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Anthropogenic climate change has driven over
5 million km2 of drylands towards desertification
A. L. Burrell 1,2✉, J. P. Evans 3,4✉ & M. G. De Kauwe3,4,5

Drylands cover 41% of the earth’s land surface and include 45% of the world’s agricultural

land. These regions are among the most vulnerable ecosystems to anthropogenic climate and

land use change and are under threat of desertification. Understanding the roles of anthro-

pogenic climate change, which includes the CO2 fertilization effect, and land use in driving

desertification is essential for effective policy responses but remains poorly quantified with

methodological differences resulting in large variations in attribution. Here, we perform the

first observation-based attribution study of desertification that accounts for climate change,

climate variability, CO2 fertilization as well as both the gradual and rapid ecosystem changes

caused by land use. We found that, between 1982 and 2015, 6% of the world’s drylands

underwent desertification driven by unsustainable land use practices compounded by

anthropogenic climate change. Despite an average global greening, anthropogenic climate

change has degraded 12.6% (5.43 million km2) of drylands, contributing to desertification

and affecting 213 million people, 93% of who live in developing economies.
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Land degradation is a systemic global problem1–4 but the
scale of the problem is disputed, with global estimates of
degraded areas ranging from <10 to >60 million km2 5.

Changes in vegetation in drylands are predominantly caused by
two factors: (i) anthropogenic climate change (ACC), which
includes both changes in water availability driven by trends in
precipitation and increases in temperature6,7, as well as increased
water use efficiency (carbon gain per unit of water lost) in
response to rising atmospheric CO2

8; and (ii) land use (LU)
practices, including grazing, cropping and deforestation2,9.
Unsustainable LU is considered the primary negative driver of
dryland degradation9–11. The impact of climate change (CC) on
drylands is also generally thought to be negative, with some
studies suggesting that anthropogenic forcing has already
increased arid areas12–14.

Despite evidence for LU-induced degradation and the studies
that find increased aridification over drylands, satellite estimates
of vegetation greenness (a proxy for net primary productivity
(NPP)) show a significant global increase since 198010. The key
drivers of this global increase in apparent vegetation productivity
are the vegetation’s response to rising CO2

8,15, increases in
rainfall and temperature16,17 and LU10. Model simulations which
prescribe LU, attribute almost all of the trend in satellite-derived
greening to CO2 fertilization15, while satellite-derived models that
do not account for CO2, explicitly find either climate or LU as the
dominate factor10,17. Neither approach explicitly accounts for
rapid ecosystem change (break points) in their proportioning of
the relative contributions of each driver. This can lead them to
miss or underestimate rapid changes driven by processes like
extreme fires, deforestation, reforestation, changes in agricultural
policy, etc.18–21. Disentangling the roles of climate (temperature
and precipitation), CO2 and LU thus remains a key challenge22

and has been identified as a key knowledge gap by the United
Nations Convention to Combat Desertification2 (UNCCD), the
Intergovernmental Panel on Climate Change23 (IPCC), and the
Intergovernmental Science–Policy Platform on Biodiversity and
Ecosystem Services3.

Here we quantified the scale of global desertification, which
both the UNCCD and IPCC define as degradation in arid, semi-
arid, and dry sub-humid areas23. These definitions further define
degradation as the long-term reduction or loss of biological
productivity among other things. Here we identify areas under-
going long-term reductions in vegetation in dryland areas, hence
the desertification according to relevant international conven-
tions, using the satellite-based GIMMSv3.1g Normalized Differ-
ence Vegetation Index (NDVI) data. We calculated the overall
vegetation change using a non-parametric trend analysis applied
to peak growing season NDVI (NDVImax). We then attributed
this change to CO2, climate variability (CV), CC, and LU using a
modified version of the Time Series Segmented Residual Trends
(TSS-RESTREND) method19,24. This approach quantifies the
effect of interannual CV as well as long-term changes in climate
and CO2 fertilization in addition to ecosystem break points
caused by LU (see “Methods”). To quantify uncertainties, we used
a 12-member ensemble made up of statistical model runs per-
formed using a combination of observation-based gridded data-
sets (four precipitation and three temperature datasets). We show
that 6% of dryland areas have undergone desertification since
1982 with a further 20% of dryland areas being at high risk of
future desertification as a result of unsustainable LU practices
and ACC.

Results and discussion
The extent and drivers of dryland vegetation change. Globally,
of the 44.5 million km2 of drylands, 6% of these areas experienced

desertification (i.e., significant negative change in NDVImax), 41%
showed significant greening (i.e., significant positive change), and
53% had no significant change between 1982 and 2015 (Fig. 1a).
The mean (±1 SD) of the area-weighted dryland vegetation
change, as represented by the change in NDVImax was 0.031 ±
0.053. We estimated the scale of desertification to be 2.70 million
km2, which is significantly below a previous estimate of ~10.5
million km2 over the same region, but over a different time
window (1982 and 2003)1. A large part of this discrepancy can be
attributed to climatic differences in the end dates of the studies
(2003 vs. 2015), with increased rainfall over regions including the
Sahel and India25,26. This large difference between our estimate
and this existing dryland degradation estimate highlights that
time-series vegetation trend analysis is sensitive to the start and
end conditions17,18. For this reason, understanding what is
driving the observed vegetation change is more important than
the current directions of vegetation change for projecting future
changes and vulnerabilities. It should also be noted that although
the amount of land we estimate to have experienced desertifica-
tion has decreased by ~70% between these two estimates, the
number of people impacted has only decreased by ~25% (250
million to 189 million)27.

Figure 1b shows that globally, CO2 fertilization was the largest
absolute attributed driver of dryland vegetation change in 44.1%
of areas, followed by LU (28.2%), CV (14.6%), and then CC
(13.1%). However, when averaged globally (Fig. 1c), the per-pixel
contribution of CO2 (0.021 ± 0.011) was much larger than the
contribution from CV (0.006 ± 0.020), CC (−0.002 ± 0.023), or
LU (0.005 ± 0.032). The relative contribution (67.8% CO2, −5.6%
climate, 15.5% LU) fall within the range of global estimates
calculated using a model based factor analysis (70.1 ± 29.4% CO2

fertilization, 8.1 ± 20.6% climate, 3.7 ± 14.7% LU)15, despite a
difference in the study domains. It should be noted here that
model based factor analysis did not quantify the role of CV15,
which we find accounts for 19.4% of the observed global dryland
greening between 1982 and 2015.

If only the global mean effect size is considered, climate and LU
seem to have a very small impact compared with CO2

fertilization, which seemingly contradicts well-documented
evidence of LU and climate impacts9,11,16,17,28, and the spatial
patterns shown in Fig. 1b. For example, a recent satellite-based
study, which did not consider the role of CO2, attributed 60% of
observed global land changes to LU activities and the remaining
40% to other factors including climate10. For comparison, we
repeated our ensemble analysis, removing the role of CO2

fertilization (Supplementary Fig. 1), and found that 60.4% of
global dryland vegetation change would have been attributed to
LU and 39.6% to CC and variability combined, which is
consistent despite a difference in the study domains and the
attribution methods (see Supplementary Text 1). This result
underlines the need to explicitly consider the positive role of CO2

as a driving mechanism for change in dryland ecosystems8. When
CO2 is included in the analysis, the mean effect of LU and climate
are small, because there are roughly equal areas of positive and
negative change that largely cancel out when averaged globally
(Fig. 1c, d), a result which holds even if we assume a different
level of vegetation response to elevated CO2 (Supplementary
Fig. 2). This means it is also important to consider the magnitude
of the different drivers (Fig. 1c).

The impact of anthropogenic climate change. Combining the
change due to CO2 fertilization and CC provides a quantification
of the role of ACC in recent desertification (Fig. 2a). Globally, we
found that ACC had a positive (greening effect) over the study
period (NDVImax: 0.019 ± 0.027). Although broadly positive,
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ACC also had a desertifying effect across 12.55% (5.43 million
km2) of drylands areas. Hotspots where ACC had a desertifying
effect include parts of the western United States, eastern Brazil,
Iraq, Syria, Jordan, Kazakhstan, Uzbekistan, Mongolia, and

Australia. Crucially, the negative effects of ACC are dis-
proportionately felt by poorer nations with 85% of the 213.4
million people impacted living in developing or newly indus-
trialized countries. However, a negative ACC forcing does not
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guarantee an area experienced desertification (Fig. 3a). Only
13.8% (0.75 million km2) of areas with a negative ACC forcing,
experienced significant desertification (αFDR= 0.10) and in only
2.27% (0.015 million km2) of the areas experiencing desertifica-
tion, did we find that climate was the sole negative driver.

Drivers of desertification. In the 2.70 million km2 of drylands
that experienced desertification, a negative LU component was
the primary driver in 79.9% and a contributing factor across
99.0% of areas (Fig. 2b). Even though the average impact of CC
(NDVImax: −0.004 ± 0.030) and CV (−0.002 ± 0.024) are much
smaller than LU (NDVImax: −0.040 ± 0.034), climate remains an
important driver of desertification. Ecosystems that are experi-
encing reduced water availability or drought conditions are much
more vulnerable to degradation from LU and vice versa, with the
negative effects compounding7. For example, over parts of Cen-
tral Asia we observed negative changes in both CC and LU
(Fig. 4), which is consistent with the strong evidence of long-term
degradation driven by unsustainable LU practices resulting in the
well-documented Aral Sea disaster26. Similarly, the negative
impacts of decreased rainfall over the semi-arid Caatinga forest of
Brazil has amplified the effects of widespread deforestation and
grazing intensification. The decrease in rainfall in South America
results from both CC (mean precipitation anomaly 1982–2015 ≈

−0.2) as well as a negative phase of CV (mean precipitation
anomaly ≤ 0 and mean temperature anomaly ≥ 0) from 2009 to
2014 (Supplementary Figs. 3 and 4). For further discussion of
these regions and comparison with regional studies, see Supple-
mentary Text 2.1. In addition to the drylands experiencing
desertification, there are additional 12.0 million km2 and 507
million people, living in areas where the desertifying effect of LU
has been offset by a positive ACC signal (Fig. 3). These regions,
along with the 7.2% of areas with a negative CC, but no sig-
nificant vegetation change, are at the highest risk of future
desertification.

Drivers of dryland greening. We also observed widespread
global greening, with 18.0 million km2 of drylands having a sig-
nificant positive vegetation change (Fig. 1a). CO2 was the largest
driver of this change (Figs. 1b and 2b), in line with previous
findings of a dominant CO2 fertilization effect on global vegeta-
tion greening8,15. Where our results differ from previous findings
is in highlighting the importance of LU and CV. Unlike model
based approaches which prescribe LU15 and have large variability
in the simulated response of vegetation to climate29, our approach
empirically determines the impact of climate and LU on a per-
pixel basis using observations. In the regions that experienced
greening, we find that CO2 was the largest attributed driver in
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~40% of areas followed closely by LU (~38%), CV (~13%), and
CC (~8%). The importance of CV and LU is especially apparent
when considering regional drivers, with one or both playing a
large role in the observed greening in the Sahel, India, China and
Australia (Figs. 3c and 4, and Supplementary Discussion 2.2).

We used an ensemble approach to minimize the uncertainty
caused by observational datasets and structural change detection
to account for the ecosystem break points driven by processes like
deforestation observed in ~20% of areas (Supplementary Fig. 5).
Our estimate of the total attributable change (CO2+ LU+ CC+
CV) varied from the observed vegetation change by only 3% and
when mapped spatially, the observed vegetation change and the
total attributable change show very consistent patterns of
greening and browning (Supplementary Fig. 6). Furthermore,
our greening attribution results are consistent with regional
studies done in the Sahel, India, China, and Australia (Supple-
mentary Discussion 2.2).

In summary, understanding the causes of dryland degradation
is an important and necessary step in targeting mitigating action
that can reduce the impact of CC and prevent widespread
desertification. Our change detection and attribution approach
highlights the importance of accounting for the role of CO2 and
accurately quantifying the impact of LU when considering
potential drivers of change in dryland ecosystems. Our results
show that, despite widespread vegetation greening, 6% of areas
that have undergone desertification mostly over western Asia and
South America. This desertification directly effects 190 million
people. In addition, we showed that unsustainable LU practices or
ACC has placed 20% of drylands at high risk of desertification.
This impacts 580 million people with the risk experienced
disproportionately by low socioeconomic countries. Overall, our
results highlight the importance of understanding what is driving
the vegetation change for projecting impacts, because without this
understanding there is a high risk that mitigation strategies will
fail to prevent desertification.

Methods
Quantifying desertification. There is no universally agreed upon definition of
desertification5,23,30. Here we use the UNCCD definition of land degradation,
which is a reduction or loss of the biological or economic productivity resulting
from various factors, including climatic variations and human activities, with
desertification being any land degradation in dryland ecosystems2. Drylands are
defined by the UNCCD to be areas with an Aridity index < 0.05 or >0.652. His-
torically, this has been measured using a linear trend applied to a satellite-derived
vegetation proxy1. In this study, we used the growing season maximum NNDVI
(NDVImax) as a proxy of vegetation growth. For most regions, peak growing season
NDVI was determined using the maximum value in a calendar year. However,
pixels where peak the occurred in December, the January and February NDVI
values of the subsequent year are considered part of the previous year’s growing
season.

NDVImax has been found to have a highly significant correlation with NPP in a
large range of different dryland ecosystem31–33. The Desertification chapter of the
2019 IPCC report on CC and LU both, the UNCCD definition of desertification,
and NDVImax as a proxy of vegetation growth23. It should be noted that the
UNCCD definition of desertification and the trend in vegetation data used to
measure it will not identify processes such as shrub encroachment, over
intensification of agriculture, or the invasions by non-native species, which have
been linked to degradation but can cause increases in proxies such as NDVI23,30,34.

To produce a comparable estimate of desertification, we used a per-pixel non-
parametric trend method (Theil–Sen slope estimator and Spearman’s ρ significance
test), applied to the satellite-derived GIMMSv3.1g NDVImax dataset35. The global
dryland vegetation change (Obs) was calculated as the difference between the
expected values (E) at the start (1982) and the end (2015) of the time series
ðObs ¼ E2015 � E1982Þ. It should be noted that this is identical to multiplying the
annual trend by the length of the time series, in this case 34 years. We report all
variables using the difference between expected values at the start and end of the
time series (ΔNDVImax) rather than an as an annual trend to account for the
ecosystem break points that are detected in some locations in the middle of the
time series.

This study used version 3.1 of the 1/12° Global Inventory for Mapping and
Modeling Studies (GIMMS)35 NDVI dataset, which spans 1982–2015. Although
the shorter temporal but higher spatial resolution datasets from newer sensors such

Moderate Resolution Imaging Spectroradiometer (MODIS) do offer advantages,
the shorter temporal record poses a serious issue in dryland ecosystems. The
natural variability in dryland ecosystems is greatly impacted by decadal climate
modes the most significant of which is El Niño Southern Oscillation (ENSO)36,37.
The intensity of ENSO events varies significantly and since 1980 there have been
three extreme El Niño (1982, 1997, and 2015) events that significantly impacted
dryland regions around the world38. Even with its almost 20-year record, MODIS
has only captured one of these events (2015) compared with the three present in
GIMMS record. It is for this reason that GIMMS remains the most widely used
dataset for vegetation trend detection and attribution studies15.

Accounting for the CO2 fertilization effect. To attribute the change in NDVI to
the CO2 effect on plant productivity between 1982 and 2015, we used a theoretical
relationship that links the increase in photosynthesis to increasing CO2

39 (Eq. 1).

GPPðrelÞ �
ca � Γ*
� �

ca0 þ 2Γ*
� �

ca þ 2Γ*
� �

ca0 � Γ*
� �

" #

ð1Þ

where GPP(rel) is the relative CO2 assimilation rate (%), ca is the atmospheric CO2

concentration (µmol mol−1), and Γ* is the CO2 compensation point in the absence
of dark respiration (µmol mol−1). We set ca0 to the CO2 concentration in 198040

(~339 µmol mol−1) and Γ*= 40 (µmol mol−1).
Franks et al.39 argued that the longer term response of plants to increasing CO2

follows the ribulose 1,5-bisphosphate regeneration-limited rate (see also McMurtrie
et al.41). Accordingly, this relationship implies a conservative response to CO2 (as
plants may actually follow the Rubisco-limited rate when calculated on a
intercellular CO2 concentration (Ci) basis during the period of 1982–201542) and
ignores any indirect effects (i.e., increased water availability due to stomatal closure,
which may extend the growth period in drylands, or interactions with seasonal
rainfall43). This approach has previously been advocated as a plausible assumption
to correctly estimate gross primary productivity (GPP) using satellite light-use
efficiency models44. We then assume that there has been no change in ratio of GPP
to autotrophic respiration (Ra) during this period (1982–2015) and, as a result, the
relative change in GPP equates to the relative change in NPP based on Eq. 1.
During the period 1982–2015, global air temperatures have risen, which may have
led to an increase in Ra45. However, increasing temperature has also increased
carbon uptake, and both GPP and Ra have been shown to acclimate to the
prevailing temperatures46,47, meaning that it does not necessarily follow that the
GPP : Ra ratio has changed.

We apply the nonlinear CO2 relationship (Eq. 1) to the raw NDVI data
(NDVIobs) to produce a scaled NDVI estimate (NDVIadj) that excludes the CO2

fertilization effect using Eq. 2 to relate the relative change in NPP to a relative
change in NDVI.

NPPobs

NPPbase
� NDVIobs

NDVIadj
ð2Þ

where NPPobs is the NPP at the observed atmospheric CO2 concentration (ca),
NPPbase is the NPP given the same climate conditions but an atmospheric CO2

concentration of ca0, NDVIobs is measured NDVI value, and NDVIadj NPP given
the same climate conditions but an atmospheric CO2 concentration of ca0.
Equation 2 was used to calculate a NDVIadj value for every in the full NDVIobs time
series with the atmospheric CO2 concentrations taken from the IPCC historical
forcing data40. This approach assumes that NPP and NDVI are linearly related: ..
where b ≈ 0 and m varies spatially. The linear relationship between NPP and NDVI
has been observed with both field estimates of NPP31,32,48 and estimates of NPP
derived from remote-sensing platforms1,49,50. However, this assumption of
linearity breaks down in densely vegetated regions where NDVI saturates and in
biomes with very low above-ground biomass, where the spectral characteristics of
the bare soil influences NDVI values51,52. As we have excluded hyper-arid and
non-water-limited ecosystems, which is a standard practice for studies on
desertification (for more information, see ref. 23), we expect this assumption of
linearity to be robust for our analysis (areas with Aridity index < 0.05 or >0.65 are
masked from analysis).

The change in vegetation (ΔNDVImax) attributed to the CO2 fertilization effect
was calculated by first taking the difference between peak growing NDVI with and
without CO2 fertilization effect (NDVIobs−NDVIadj). Similar to the calculation of
the observed ΔNDVImax, the non-parametric Theil–Sen slope estimator and
Spearman’s ρ test for significance was then applied to these values. A time-series
plot of the mean global NDVIobs and NDVIadj is shown in Supplementary Fig. 7 to
highlight temporal nature of this attribution.

Determining the impact of climate and land use. After the NDVI was scaled to
remove the CO2 effect using the relationship from Franks et al.39, a statistical
approach was used to attribute the change in NDVIadj to climate (both CV and CC)
and LU. We used the recently developed TSS-RESTREND method, which allows
vegetation changes due to LU to be separated from those driven by CC and
variability19,24,53.

Dryland ecosystems have large natural interannual CV. To separate the impact
of climate and LU, previous studies have generally fitted a statistical relationship
between climate and vegetation, then used the trends in that relationship or its
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residuals to quantify LU impacts54,55. However, LU can have both a gradual impact
on vegetation through processes such as grazing, which are captured by these
methodologies54,56, and abrupt impact through processes such as deforestation,
which cause these methods to break down18.

TSS-RESTREND differs from existing dryland trend attribution methods in that
it is able to capture both the long-term trends and the step changes in NDVI that
occur in regions where ecosystems have experienced significant structural
changes19. To do this TSS-RESTREND incorporates a phenological change
detection method57 to identify structural changes in the ecosystem, which manifest
as break points in the NDVI time series. We used TSS-RESTREND v2.15, which
has been updated to use both precipitation and temperature24, to calculate the
Vegetation Climate Relationship (VCR) using the per-pixel optimal precipitation
and temperature accumulation periods19,24. TSS-RESTREND was applied to the
NDVIadj, with the LU driven component calculated using an ordinary least squared
regression between the residuals of the VCR and time, accounting for any detected
structural changes to the ecosystem. A similar approach was presented by the
IPCC23, although that approach does not separate CC from CV and also assumes
that all dryland plants follow a C3 photosynthetic pathway.

Separating climate change and climate variability. The TSS-RESTREND
method separates the effects of LU from the combined effects of climate (variability
and change) using VCR. To separate the effect of CC and CV, the observed
climatology (the per-pixel accumulated precipitation and temperature data) was
calculated for the period 1962 to 2015. A 20-year leading edge smoothing window
was then applied to this observed climatology to remove the interannual CV. The
long-term trend caused by CC was determined using the Theil–Sen slope esti-
mator58 applied to the smoothed data and the results were used to detrend the
observed climatology.

Using the per-pixel VCR, the total climate driven NDVI (NDVICL) and the
NDVI due to CV (NDVIcv) were calculated using the observed climatology and
detrended climatology, respectively. The difference between NDVICL and NDVICV
is the change in NDVImax attributable to CC (NDVICC). The non-parametric
Theil–Sen slope estimator and Spearman’s ρ test for significance was then applied
to NDVICV and NDVICC to get the change attributable to CV and CC, respectively.
The influence of Other Factors (OF), which could not be modeled, was calculated
using OF ¼ Obs� ðCO2 þ LUþ CVþ CCÞ.

When discussing regional drivers of vegetation change in the main text and in
Supplementary Discussion 2, we report the mean climate anomaly rather than the
accumulated precipitation and temperature values to allow comparison of different
accumulation and offset periods of different pixels. For the observed accumulated
precipitation and temperature, the anomaly was calculated on a per-pixel basis
using:

zn ¼ xn � μobs:
σobs:

ð3Þ

where z= anomaly, n is the year, x= observed value, μ=mean of the per-pixel

accumulated precipitation or temperature, σ= SD of the per-pixel accumulated
precipitation or temperature. The temperature and precipitation anomaly
attributed to CC was calculated using:

zn ¼ β ´ ðn� n0Þ
σobs:

ð4Þ

where β is the per-pixel trend in accumulated precipitation or temperature, n0 is
the first year of the analysis (1982). The temperature and precipitation anomaly
attributed to CV was calculated using:

zn ¼ xðadjÞn � μobs:
σobs:

ð5Þ

where x(adj) is the detrended precipitation or temperature. Regional breakdowns of
the time series of observed, CC- and CV-driven precipitation and temperature
anomaly are shown in Supplementary Figs. 3 and 4, respectively.

Calculating the impact of Anthropogenic Climate Change. In this study, we use
the term ACC to refer to both changes in water availability driven by trends in
precipitation and increases in temperature14,23, as well as increased water use
efficiency (carbon gain per unit of water lost) in response to rising atmospheric
CO2

8,15. The impact of ACC) is calculated using ACC=CO2+ CC. Although we
acknowledge that this considering CO2 fertilization and CC together is not com-
mon in the literature, these two things are aspects of the same anthropogenic cause;
hence, we have reason to discuss them together. It should be noted that although
the methodology used in this study is able to capture the effects of other anthro-
pogenic greenhouse gases like methane in the CC component, we cannot separately
quantify any direct impact that changes in the amount of these gasses will have on
vegetation.

Accounting for dataset uncertainties and different photosynthetic pathways
(C3 vs. C4). Burrell et al.53 showed that using an ensemble of TSS-RESTREND
runs using different climate datasets improves the accuracy and minimizes the
impact of errors and biases in the individual datasets. Climate data are relatively
poorly sampled in dryland regions, which can amplify the documented dis-
crepancies between different datasets59,60 We used two 12-member ensembles with
matched runs made using TSS-RESTREND analysis performed using every com-
bination of four precipitation and three temperature datasets (see Table 1 for
details). The first ensemble assumes all plants are C3 and respond to elevated CO2,
and the second ensemble assumes all plants are C4 with no eCO2 response (see
Supplementary Figs. 1 and 2).

A third 12-member ensemble, which accounts for the relative fraction of C3 and
C4 plants, were calculated by taking the weighted mean of matched runs in
ensemble one and two where the weights were the per-pixel fractions of C3 and C4
plants. Estimates of the relative fraction of C4 present in each pixel were derived
from the matching 0.5° pixel in the North American Carbon Program (NACP)
Global C3 and C4 SYNergetic land cover MAP (SYNMAP)61. The p-values for each

Table 1 Table of gridded datasets.

Dataset Description References

Vegetation
Global Inventory for Mapping and Modeling Studies (GIMMSv3.1 g) NDVI, 15 day at 1/16° aggregated to monthly using the max

of the valid values

35

Precipitation
University of East Anglia Climate Research Unit TS v. 4.01 (CRU4p) Precipitation, monthly at 0.5° 72–76

The Climate Hazards group Infrared Precipitation with Stations v2.0
(CHIRPS)

Precipitation, monthly at 0.05° 77,78

Multi-Source Weighted-Ensemble Precipitation (MSWEP) Precipitation, daily at 0.25° 79

TerraClimate Precipitation, monthly at 1/24° 80

Temperature
University of East Anglia Climate Research Unit TS v. 4.01 (CRU4T) Temperature, monthly at 0.5° 66–70

TerraClimate Temperature, monthly at 1/24° 80

National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center (CPC)

Temperature, daily at 0.5° 81

Additional datasets
TerraClimate Potential Evapotranspiration (PET) used for the calculation

of Aridity index (P/PET)

80

Global change in net primary productivity (1981-2003), data from the
Food and Agriculture Organization (FAO)

Change in NPP from 1982-2003 1

Gridded Population of the World version 4 (GPWv4) Gridded Population data 27

United Nations Development Programme Human Development
Index (HDI)

National HDI 82

North American Carbon Program (NACP) Global C3 and C4 SYNergetic
land cover MAP (SYNMAP)

C3/C4 vegetation fraction 61

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17710-7

8 NATURE COMMUNICATIONS |         (2020) 11:3853 | https://doi.org/10.1038/s41467-020-17710-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ensemble member were combined using the same weights and the Stouffer’s Z-
score method. All the results presented in the main paper are from this C4 adjusted
ensemble.

We make the assumption that in dryland ecosystems, precipitation controls the
amount of foliage cover. As a result, increases in water use efficiency with
increasing CO2 will lead to increases in foliage cover in plants that use the C3
photosynthetic pathway8 while plants that use the C4 photosynthetic pathway are
not expected to show this response62. Our assumption that C3 plant respond
strongly to increased atmospheric CO2, and that C4 plants do not respond, which
is consistent with theory and short-term CO2 enrichment experiments62. However,
recent surprising results from a long-term CO2 manipulation experiment in a
dryland ecosystem have shown much higher responses in C4 plants62. For this
reason, the results of both the C3 and C4 12-member ensembles are included in the
Supplementary Material for those interested parties (see Supplementary Figs. 1, 2,
8, and 9).

Determining statistical significance. For both Obs trend and CO2-driven change
in NDVI, the Spearman’s rank correlation co-efficient test was used to measure
statistical significance for each pixel63. In order to determine field significance and
account for the multiple testing problem the Benjamini–Hochberg procedure was
then applied to these p-values to control the false discovery rate (FDR) (αFDR=
0.10)64. As for the uncertainty in the approach we used to measure the CO2

fertilization effect, the C3 and C4 12-member ensembles included in the Supple-
mentary Material provide an estimate of the upper and lower bounds of CO2

responses (see Supplementary Figs. 1 and 2).
For LU, CV, and CC there are 12 members in each ensemble. The p-values of

these members were combined using the Fisher’s combined probability test and
then the Benjamini–Hochberg procedure was applied to these p-values to
determine statistical significance (αFDR= 0.10). In addition, we also applied the
IPCC protocol for determining ensemble significance and agreement65. For a pixel
to be significant under this protocol, >50% of ensemble members must find a
significant change (αFDR= 0.10) and, of those significant runs, >80% must agree on
the direction of change. If a pixel fails either the overall significance test or the
IPCC protocol, the estimate of that component is masked for that pixel. Similar
criteria have also been applied to ensemble breakpoint detection (>50% of runs
must find a significant breakpoint, 80% of which must be in a three-year window)
the results of which are included in supplementary material.

All the Climate datasets where interpolated from their native resolution to the
1/12° grid of the GIMMSv3.1 g datasets using the First-Order Conservative
Remapping66 in CDO67. Additional datasets where used to aid the interpretation
and discussion our results. All dataset where converted to the GIMMS grid to allow
for per-pixel comparison. To separate CC from CV, a 20-year leading edge moving
window was used where the value for a given year is the mean of the previous 20
years. For this reason, it was necessary to have climate data that goes back to 1960,
which not all datasets do. Those climate datasets with insufficient temporal record
were extended using TERRACLIMATE precipitation and temperature, and the
Delta Bias Correction method68.

Data availability
GIMMS NDVI data can be accessed using the gimms R-package [https://cran.r-project.
org/web/packages/gimms/] or on request to the dataset authors35. CRU climate data are
available from [http://data.ceda.ac.uk//badc/cru/data/cru_ts/] with the identifier [Dataset
DOI: http://doi.org/10/gcmcz5]. CHIRPS data can be accessed from [ftp://chg-ftpout.
geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/] with the identifier [https://doi.org/
10.1038/sdata.2015.66 2015]. The MSWEP climate data are available from [http://www.
gloh2o.org/] or on request to the dataset authors69. TERRACLIMATE data are available
from [http://www.climatologylab.org/terraclimate.html] with the identifier [https://doi.
org/10.1038/sdata.2017.191]. CPC temperature data can be accessed from [ftp://ftp.cdc.
noaa.gov/Datasets/cpc_global_temp/].

Code availability
The full per-pixel attribution method used in this paper is available in v0.3.0 of the TSS-
RESTREND R-package, which is available from [https://cran.r-project.org/web/packages/
TSS.RESTREND/index.html]. Scripts showing how to apply this method to spatial data,
calculate ensemble statistics, and produce maps can be accessed at [https://github.com/
ArdenB/TSSRESTREND]. Statistical tests were performed using the statsmodels python
package [https://www.statsmodels.org/] and the scikit-learn python package70. All maps
were produced using the Cartopy Python package71, which uses the public domain
datasets available from [http://www.naturalearthdata.com] for coastlines, rivers, and
national borders. All additional code related to batch processing is specific to the High
Performance Computing Environment used to perform the analysis but is available on
reasonable request to the authors.
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