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A next-generation newborn 
screening pilot study: NGS on 
dried blood spots detects causal 
mutations in patients with 
inherited metabolic diseases
F. Boemer   1, C. Fasquelle2, S. d’Otreppe3, C. Josse   2, V. Dideberg3, K. Segers3, V. Guissard4, 
V. Capraro4, FG. Debray5 & V. Bours6

The range of applications performed on dried blood spots (DBS) widely broadened during the past 
decades to now include next-generation sequencing (NGS). Previous publications provided a general 
overview of NGS capacities on DBS-extracted DNA but did not focus on the identification of specific 
disorders. We thus aimed to demonstrate that NGS was reliable for detecting pathogenic mutations 
on genomic material extracted from DBS. Assuming the future implementation of NGS technologies 
into newborn screening (NBS), we conducted a pilot study on fifteen patients with inherited metabolic 
disorders. Blood was collected from DBS. Whole-exome sequencing was performed, and sequences 
were analyzed with a specific focus on genes related to NBS. Results were compared to the known 
pathogenic mutations previously identified by Sanger sequencing. Causal mutations were readily 
characterized, and multiple polymorphisms have been identified. According to variant database 
prediction, an unexplained homozygote pathogenic mutation, unrelated to patient’s disorder, was 
also found in one sample. While amount and quality of DBS-extracted DNA are adequate to identify 
causal mutations by NGS, bioinformatics analysis revealed critical drawbacks: coverage fluctuations 
between regions, difficulties in identifying insertions/deletions, and inconsistent reliability of database-
referenced variants. Nevertheless, results of this study lead us to consider future perspectives regarding 
“next-generation” NBS.

Next-generation sequencing (NGS) has revolutionized the world of molecular diagnosis over the last decade. 
This technological evolution has allowed for the sequencing of millions of genomes and exomes, and the expo-
nential increase in related publications is proportional to the gradual decline in cost1. To date, the methodology 
has mainly been applied in clinical settings on high-quality DNA samples (whole blood) or on DNA extracted 
from formalin-fixed, paraffin-embedded tissues2, but protocols have not yet been clinically validated on certain 
challenging materials such as degraded DNA from forensic samples3 or dried blood spots (DBS).

Blood collection on filter paper has evolved as a reference procedure for the collection, transport, analysis 
and storage of biological fluids. For over 50 years, this sampling protocol has been the key to newborn screening 
programs worldwide. The Clinical Laboratory Standards Institute (CLSI) periodically edits its corresponding 
guidelines4. Currently, the range of applications performed using filter paper has widely broadened and includes, 
among other, diet follow-up in metabolic disorders (e.g., phenylketonuria)5, therapeutic drug monitoring6, dop-
ing control7, viral load measurements8 and targeted gene sequencing9. Accordingly, the number of PubMed 

1Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liège, Belgium. 
2Human Genetics Unit, GIGA, University of Liège, Liège, Belgium. 3Molecular Genetics Lab, Department of Human 
Genetics, CHU Sart-Tilman, University of Liège, Liège, Belgium. 4Molecular Core Facilities, CHU Sart-Tilman, 
University of Liège, Liège, Belgium. 5Metabolic Unit, Department of Human Genetics, CHU Sart-Tilman, University 
of Liège, Liège, Belgium. 6Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liège, Belgium. 
Correspondence and requests for materials should be addressed to F.B. (email: F.Boemer@chu.ulg.ac.be)

Received: 9 May 2017

Accepted: 5 December 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-4470-9524
http://orcid.org/0000-0003-0315-3718
mailto:F.Boemer@chu.ulg.ac.be


www.nature.com/scientificreports/

2SCIenTIFIC REPOrTS | 7: 17641  | DOI:10.1038/s41598-017-18038-x

(www.ncbi.nlm.nih.gov/pubmed)-referenced publications associated with “dried blood spots” item is greatly 
increasing.

Considering the growing interest in DBS testing, it was worth evaluating whether whole-exome sequencing of 
such material could detect specific inborn errors of metabolism (IEM) identified by biochemical methods and/
or Sanger sequencing. Previous generic publications already reported that filter paper could be used for such a 
purpose10–12, but these papers provided a general overview of technological capacities (i.e., coverage, error rate, 
number of single nucleotide polymorphisms (SNPs)) and did not focus on the identification of specific disorders 
or mutations.

Assuming future implementation of NGS technologies into newborn screening (NBS), we conducted a pre-
liminary study sequencing whole exomes on DBS specifically issued from patients with well-established IEM. 
We interpreted our data with a specific focus on genes related to NBS programs, thus aiming to demonstrate that 
DBS is an appropriate material for future NBS programs relying on high-throughput sequencing technologies.

Results
DNA Extraction.  Genomic material was extracted from five blood spots (3.1 mm) simultaneously. DNA 
integrity was assessed using the KAPA hgDNA Quantification and QC® kit. The amounts of isolated DNA fluc-
tuated between 62 and 248 ng. Q-ratios were close to 1 for all samples, suggesting that the quality of the extracted 
DNA was reliable.

Sequencing.  A focus was initially set on identifying disorders included in the official newborn screening 
program of the French Community of Belgium (FWB). Accordingly, Table 1 synthesizes the different diseases and 
their corresponding mutations for the 15 tested patients.

The bioinformatics flowchart of whole-exome sequencing (WES) was designed to specifically target the 35 
IEM genes involved in the NBS program of the FWB and 74 additional genes involved in disorders included or 
under discussion for inclusion in different official NBS programs13–16. Among these additional disorders, we also 
considered some specific treatable conditions that cannot be identified with reliable biomarkers but that could 
benefit from early intervention, such as pyridoxine-dependent epilepsy or serine biosynthesis defects (Table 2).

Coverage of the different exons for each gene highly fluctuated; some regions were uncovered, while other 
regions had a read depth of up to 238-fold. The number of reads for the different detected mutations varied 
between 8 and 83x. This coverage heterogeneity among the different selected genes is depicted in Fig. 1.

Nevertheless, all covered pathogenic mutations, either homozygote or compound heterozygote, for each 
patient have been identified by WES on DNA extracted from DBS. For patient DBS-14, MSUD was suspected 
initially upon newborn screening based on leucine/isoleucine levels (1262 µmol/L). Subsequent amino acid anal-
ysis identified the pathognomonic presence of allo-isoleucine, thus confirming the disorder. As molecular testing 
had not yet been requested, mutations had not been previously characterized by Sanger sequencing. We intended 
then to identify the pathogenic defects in DBT, BCKDHA, or BCKDHB. Unfortunately, the diagnosis of MSUD 
could not be confirmed based on coding sequence analysis of the respective genes, although a new unreferenced 

Patient ID Disorder Gene Mutation(s) Allele 1 Mutation(s) Allele 2
Genomic 
coordinates Allele 1

Genomic 
coordinates Allele 2 Transcript Comment

DBS-1 PKU PAH c.482T > C c.1222 > T chr12:103260401 chr12:103234271 ENST00000553106

DBS-2 PKU PAH c.473G > A c.842C > T chr12:103260410 chr12:103246593 ENST00000553106

DBS-3 MCAD ACADM c.985A > G c.985A > G chr1:76226846 chr1:76226846 ENST00000420607

DBS-4 Propionic Acidemia PCCB c.990_991 insT c.1252G > A chr3:136035800 chr3:136046050 ENST00000469217

DBS-5 Methylmalonic Aciduria MMAB c.556C > T c.563 − 577dup chr12:109998873 chr12:109998851 ENST00000545712

DBS-6 Tyrosinemia type I FAH c.554–1G > T c.554 − 1G > T chr15:80460605 chr15:80460605 ENST00000407106

DBS-7 Glutaric Aciduria type I GCDH c.371G > A c.1204C > T chr19:13004333 chr19:13008638 ENST00000222214

DBS-8 3-MCCa MCCC2 c.1423G > A c.1535A > C chr5:70945945 chr5:70948542 ENST00000340941

DBS-9 Propionic Acidemia PCCB c.997delA c.763G > A chr3:136035813 chr3:136012706 ENST00000469217

DBS-10 Homocystinuria CBS c.429C > G c.833T > C chr21:44486375 chr21:44483184 ENST00000398165

DBS-11 PKU DHPR c.661C > T c.661C > T chr4:17488828 chr4:17488828 ENST00000281243

DBS-12 Galactosemia GALT c.563A > G

c. − 119delGTCAd

chr9:34648167

chr9:34646583

ENST00000378842
Allele 2 
corresponds 
to Duarte 2 
haplotype

c.378 − 27G > C chr9:34647802

c.507+62G > A chr9:34648020

c.508 − 24G > A chr9:34648088

c.940A > G chr9:34649442

DBS-13 MADD ETDFH c.293T > A c.293T > A chr4:159603464 chr4:159603464 ENST00000511912

DBS-14 MSUDb ?c ?c ?c

DBS-15 MCAD ACADM c.985A > G c.1091T > C chr1:76226846 chr1:76226952 ENST00000420607

Table 1.  Disorders analyzed by exome sequencing using DBS. Patient’s pathogenic mutations were first 
characterized by Sanger sequencing during diagnostic workup. aDisorder not mandated by the newborn 
screening program of the French community of Belgium. bMaple syrup urine disease. cSanger sequencing has 
not been performed for the MSUD patient. dMutation not covered by our exome sequencing probes.

http://www.ncbi.nlm.nih.gov/pubmed
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IEM currently screened in FWB Genes
Disorders considered by different NBS 
programs or initiatives worldwide Genes

Phenylketonuria PAH Cystic Fibrosis CFTR

Phenylketonuria PTS Congenital Adrenal Hyperplasia CYP21A2

Phenylketonuria GCH1 Biotinidase deficiency BTD

Phenylketonuria QDPR 3-Methylcrotonyl-CoA Carboxylase MCCC2

Phenylketonuria PCBD1 Hemoglobin disorders HBB

MSUD DBT Hemoglobin disorders HBA1

MSUD BCKDHA Hemoglobin disorders HBA2

MSUD BCKDHB G6PD deficiency G6PD

Tyrosinemia FAH Alpha1-Antitrypsin deficiency SERPINA1

Tyrosinemia TAT Duchenne-Becker dystrophy DMD

Tyrosinemia HPD Hurler disease IDUA

Homocystinuria CBS Hunter disease IDS

Homocystinuria MTHFR Morquio disease GALNS

Homocystinuria MTRR Maroteaux-Lamy syndrome ARSB

Homocystinuria MTR Gaucher disease BGBA

Galactosemia GALT Niemann–Pick A/B disease SMPD1

Galactosemia GALK1 Pompe disease GAA

Galactosemia GALE Krabbe disease GALC

Methylmalonic Acidemia MUT Fabry disease GLA

Methylmalonic Acidemia MMACHC X-Adrenoleukodystrophy ABCD1

Methylmalonic Acidemia MMADHC Spinal Muscular Atrophy SMN1

Methylmalonic Acidemia LMBRD1 Cerebral Creatine deficiency syndrome GATM

Methylmalonic Acidemia HCFC1 Cerebral Creatine deficiency syndrome GAMT

Methylmalonic Acidemia MMAA Cerebral Creatine deficiency syndrome SLC6A8

Methylmalonic Acidemia MMAB Pyridoxine-Dependent Epilepsy ALDH7A1

Methylmalonic Acidemia TCN2 Pyridoxine-Dependent Epilepsy PNPO

Propionic Acidemia PCCA Serine Biosynthesis defect PHGDH

Propionic Acidemia PCCB Serine Biosynthesis defect PSPH

Glutaric Aciduria type I GCDH Serine Biosynthesis defect PSAT1

Isovaleric Acidemia IVD Severe Combined Immunodeficiency IL2RG

MCAD ACADM Severe Combined Immunodeficiency JAK3

MADD ETFDH Severe Combined Immunodeficiency IL7RA

MADD ETFA Severe Combined Immunodeficiency IL2RA

MADD ETFB Severe Combined Immunodeficiency PTPRC

VLCAD ACADVL Severe Combined Immunodeficiency CD3D

Severe Combined Immunodeficiency CD3E

Severe Combined Immunodeficiency CD3Z

Severe Combined Immunodeficiency CORO1A

Severe Combined Immunodeficiency RAG1

Severe Combined Immunodeficiency RAG2

Severe Combined Immunodeficiency DCLRE1C

Severe Combined Immunodeficiency PRKDC

Severe Combined Immunodeficiency AK2

Severe Combined Immunodeficiency ADA

Severe Combined Immunodeficiency LIG4

Severe Combined Immunodeficiency NHEJ1

Severe Combined Immunodeficiency CD3G

Severe Combined Immunodeficiency CD8A

Severe Combined Immunodeficiency PNP

Severe Combined Immunodeficiency RMRP

Severe Combined Immunodeficiency ZAP70

Severe Combined Immunodeficiency CD40LG

Severe Combined Immunodeficiency FOXP3

Severe Combined Immunodeficiency IL10RA

Congenital Hypothyroidisma TSHR

Congenital Hypothyroidisma THRA

Continued
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heterozygote mutation, c.G742T (p.A248S), was identified in BCKDHB. Since a significant percentage of DBT 
pathogenic variants are deletions (both large and small)17, we cannot exclude a large deletion in this gene, even 
though the gene coverage for this patient was not significantly different from the other 14 samples analyzed. Thus, 
any causal intronic mutation cannot be ruled out. For patient DBS-12, the 4 base-pair deletion located in the 
GALT promoter region and associated with the Duarte 2 (D2) allele was not covered by the exome sequencing 
probes and thus could not be identified. Nonetheless, the other four mutations associated with the D2 haplotype 
have been correctly characterized. Determination of the 15 base-pair duplication in MMAB (patient DBS-5) was 
also critical, as it was neither annotated by Annovar18 nor automatically identified with IGV software. Only an 
explicit visualization of the region of interest in IGV allowed the insertion to be identified.

We also studied the “presumed benign” polymorphisms using Cartagenia Bench Lab CNV software (Leuven, 
Belgium). The putative clinical impact of these variants, evaluated with two prediction databases19,20, revealed 
some unexpected information (Table 3). For patient DBS-6 with Tyrosinemia type I, the homozygote mutation 

IEM currently screened in FWB Genes
Disorders considered by different NBS 
programs or initiatives worldwide Genes

Congenital Hypothyroidisma THRB

Congenital Hypothyroidisma FOXE1

Congenital Hypothyroidisma NKX2–1

Congenital Hypothyroidisma NKX2-5

Congenital Hypothyroidisma PAX8

Congenital Hypothyroidisma SLC26A4

Congenital Hypothyroidisma FOXI1

Congenital Hypothyroidisma KAT6B

Congenital Hypothyroidisma KCNJ10

Congenital Hypothyroidisma UBR1

Congenital Hypothyroidisma GNAS

Congenital Hypothyroidisma SLC16A2

Congenital Hypothyroidisma TPO

Congenital Hypothyroidisma SLC5A5

Congenital Hypothyroidisma DUOX2

Congenital Hypothyroidisma DUOXA2

Congenital Hypothyroidisma IYD

Congenital Hypothyroidisma SECISBP2

Table 2.  Disorders and corresponding genes generally considered by NBS programs. A. IEM screened in the 
FWB. B. Additional conditions involved in different NBS programs, including some specific treatable disorders 
not identifiable with reliable biomarkers.aMolecular etiology of congenital hypothyroidism (CH) is not fully 
understood yet. Only genes currently known as defective in CH are reported.

Figure 1.  Mean depth of coverage for the different exons of selected genes. Blue shape represents the mean 
coverage for each exon. Red markers represent the mean coverage by a gene; these markers are sorted in 
decreasing order. (A) The 35 IEM genes included in the NBS program of the FWB. (B) Additional disorders that 
either are considered by different NBS initiatives worldwide or could benefit from early preventive care.
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c.554-1G > T in FAH was easily confirmed, and the pathogenic nonsense homozygote c.2056C > T (p.Gln686Ter) 
mutation in DUOX2 (read depth of 6x), known to cause thyroid dyshormonogenesis type 6 and congenital hypo-
thyroidism21, was also identified. However, this 24-year-old patient presents fully normal thyroid function, with 
repeated normal thyroxin and thyrotropin values measured over several years. The sequencing data were con-
firmed on a separate NGS experiment (from DNA extraction to sequence interpretation) with better coverage 
(read depth of 27x), as well as by Sanger sequencing. Such a genotype/phenotype discrepancy is quite surprising 
for a premature termination variant, but the mutation is located downstream of the thyroperoxidase active site 
of the protein22; thus, we could not exclude a residual functional activity. Moreover, variant databases describe this 
mutation as pathogenic on the basis of a unique publication reporting a single patient who was heterozygous for the 
anomaly21. To our knowledge, no functional studies have ever been performed to determine the activity of the trun-
cated protein. Therefore, our data indicate that this variant should be classified as variant of unknown significance.

Discussion
This pilot study demonstrates that the amount and the quality of DNA extracted from DBS are adequate to iden-
tify pathogenic mutations by high-throughput sequencing. Although samples and genes carrying mutations are 
in limited numbers and extrapolation of the results to larger cohorts should be done with some circumspection, 
our present report underlines some of the challenges that WES faces. Indeed, WES reveals the vast depth of 
fluctuations in coverage between regions, which could subsequently generate difficulties in interpreting vari-
ants. Copy number variations (CNVs) should also be detected with caution as the unambiguous identification 
of small or large allelic deletions by NGS can be challenging when coverage is poor. Moreover, as observed with 
the 15-base-pair duplication in MMAB, small CNVs are not easily identified by bioinformatics tools. Hopefully, 
with the next evolution towards whole-genome sequencing (WGS), several drawbacks of WES could be solved. 
Indeed, WGS offers better coverage uniformity and provides more reliable sequences. WGS also improves CNV 
identification without the need for target amplification and allows the identification of non-coding alterations23.

Expecting drastic cost reductions and process automation in the near future, we could easily imagine our 
experiments contributing to paving the way for “next-generation” neonatal screening programs, provided that 
new paradigms (clinical, political, economic, societal and ethical) are defined. The first revolution already 
occurred in the world of newborn screening approximately fifteen years ago with the implementation of tan-
dem mass spectrometry24. Currently, while this technological progress continues to challenge enacted codes (i.e., 
the Wilson and Jungner criteria)25–27, the second revolution is underway. NGS is now positioned as a universal 
approach allowing the identification of many disorders with one technology. Considering that and the results of 
our pilot study, we aim to further assess the utility of massive sequencing in a larger population. Several technical 
and clinical aspects of this ambitious pursuit are discussed here.

Presently, high-throughput sequencing is laborious and does not meet the requirements of NBS programs. 
Very large amounts of useless data are generated, and consequently, the treatment of bioinformatics data and 
review of variants generate unacceptable turnaround times compared to those of current biochemical assays. 
The interest in using WES (or WGS) to replace targeted approaches has already been discussed28,29, and based on 
actual available technologies and knowledge, the implementation of a selective approach appears to be the better 
choice. Such a panel analysis would be intended to improve coverage homogenization and to ensure a minimal 
read depth threshold between regions of interest. Bioinformatics analysis would thus be facilitated, and the costs 

Variants
Filtereda 
variants

MutationTaster ClinVar

Benign VUSb Pathogenic Unknown Benign VUSb Pathogenic Unknown

DBS-1 343 13 0 4 1 8 5 2 2 4

DBS-2 318 22 1 11 1 9 8 2 1 11

DBS-3 347 12 0 6 0 6 4 4 1 3

DBS-4 474 25 0 13 0 12 11 3 1 10

DBS-5 366 12 0 4 1 7 4 0 1 7

DBS-6 366 13 0 6 1 6 6 1 2c 4

DBS-7 351 15 0 5 2 8 5 1 4 5

DBS-8 367 16 1 10 1 4 8 2 2 4

DBS-9 475 18 1 8 0 9 9 0 1 8

DBS-10 361 22 1 9 0 12 9 1 3 9

DBS-11 328 13 0 6 0 7 4 2 0 7

DBS-12 376 9 0 3 1 5 4 1 1 3

DBS-13 354 13 1 4 0 8 7 2 1 3

DBS-14 355 11 1 6 0 4 7 2 0 2

DBS-15 357 12 0 6 0 6 5 2 1 4

Table 3.  Number of variants annotated in the different samples (focused on the 109 genes considered), 
and the corresponding clinical relevance of filtered polymorphisms evaluated among different databases 
(MutationTaster and ClinVar). aFiltering criteria: frequency <1%, located in exon or splicing site (within 
the first 8 intronic nucleotides), non-synonymous. bVariant of unknown significance. c2056C > T nonsense 
homozygote mutation was identified in DUOX2 gene of patient DBS-6.
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of analysis would be reduced. Additionally, with the expected development of automated bioinformatics pipe-
lines, a significant reduction in NGS analysis time can be envisaged in the future. In such targeted approaches, 
the list of targeted genes should obviously not be restrictive, since newborn screening programs are constantly 
evolving as new therapies are developed.

To date, the costs of massive sequencing remain disproportionate compared to those of mass 
spectrometry-based approaches. Therefore, implementation of NGS technologies into NBS could probably be 
first considered as a combined metabolomics-genomics approach, with the sequencing focusing only on cap-
turing conditions without reliable biomarkers. Indeed, our experiments allowed for accurate sequencing with 
acceptable coverage of the coding regions of some treatable disorders for which identification is not reliable using 
mass spectrometry techniques (e.g., pyridoxine-dependent epilepsy, cerebral creatine deficiency syndrome). 
Using sequencing only curable diseases that lack defined biomarkers would be intended to initially limit the 
costs of implementing NGS in NBS. Afterward, greatly increasing the number of samples tested using molecular 
techniques would help to reduce reagents and bioinformatics costs, subsequently supporting the sustainability of 
molecular NBS.

Applying WES (or WGS) to newborn screening may also present substantial benefits. Assuming that blood 
samples could be collected earlier (i.e., at the day of birth, eventually from cord blood), the medical care needs 
of affected neonates could be anticipated. Moreover, given the wide variability of screened disorders worldwide, 
harmonization of NBS programs could be facilitated with the implementation of such universal technologies. 
The acquisition of genomic sequences at birth may also be beneficial for individuals who become sick later in life. 
Indeed, presuming lifelong data storage on a secured and controlled server, retrospective consultations of patients 
data could be helpful to reduce delays in the diagnosis of rare diseases30. Access to patient’s information in such 
instances should obviously be driven by strict clinical and ethical constraints.

Careful consideration will also need to be given to unexpected and medically irrelevant incidental findings. 
As reported for patient DBS-6, an unexpected homozygote variant that was previously considered a pathogenic 
has been characterized in a gene unrelated to the patient’s disorder, questioning the reliability of some variants 
referenced in databases. Heterozygous carriers of recessive defects are characterized unequivocally, and polymor-
phisms and intermediate deficiencies requiring no intervention are also identified. These results might burden 
medical practices (increasing unnecessary documentation as well as anxiety in healthy carriers) and possibly 
cripple healthcare budgets. Substantial efforts will thus be needed to clarify genotype/phenotype correlations, 
and large studies are required to associate unequivocal biochemical defects with gene variants. Our knowledge of 
the genome will subsequently be improved and will progressively enhance the sensitivity and specificity of these 
assays.

With these new high-throughput technologies, the current restriction focusing the screening to diseases for 
which effective treatment is available could also be reconsidered. This limitation confines, among other things, 
the clinical trials to symptomatic patients and ignores the potential benefits of any preventive intervention. Early 
identification of patients for other conditions could probably allow pre-symptomatic therapies in randomized 

Figure 2.  Overview of analytical workflow.
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studies. Additionally, the feasibility of the voluntary expansion of screening, providing the choice to families who 
want to know about other conditions, is already under debate31–34. Educational challenges in the training of health 
professionals and in information provided to the public should also be considered. Parents should be informed 
of the screening perimeter, its implications and the follow-up required. Appropriate infrastructure should ensure 
care, education and follow-up. Specific registries should be set up to provide the opportunity for families to 
include children in clinical trials for new treatments.

Finally, the emergence of the NGS era will call into question the current neonatal screening dogma. Old doc-
trines should not be barriers to the emergence of new expectations: scientific and technological advances must 
obviously be encouraged, but they cannot be made without any clinical, political, economic, societal and ethical 
debates35,36. Accordingly, the National Human Genome Research Institute already promotes an Ethical, Legal, and 
Social Implications (ELSI) Program to anticipate and address these issues37.

Methods
Samples.  Fifteen patients with confirmed IEM were considered in this study. Almost all patients were iden-
tified by newborn screening, and for all except one, mutations were initially characterized by Sanger sequencing 
during diagnostic work-up.

In the course of the patient’s clinical follow-up, amino acid or acylcarnitine profiles are routinely analyzed, and 
for logistical considerations, whole blood is collected on filter paper. Ethical approval (reference B707201421546) 
was obtained from the Institutional Review Board (Ethical Committee of the Faculty of Medicine of the University 
of Liege), in compliance with the Declaration of Helsinki. All experiments were performed in accordance with 
relevant guidelines and regulations, and all patients or their legal representatives signed a written informed con-
sent form. This work consisted of a prospective study and did not lead to any changes in the treatment of enrolled 
patients. Only residual DBS were used to perform exome sequencing.

DNA Extraction.  Experiments were performed using five blood spots (3.1 mm diameter) for each patient. 
DNA was extracted from DBS according to the protocol recently published by St Julien and collaborators38, with 
slight modifications. The amounts of DNA were estimated, and the quality of the retrieved material was assessed 
using the KAPA hgDNA Quantification and QC® kit (Kapa Biosystems), which is designed to amplify targets 
of 41 base pairs (bp), 129 bp, and 305 bp within a conserved single-copy locus in the human genome. Absolute 
quantification is achieved using the 41 bp assay, while the longer amplicons are used to assess DNA quality. Since 
DNA damage has a greater impact on the amplification of longer targets, the relative quality of a DNA sample can 
be inferred by normalizing the concentration obtained using the 129 bp or 305 bp assay against the concentration 
obtained with the 41 bp assay. This normalization generates “Q-ratios” with values between 0 and 1, which can be 
used as a relative measure of DNA quality prior to NGS library construction.

Sequencing.  Briefly, 100 ng of extracted DNA was fragmented (Bioruptor®, Diagenode) and used to prepare 
indexed libraries (SeqCap EZ Indexed Adapters; Roche) with the KAPA Hyper Prep® kit (Kapa Biosystems). 
These libraries were pooled equimolarly and incubated with probes to capture all coding exons (44.1 Mb target) 
(SeqCap EZ Human Exome library v.2.0; Roche). Sequencing was performed with 2*75 bp reads on a high mode 
NextSeq. 500 run. The entire analytical process is illustrated in Fig. 2.

Figure 3.  Framework for variation discovery and genotyping from NGS sequencing.
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Data Processing.  A bioinformatics flowchart is presented in Fig. 339. Data analysis was performed using 
Galaxy tools on the usegalaxy.org server40. Raw reads were mapped against a reference genome (GRCh37/hg19) 
with BWA-MEM version 0.7.15.1. PCR duplicates were flagged with Picard version 2.7.1. Indel realignment, base 
quality recalibration and coverage depth calculations were optimized with GATK version 3.8. Sequences were 
visualized with IGV (Integrative Genomics Viewer)41. Anonymized data were stored under controlled access on 
a secured server.
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