this estimator of β is consistent.

3.3 Augmented Inverse Probability Weighting

We now propose augmented IPW (AIPW) estimating equations. These involve specifying a 

model for the probability of dropout and a regression model to fill in the missing outcomes 

with their expected values. The resulting estimator is doubly robust, that is, it is consistent 

when the missingness models are correctly specified at all visits, even when the regression 

models are not, and vice versa. Let θ = (θ1,0, θ2,0, …,θJ,0, θ2,1, θ3,1, …,θJ,1, θ3,2, …, θJ,2, 

…, θJ,J−1) and let θ  be the corresponding estimator. We utilize the IPW method described in 

Section 3.1 to model dropout and obtain α, and the CMOR method described in Section 3.2 

to impute the missing outcome and obtain θ . Then we estimate β by solving

Ψ α, θ , γ, β = ∑
i = 1

n
∑
t = 1

J
Ait

∂μit
∂β ×

Rit(Y it − μit)
λt(Oi, t − 1, Y it; α, γ)

+ ∑
l = 0

t − 1 Ril
λl(Oi, l − 1, Y il; α, γ) 1 −

Ri, l + 1
πl + 1(Oil, Y i, l + 1; αl + 1, γ) mt(Oil; θ t, l) − μit = 0

(7)

The resulting estimator β is consistent and asymptotically normally distributed if mortal-

cohort NFD holds, the selection bias function and the sensitivity parameter γ are correctly 

chosen, and either the missingness models are correctly specified at all time points or the 

regression models are correctly specified at all time points. In Web Appendix G, we provide 

a formula for the asymptotic variance of β and a corresponding estimator. Note that if the 

missingness and regression models are misspecified, the variance estimator is still 

consistent, even though the point estimator β is, in general, not consistent.

3.4 Monotone Missing Data When D Is Known

D is likely to be known if individuals in a study are linked to a death registry. If D is known, 

then an option is to include it in the missingness or the regression models (or both for 

AIPW). If this is done, Assumption 1 should be modified to

P(Rt = 1 Rt − 1 = 1, Ot − 1,Yt, D, At = 1) > 0, ∀t with probability1

and mortal-cohort NFD modified to “fully conditional mortal-cohort NFD”:

P Rt = 0| Rt − 1 = 1, Ot − 1, Yt, …, YD, D, At = 1 = P Rt = 0| Rt − 1 = 1, Ot − 1, Yt, D, At = 1
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In a sensitivity analysis, we can quantify the effect of perturbations to the assumption that 

qt Ot − 1, Y t; γ = 0 (i.e., the assumption that Ot − 1 includes all the variables that explain 

missingness at visit t). This assumption is made more plausible if we include D in the 

missingness or regression model, as people may be more likely to drop out if they are near 

death. Note that P(Rt = 0 Rt − 1 = 1, Ot − 1, Y t, D, At = 1) = P(Rt = 0 Rt − 1 = 1, Ot − 1, D, At = 1)

is referred to as fully conditional-MAR in Wen et al. (2017).

When D is included in both missingness and regression models and qt Ot − 1, Y t; γ = 0, the 

AIPW estimator that solves equations (7) is equivalent to the AIPW estimator given in Wen 

et al. (2017) (see Web Appendix F for proof).

4 Non-Ignorable Non-Monotone Missing Data in a Mortal Cohort

Non-monotone missingness occurs when a subject who misses a scheduled visit may return 

at a later visit. In this section, we give estimators for non-ignorable non-monotone missing 

data by adapting the methods from VRR to make partly conditional inference. We redefine 

Ot as Ot = (X0, R1, R1X1, R1Y1, …, Rt, RtXt, RtY t), and make “Assumption 2”:

P Rt = 1 Ot − 1, Yt, At = 1 > 0, ∀t with probability one

Let λt Ot − 1, Y t; αt, γ  be a model for λt Ot − 1, Y t = P Rt = 1 Ot − 1, Y t, At = 1  with finite 

dimensional parameters αt and γ. The general functional form for λt Ot − 1, Y t; αt, γ  is given 

by equation (3), but with πt Ot − 1, Y t; αt, γ  replaced by λt Ot − 1, Y t; αt, γ . Note that if we 

assume that qt Ot − 1, Y t; γ = 0, we obtain the “mortal-cohort sequential explainability” 

assumption:

P Rt = 1 Ot − 1, Y t, At = 1 = P Rt = 1 Ot − 1, At = 1 , ∀t (8)

which correspond to sequential explainability (Vansteelandt et al., 2007)—the assumption 

that Rt is independent of Yt given Ot − 1—conditional on subjects being alive.

4.1 Inverse Probability Weighting

If Assumption 2 holds, the selection bias function and the sensitivity parameter are correctly 

chosen, and the model for λt(Ot − 1, Y t) is correctly specified, then the estimator αt that solves

∑
i = 1

n ϕt Oi, t − 1 Ait
λt Oi, t − 1, Yit; αt, γ

Rit − λt Oi, t − 1, Yit; αt, γ = 0, ∀t

where ϕt Ot − 1  is a function Ot − 1 that has the same dimension as αt, is consistent. 

Consequently, the estimator β that solves equations (4) is consistent.
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4.2 Conditional Mean Outcome Regression

As in Section 3.2, we can relate the expected outcome at visit t given Ot − 1 in survivors who 

are not observed at visit t to the expected outcome in survivors who are observed at visit t:

E Yt Ot − 1,Rt = 0, At = 1 =
E Ytexp qt Ot − 1, Yt Ot − 1, Rt = 1, At = 1

E exp qt Ot − 1, Yt Ot − 1, Rt = 1, At = 1

Let mt Ot − 1; θt  be a regression model for mt Ot − 1 = E Y t Ot − 1, Rt = 0, At = 1  with finite 

dimensional parameter θt. If the selection bias function and the sensitivity parameter are 

correctly chosen, and the model for mt Ot − 1  is correctly specified, then the estimator θ t that 

solves ∑i = 1
n AitRit exp qt Oi, t − 1, Y it  Y it − mt Oi, t − 1; θt dt Oi, t − 1 = 0, where dt Ot − 1

is a function of Ot − 1 that has the same dimension as θt, is consistent. Replacing the missing 

pre-death outcomes with their imputed values estimated from mt Ot − 1; θ t  and analysing the 

imputed data set using IEE will then give consistent estimates of β.

4.3 Augmented Inverse Probability Weighting

The AIPW estimators in VRR are attractive because the estimates of β are consistent as long 

as one of missingness model and regression model is correctly specified at each visit (i.e., if, 

for each t, either ht Ot − 1; αt  or mt Ot − 1; θt  is correctly specified) and the selection bias 

function and the sensitivity parameter are correct. To make partly conditional inference, we 

modify their doubly robust estimating equations to be the following:

∑
i = 1

n
∑

t = 1

J
Ait

∂μit
∂β

Rit
λt Oi, t − 1, Yit; αt, γ

Yit − μit + 1 −
Rit

λt Oi, t − 1, Yit; αt, γ
mt Oi, t − 1; θt − μit = 0

Note that, whereas the AIPW estimator for monotone missing data in Section 3.3 gives 

consistent estimation if the missingness models are correctly specified at all time points or 

the regression models are correctly specified at all time points, this AIPW estimator for non-

monotone missing data gives consistent estimation if at each time point, either the 

missingness model or the regression model is correctly specified.

4.4 Non-Monotone Missing Data When D Is Known

If D is known for all subjects in a study, it can be included in the missingness and/or the 

regression models. If this is done, Assumption 2 should be modified to

P Rt = 1 Ot − 1, Y t, D, At = 1 > 0, ∀t with probability 1 (9)

We define “fully conditional mortal-cohort sequential explainability” as the following 

modified version of equation (8):
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P Rt = 1 Ot − 1, Y t, D, At = 1 = P Rt = 1 Ot − 1, D, At = 1 , ∀t (10)

As discussed in Section 3.4, we could include D in the missingness or regression model to 

make fully conditional mortal-cohort sequential explainability more plausible.

5 Simulation Studies

We conducted two simulation studies to compare the methods. In each simulated data set, 

approximately 30% of outcomes were missing due to death, and approximately 25% of 

outcomes in those who are alive at each visit were missing. There were J = 5 biennial 

scheduled visits, and P(R1 = A1 = 1) = 1. Each simulation study was based on 1000 

simulated data sets of sample size n = 500, and our aim is to estimate

E Yt At = 1 = β1 + β2I t = 2 + β3I t = 3 + β4I t = 4 + β5I t = 5

In simulation one, data were monotone missing (“monotone study”) and in simulation two, 

data were non-monotone missing (“non-monotone study”).

X is a baseline variable with X ~ Normal(2, 4). Let U = |X|1.5. In both studies, the outcome 

Y1 was simulated from Y1 | X ~ Normal(5 − 0.1U,1), and vital status at each visit (t ≥ 2) was 

generated from logistic regression model, 

P At = 1 At − 1 = 1, Y t − 1, X = expit 1.5 + 0.15Y t − 1 − 0.05U . For t ≥ 2, outcome Yt in the 

monotone study was simulated from 

Y t Ot − 1, At = 1 ∼ Normal 5 − 0.2 ⋅ yeart − 0.1U + 0.05Y t − 1, 1 , and missingness was generated 

from P Rt = 0 Rt − 1 = 1, Ot − 1, Y t, At = 1 = expit −0.75 − 0.175Y t − 1 + 0.1U − 0.2Y t .

For t ≥ 2, outcome Yt in the non-monotone study was simulated from 

Y t Y t − 1, X, Rt − 1 = r, Rt − 2, At = 1 ∼ Normal 5 + αr ⋅ yeart − 0.1U + 0.05Y t − 1, 1 , where α0 = 

−0.4 and α1 = −0.2; missingness at each visit was generated from 

P Rt = 0 Ot − 1, Y t, At = 1 = expit 0.1 − 0.175Y t − 1
† + 0.1U − 0.2Y t , where Y t − 1

† = Y t − 1 if 

Yt−1 is observed and 0 otherwise.

Note that in both simulations, qt Ot − 1, Y t; γ = γY t with γ =−0.2. In the monotone study, the 

correct missingness and regression models include Yt−1 and U. In the non-monotone study, 

the correct missingness model includes Y t − 1
†  and U, and the correct regression model 

includes Rt−1, Y t − 1
†  and U. We show the double robustness of the proposed AIPW method in 

the monotone study by replacing U by X in the missingness or regression models at all 

visits, and in the non-monotone study by omitting U from the regression model at visit 4 and 

from the missingness model at visit 5.
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Table 2 shows the bias, empirical standard error and coverage of 95% confidence intervals 

from IPW, CMOR, and AIPW in the monotone study. Under correctly specified missingness 

and regression models, the parameter estimates from all three methods are nearly unbiased. 

When the regression models are correctly specified and the missingness models are not, 

AIPW provides nearly unbiased parameter estimates but IPW does not. Conversely, when 

the missingness models are correctly specified and the regression models are not, AIPW is 

nearly unbiased but CMOR is not. In our simulation, AIPW is at least as efficient as IPW 

when both the missingness and regression models are correctly specified.

Table 3 shows the biases, empirical standard errors, and coverages in the non-monotone 

study. Under correctly specified missingness and regression models, the estimates of β4 and 

β5 from all three methods are nearly unbiased. The IPW estimator of β5 is biased when the 

missingness model at visit 5 is misspecified, and similarly the CMOR estimator of β4 is 

biased when the regression model at visit 4 is misspecified. In contrast, the AIPW estimators 

of β4 and β5 are nearly unbiased when one of the missingness or regression models is 

misspecified, but not both. Again AIPW is at least as efficient as IPW when both models are 

correctly specified. Table 4 shows a sensitivity analysis in which γ is varied from 0 to −0.5. 

As expected, the results show that as the assumed value of γ deviates from its true value 

(−0.2), the bias increases (for all three methods).

In general, the variances of β4 and β5 are slightly underestimated by all three methods, due 

to slow convergence to the normal limiting distribution. This is reflected in the slightly lower 

coverage probabilities for β4 and β5. We see better results, in general, when n gets larger. In 

the non-monotone study, for example, the coverage probability for β5 in the IPW method 

was 91.6% when n = 500, but was 94.1% when n = 1000. Previous articles such as Shardell 

and Miller (2008) have also noted the robust variance estimates lead to undercoverage of 

confidence intervals at small sample sizes and that bootstrap provides better variance 

estimates. For this reason, we recommend using bootstrap to calculate standard error, as is 

done in the following analysis of the HRS data.

6 Application of Methods to HRS

The aim in this illustrative example is to understand how mean cognitive function given 

survival changes over time and how it depends on age, sex, and education. Researchers have 

previously classified adults older than 80 or 85 as the “oldest old” in various cohort studies 

(e.g., the Origins of Variance in the Old-Old, the English Longitudinal Study of Ageing, and 

the Survey of Health, Ageing and Retirement in Europe studies), and many have emphasized 

the importance of studying this group of subjects. As described by the National Institute of 

Ageing: “Over time, more older people survive to even more advanced ages. […] Because of 

chronic disease, the oldest old have the highest population levels of disability that require 

long-term care. They consume public resources disproportionately as well.” Hence, it is 

important to describe how cognitive function changes in the oldest old, as it is indicative of 

mental disability and therefore affects care requirements. Being able to estimate average 

cognitive function is important for making decisions about the allocation of care resources.
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We focus on adults who were 80 years or older in 2004, and the model of interest is that 

given by equation (1). We exclude subjects who entered the study after 2004 or died before 

2004 or had missing cognitive scores at all five visits. With the exception of 11 subjects, 

vital status is known at each scheduled visit time up to the end of the study. After 

additionally removing these 11 subjects, the number of subjects in our sample is 2616. 33% 

of the cognitive scores are missing due to death and 15% are missing due to other reasons. 

Among the outcomes of those who are alive at each visit, 3% are intermittent missing. To 

analyze these non-monotone missing data, we use the methods from Section 4. The first 

class of selection bias functions that we consider is {γYt : γ ∈ ℝ}. It is plausible that the 

residual association between Rt and Yt after adjusting for Ot − 1 is different in subjects who 

were observed at the last visit than in those who were not, since Ot − 1 includes Yt−1 for the 

first group but not for the second group. Hence we consider a second class of selection bias 

function: {γ1Rt−1Yt + γ2(1 − Rt−1)Yt : γ1, γ2 ∈ ℝ}.

We first consider the case where γ = 0 (or γ1 = γ2 = 0). This corresponds to the assumption 

that Ot − 1 sufficiently explains the reasons for missingness at visit t. Including D in the 

missingness or regression model makes this assumption more plausible in the HRS data, 

because people were more likely to miss a visit when they were near death. Hence, we let 

fully conditional mortal-cohort sequential explainability be a benchmark assumption, and 

perform sensitivity analysis to determine if the β parameter estimates are robust to 

deviations from this benchmark. The missingness and regression models for visit t include 

sex, education, Rt−1, observed Yt−1 (i.e., Rt−1Yt−1), baseline age, and D.

6.1 First Class of Selection Bias Function: {γYt : γ ∈ℝ}

Here, γ is the log odds ratio of missing a visit at t for subjects whose Yt = y compared to 

missing a visit at t for subjects whose Yt = y − 1, with Ot − 1 and D held constant:

exp γ =
P Rt = 0 Ot − 1, Yt = y, D, At = 1

P Rt = 1 Ot − 1, Yt = y, D, At = 1
/
P Rt = 0 Ot − 1, Yt = y − 1, D, At = 1

P Rt = 1 Ot − 1, Yt = y − 1, D, At = 1

Negative values of γ imply that those with lower cognitive scores are more likely to miss a 

visit than those with higher cognitive scores. We assume γ ≤ 0, because people with lower 

cognitive scores are likely to be more frail than people with higher cognitive scores and 

therefore more likely to miss a visit. As γ becomes increasingly negative, we would expect 

to see a decrease in the proportion of higher cognitive scores in the missing data, so that for 

extreme negative values of γ, all missing cognitive scores would be low. We consider a 

range of values for γ of [0, −0.3]. The rationale for this range is that in an exploratory 

analysis conditioning on sex, education, Rt−1, observed Yt−2 (i.e., Rt−2Yt−2), baseline age 

and D, the estimated log odds of missing a visit at times 4, 6, and 8 (i.e., visits 3, 4, and 5) 

per unit increase in observed Yt−1 were respectively −0.157, −0.166, and −0.145. Hence, we 

would also expect that those with worse cognitive function at visit t are more likely to be 

missing at visit t than those with better cognitive function at visit t. However, we also expect 

a stronger dependence of missingness at visit t on Yt than on Yt−1. Therefore we allowed γ 
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to be as low as −0.3, which is almost twice as big as the associations between the log odds of 

missingness at visit t and Yt−1. γ = −0.3 indicates that the odds of missing visit t is reduced 

by 26% if Yt = y instead of Yt = y − 1, with all other variables held constant. In the Web 

Appendix I, we show results for more extreme values of γ (up to −0.70).

6.2 Second Class of Selection Bias Function: {γ1Rt−1Yt + γ2(1 − Rt−1)Yt : γ1, γ2 ∈ ℝ}

Here, γ1 (respectively, γ2) is the log odds ratio of missing a visit at t for subjects whose Yt = 

y and Rt−1 = 1 (Rt−1 = 0) compared to subjects whose Yt = y − 1 and Rt−1 = 1 (Rt−1 = 0), 

with Ōt−1 and D held constant:

exp γ1Rt − 1 + γ2 1 − Rt − 1 =
P Rt = 0 Ot − 1, Yt = y, D, At = 1

P Rt = 1 Ot − 1, Yt = y, D, At = 1
/
P Rt = 0 Ot − 1, Yt = y − 1, D, At = 1

P Rt = 1 Ot − 1, Yt = y − 1, D, At = 1

Since Yt−1 and Yt are associated, when Yt is observed (i.e., Rt = 1) one can think of Yt−1 as 

“absorbing” part of the effect of Yt on Rt. So, when Rt−1 = 0, the residual effect of Yt on Rt 

may be greater than when Rt−1 = 1. Thus, we assume γ2 ≤ γ1 ≤ 0 and consider γ1 = {−0.2, 

−0.25, −0.3} and γ2 = cγ1, where c = {1.25, 1.5, 2}.

6.3 Results

The parameter estimates and standard errors from the first selection bias function are shown 

in Table 5. In general, the parameters associated with t (βt, βtage, βtsex) were sensitive to the 

choice of γ. First, βt ranged from −0.125 (p = 0.32; γ = 0) to −0.245 (p = 0.05; γ = −0.3) in 

IPW, and from −0.118 (p = 0.35; γ = 0) to −0.208 (p = 0.09; γ = −0.3) in AIPW. Hence in 

IPW and AIPW, when the association between Rt and Yt given Ot − 1 and D is stronger, the 

downward linear trend in the mean is bigger. Second, βtage ranged from −0.030 (p < 0.001; 

γ = 0) to −0.018 (p = 0.08; γ = −0.3) in IPW, and from −0.026 (p = 0.002; γ = 0) to −0.018 

(p = 0.03; γ = −0.3) in AIPW. Hence in IPW and AIPW, when the association between Rt 

and Yt given Ot − 1 and D is stronger, the difference between the rates of change over time in 

mean outcome given survival in old and young subjects is smaller. Third, βtsex ranged from 

−0.101 (p = 0.11; γ = 0) to −0.206 (p = 0.001; γ = −0.3) in IPW, from −0.037 (p = 0.43; γ = 

0) to −0.100 (p = 0.09; γ = −0.3) in CMOR, and from −0.105 (p = 0.08; γ = 0) to −0.157 (p 

= 0.006; γ = −0.3) in AIPW. Hence, when the association between Rt and Yt given Ot − 1
and D is stronger, the difference between the rates of change over time in mean outcome 

given survival in males and females is bigger.

Table 5 shows that for values of γ between −0.2 and −0.3, qualitative conclusions from IPW, 

CMOR, and AIPW did not differ much. AIPW (e.g., when γ = −0.25) suggests that, 

controlling for other variables, i) the older a person is at recruitment, the worse their initial 

cognitive function is βage = − 0.325, p < 0.001 ; ii) the more education a person has, the 

better their initial cognitive function is βedu = 0.730, p < 0.001 ; and iii) the change over time 

in mean cognitive function given survival is greater in the group who are older at recruitment 
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or are female than in the group who are younger βtage = − 0.018, p = 0.03  or male 

βtsex = 0.153, p = 0.006 .

In Web Appendix I, Table 2 shows results for more extreme values of γ, and Table 3 shows 

results from using the second selection bias function. In both tables, the results are not much 

different from those presented above (when γ is between −0.2 and −0.3), although they do 

differ slightly for the most extreme values of γ and c. This can be seen in βt (Table 2) when 

γ = −0.70, and in βt and β
t2

 (Table 3) when c = 2. Since the extreme values are less 

probable, the first selection bias function is likely sufficient.

While the partly conditional model provides a description of how mean cognitive function in 

survivors depends on time and covariates like sex and education, it does not explain why 

these dependences arise. They could arise from multiple causes: differing initial outcomes in 

different types of subject; changes in outcome within subjects over time; and, importantly, 

differing hazards of death in different types of subject. For example, an association between 

being a woman (respectively, being older) and a faster decrease over time in mean outcome 

given survival could be partly due to mortality being higher in women (older subjects) with 

good cognitive function than in men (younger subjects) with good cognitive function. Thus, 

the outcome and death processes are interlinked. No single estimand can fully describe both 

processes simultaneously. For this reason, to better understand why dependencies arise, it 

could be of interest to supplement the results from a partly conditional model with estimates 

from a model for the hazard of death, as we show in Web Appendix I. In brief, the estimates 

from the supplementary survival analysis of the HRS data indicate that we can likely rule out 

differing hazards of death as one of the reasons for these dependencies.

7 Discussion

We have described several semi-parametric methods (IPW, CMOR, and AIPW) to make 

partly conditional inference for non-ignorable missing data. As in RRS and VRR, our 

methods use a tilt function that relates the distribution of an outcome at visit t among those 

who were last observed at some time before t to those who were observed at visit t. Unlike 

RRS and VRR, we distinguish between death and other types of missingness, and make 

partly conditional inference. We have demonstrated the validity of the proposed methods in 

simulation studies, and illustrated our method using data from the HRS.

There are many options for the parametrization of the selection bias function qt Ot − 1, Y t; γ .

Some authors argue that it is useful to elicit expert’s opinion about plausible selection bias 

functions (Rotnitzky et al., 2001; Shardell et al., 2010). Scharfstein et al. (2003) and 

Scharfstein et al. (2014) propose to use a low-dimensional parametrization of the selection 

bias function. They argue that a low dimension offers a more meaningful way for experts to 

encode their beliefs about the missingness process than a higher dimension. That is, it is 

desirable to restrict attention to a simple class of functions, so that the selection bias function 

is easily interpretable. As described in Scharfstein et al. (2003), “the aim is not to find the 

truth about this function, but to report an analysis which reasonably reflects an expert’s 
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beliefs about selection bias.” In our data analysis, we used qt Ot − 1, Y t; γ = γY t; this was also 

used by Shardell et al. (2010) and Scharfstein et al. (2014). We also used 

qt Ot − 1, Y t; γ = γ1Rt − 1Y1 + γ2 1 − Rt − 1 Y t, but obtained similar results.

Once the parametrization of qt Ot − 1, Y t; γ  has been chosen, it is important to choose a 

plausible range of values for the sensitivity parameter. For example, the values can be 

selected based on experience from another similar data set analysis. When this is not 

possible, it might be useful to elicit expert opinion. See White (2014) for a comprehensive 

overview of this. Scharfstein et al. (2014) advise to compare the estimated average outcome 

among those who have dropped out with the observed average outcome among those who 

have not for different choices of γ. This allows experts to assess the plausibility of these 

imputed outcomes, and hence judge the plausibility of the sensitivity parameter value. In our 

HRS data analysis, we considered two simple selection bias functions, so that the magnitude 

and sign of the sensitivity parameter(s) were easy to interpret.

Alternatively, one could perform a “tipping point” analysis to investigate what values of the 

sensitivity parameter substantially change the conclusions about the statistical significance 

of the parameters of interest. Liublinska and Rubin (2014), for example, graphically 

illustrate an “enhanced tipping point” analysis for binary outcomes in combination with 

imputation procedures for the missing data.

Finally, although the AIPW estimators are doubly robust, they can be inconsistent when the 

missingness and regression models are both misspecified. Recently Vermeulen and 

Vansteelandt (2015) described how to estimate the parameters of these two models in a way 

that minimises the squared asymptotic bias of the doubly robust estimator even when both 

models are misspecified. It may be possible to adapt this method for our AIPW estimators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Analysis of HRS data using IEE and LMM

IEE LMM

Param. Estimate SE p-value Estimate SE p-value

Int 11.959 0.521 0.00 12.078 0.493 0.00

t −0.050 0.135 0.71 −0.261 0.112 0.02

t2 −0.018 0.008 0.02 −0.041 0.006 0.00

Age −0.312 0.025 0.00 −0.312 0.024 0.00

Sex   0.034 0.198 0.86   0.059 0.199 0.77

Edu   0.696 0.030 0.00   0.678 0.028 0.00

t·age −0.011 0.008 0.14 −0.036 0.006 0.00

t·sex   0.006 0.049 0.90 −0.069 0.042 0.09

t·edu −0.014 0.007 0.05   0.003 0.006 0.56
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Table 2

Simulation results for the monotone study with n=500 and true parameters β1 = 4.1843, β2 = −0.0877, β3 = 

−0.4225, β4 = −0.7836, β5 = −1.1552. Bias and empirical standard error (SE) are multiplied by 100. CP 

denotes coverage probability.

Param. Misspecified models

IPW CMOR AIPW

Bias SE CP Bias SE CP Bias SE CP

β2 None 0.15 7.57 95.2 −0.04 7.42 95.6 0.15 7.57 95.2

Missingness 6.49 7.59 86.1 −0.04 7.42 95.6 0.03 7.47 95.7

Regression 0.15 7.57 95.2 8.05 7.46 82.8 0.32 7.62 95.3

All 6.49 7.59 86.1 8.05 7.46 82.8 6.49 7.59 86.1

β3 None 0.83 11.27 90.9 −0.24 8.98 94.5 −0.03 9.55 93.1

Missingness 10.30 9.37 79.0 −0.24 8.98 94.5 −0.12 9.11 94.1

Regression 0.83 11.27 90.9 12.39 8.76 71.4 0.86 10.54 92.6

All 10.30 9.37 79.0 12.39 8.76 71.4 10.09 9.04 79.6

β4 None 1.46 14.67 89.8 −0.55 10.72 95.3 −0.17 11.86 93.8

Missingness 11.90 10.91 77.4 −0.55 10.72 95.3 −0.53 10.99 94.8

Regression 1.46 14.67 89.8 14.39 10.24 69.8 1.43 13.85 92.5

All 11.90 10.91 77.4 14.39 10.24 69.8 11.57 10.66 78.4

β5 None 2.59 16.63 90.5 −0.35 11.95 93.6 −0.03 13.85 94.3

Missingness 13.30 12.25 78.6 −0.35 11.95 93.6 −0.29 12.31 95.5

Regression 2.59 16.63 90.5 16.12 11.15 67.8 2.69 15.82 93.0

All 13.30 12.25 78.6 16.12 11.15 67.8 12.97 11.90 80.6

Note: For β1: (bias×100, SE×100, CP) = (0.40, 5.91, 95.0) in all methods.
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Table 3

Simulation results for the non-monotone study with n=500 and true parameters β4 = −1.2353, β5 = −1.8086. 

Bias and empirical standard error (SE) are multiplied by 100. CP denotes coverage probability. 

m4(O3), h5(O4)  represents misspecification in the outcome regression model at visit 4 and misspecification in 

the missingness model at visit 5.

Param. Misspecified models

IPW CMOR AIPW

Bias SE CP Bias SE CP Bias SE CP

β4 Neither 0.79 11.98 92.6 0.66 11.48 94.6 0.72 11.86 93.1

m4(O3), h5(O4) 0.79 11.98 92.6 13.28 11.09 73.9 0.87 11.87 92.8

All 13.79 11.05 75.9 13.28 11.09 73.9 13.74 11.06 74.2

β5 Neither 1.35 14.00 91.6 0.95 13.37 93.3 1.11 13.62 92.2

m4(O3), h5(O4) 12.83 12.67 81.2 0.95 13.37 93.3 0.95 13.38 93.3

All 12.83 12.67 81.2 12.15 12.79 79.1 12.77 12.67 79.5
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Table 4

Sensitivity analysis for the non-monotone study with n=500 and true parameters β1 = 4.1843, β2 = −0.0877, 

β3 = −0.6753, β4 = −1.2353, β5 = −1.8086. Bias and empirical standard error (SE) are multiplied by 100. CP 

denotes coverage probability.

IPW CMOR AIPW

Parameter Bias SE CP Bias SE CP Bias SE CP

      γ = 0

β2 7.31 8.29 85.9 7.24 8.09 85.6 7.31 8.29 85.9

β3 7.96 10.04 84.5 8.12 9.44 86.0 7.76 10.05 85.5

β4 8.90 11.68 86.2 8.71 11.15 86.4 8.43 11.58 86.1

β5 10.53 13.78 83.7 9.39 13.16 85.9 9.21 13.42 85.4

      γ = −0.1

β2 4.21 8.28 92.3 4.02 8.09 93.2 4.21 8.28 92.3

β3 4.28 10.10 91.2 4.33 9.50 92.7 4.15 10.10 91.2

β4 4.83 11.80 90.2 4.67 11.28 91.6 4.57 11.70 91.3

β5 5.93 13.86 88.8 5.15 13.23 91.5 5.15 13.49 90.0

      γ = −0.3

β2 −1.97 8.35 94.4 −2.36 8.20 94.4 −1.97 8.35 94.4

β3 −3.03 10.35 93.4 −3.17 9.82 94.1 −3.03 10.32 93.5

β4 −3.22 12.20 92.3 −3.31 11.74 93.7 −3.10 12.06 92.8

β5 −3.17 14.21 91.6 −3.21 13.59 93.6 −2.91 13.82 92.3

      γ = −0.4

β2 −5.05 8.44 89.9 −5.52 8.31 89.4 −5.05 8.44 89.9

β3 −6.66 10.53 89.4 −6.85 10.05 90.0 −6.57 10.48 89.0

β4 −7.20 12.47 89.0 −7.20 12.05 89.7 −6.88 12.31 88.9

β5 −7.64 14.49 88.0 −7.29 13.89 90.2 −6.89 14.08 90.2

      γ = −0.5

β2 −8.11 8.57 83.6 −8.65 8.46 83.7 −8.11 8.57 83.6

β3 −10.24 10.75 81.9 −10.45 10.32 83.1 −10.07 10.68 82.4

β4 −11.12 12.79 83.2 −11.01 12.41 84.5 −10.60 12.60 84.3

β5 −12.04 14.83 82.1 −11.29 14.25 84.1 −10.81 14.39 83.6

Note: For β1: (bias×100, SE×100, CP) = (0.01, 5.78, 94.5) in all methods (and γ).
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