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Background: Despite general agreement that aphasic individuals exhibit difficulty under-
standing complex sentences, the nature of sentence complexity itself is unresolved. In
addition, aphasic individuals appear to make use of heuristic strategies for understand-
ing sentences. This research is a comparison of predictions derived from two approaches
to the quantification of sentence complexity, one based on the hierarchical structure of
sentences, and the other based on dependency locality theory (DLT). Complexity metrics
derived from these theories are evaluated under various assumptions of heuristic use.
Method: A set of complexity metrics was derived from each general theory of sentence
complexity and paired with assumptions of heuristic use. Probability spaces were gener-
ated that summarized the possible patterns of performance across 16 different sentence
structures.The maximum likelihood of comprehension scores of 42 aphasic individuals was
then computed for each probability space and the expected scores from the best-fitting
points in the space were recorded for comparison to the actual scores. Predictions were
then compared using measures of fit quality derived from linear mixed effects models.
Results: All three of the metrics that provide the most consistently accurate predictions
of patient scores rely on storage costs based on the DLT. Patients appear to employ an
Agent–Theme heuristic, but vary in their tendency to accept heuristically generated inter-
pretations. Furthermore, the ability to apply the heuristic may be degraded in proportion to
aphasia severity. Conclusion: DLT-derived storage costs provide the best prediction of sen-
tence comprehension patterns in aphasia. Because these costs are estimated by counting
incomplete syntactic dependencies at each point in a sentence, this finding suggests that
aphasia is associated with reduced availability of cognitive resources for maintaining these
dependencies.
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INTRODUCTION
Individuals with aphasia often exhibit difficulty comprehending
sentences even when their ability to understand single words is
intact. Not all sentences are affected equally, however. Aphasic
speakers of English perform better with sentences in which the
order of elements in the sentence corresponds to the canoni-
cal order Agent–Verb–Theme (where Agent and Theme represent
nouns that are assigned semantic roles by the verb). Sentences
that deviate from this pattern are more difficult to comprehend.
This observation is especially true of “semantically reversible” sen-
tences, in which either of the semantic roles of the verb could be
filled with either of the nouns. For example, consider sentences
(1–3), below, all of which contain a relative clause in the subject.

(1) The dog that the cat chased was black.
(2) The dog that chased the cat was black.
(3) The apple that the boy ate was red.

Sentence (1) is non-canonical, because the object relative
clause results in the word order Theme–Agent–Verb. Sentence

(2) is canonical, with the typical Agent–Verb–Theme word order.
Sentence (3) is non-canonical, but is not semantically reversible
(because apples do not eat boys). Out of these three sentences,
patients with aphasia exhibit significant difficulty interpreting
the embedded verb only with sentences like (1) (Caramazza and
Zurif, 1976). This pattern was originally described in patients with
Broca’s or conduction aphasia, but more recent work suggests that
it is not restricted to any particular aphasic syndrome (Caplan
et al., 2007a). Caramazza and Zurif (1976) argue that this pattern
emerges from degradation of syntax-like algorithms. Subsequent
work has extended the finding to sentences with other structures,
such as passive voice (Caplan et al., 1996; Grodzinsky, 2000).

There is a general consensus that sentence structures may be
ordered in terms of their complexity, and that patients with apha-
sia have greater difficulty with more complex sentences. However,
the issue of what makes one sentence more complex than another
has not been resolved. Early work in psycholinguistics relates com-
plexity to the number of transformations required to derive a sen-
tence from a simpler kernel sentence (Miller and McKean, 1964),
a hypothesis known as the Derivational Theory of Complexity.
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Subsequent work casts doubt on this theory (Martin and Roberts,
1966; Slobin, 1966), and some investigators currently working in
psycholinguistics express dissatisfaction with the use of transfor-
mational grammar in psychological studies, a shift that likely began
when Fodor et al. (1974) questioned the psychological reality of
transformations (but see Marantz, 2005 for a nuanced view). Nev-
ertheless, researchers studying aphasia continue to use the tools
of linguistic theory, often with the goal of dichotomizing sen-
tences into categories of “difficult” and “easy.” This approach has
led to a number of insightful hypotheses, including the Trace Dele-
tion Hypothesis (TDH; Grodzinsky, 1990; Grodzinsky, 1995a,b;
Grodzinsky, 2000; Su et al., 2007), the Double Dependency Hypoth-
esis (DDH; Mauner et al., 1993; Beretta and Munn, 1998; Beretta
et al., 1999), the Mapping Hypothesis (Linebarger et al., 1983), a
hypothesis based on Case theory (Druks and Marshall, 1995), and
the Structural Prominence Hypothesis (SPH; Friederici and Gor-
rell, 1998). (For reviews of sentence comprehension in aphasia,
see Clark (2011) and Dick et al., 2001.) Much work along these
lines seeks to identify a specific feature of the grammar, as defined
in syntactic theory, that appears to be degraded by brain damage.
However, because the lesion is defined qualitatively (e.g., a trace
is either deleted or not – there is no partial degradation), these
hypotheses do not have sufficient flexibility to explain the more
continuous variation that has been observed among patients and
sentence structures. A goal of the current study is to explain con-
tinuous variation in sentence comprehension performance. One
of two hypotheses that are compared, which found some support
in previous work (Clark, 2009), resembles these other theories of
aphasic sentence comprehension in that it makes use of hierar-
chical representations from theoretical syntax. This hypothesis is
discussed in detail below.

The current work takes the position that aphasic sentence
comprehension deficits do not arise from a categorical defect of
some very specific construct from syntactic theory, and employs
elementary probability theory to model continuous variation in
sentence complexity and patient performance. Other investiga-
tors in aphasia have applied probability theory to the study of
sentence comprehension (Drai and Grodzinsky, 2006), but still
make use of categorical distinctions among sentence types. This
work has drawn some criticism on linguistic and methodological
grounds (De Bleser et al., 2006; Toraldo and Luzzatti, 2006). Much
of the evidence supporting the presence of continuous variation
(among patients and sentence structures) comes from the work of
Caplan et al. (1996, 1997, 2007a). These investigators observe that
patients who exhibit difficulty interpreting non-canonical sen-
tence structures with moved elements [e.g., sentence (1), which
has a subject–object relative clause] also exhibit difficulty with
other sentence structures that do not have moved elements (such
as sentences with reflexive pronouns). Factor analysis of the per-
formance of 42 aphasic patients on 11 different sentence structures
reveals that all 11 structures load heavily on the first factor (Caplan
et al., 2007a). Theories that make categorical distinctions among
sentence types predict that patients with agrammatism must guess
on sentences that are classified as difficult. However, self-paced
listening data from this study show that processing times of sen-
tences that are subsequently misinterpreted differ from those of
sentences that are interpreted correctly. This finding suggests that

even in brain-damaged persons with sentence comprehension
deficits, correct responses occur when parsing and interpretive
mechanisms happen to function properly, rather than only when
subjects guess correctly. Based on these and similar findings, the
authors conclude that the dominant pattern of aphasic sentence
comprehension arises due to degradation of a single resource
that is important for normal syntactic and interpretive processes.
One candidate for this resource is a relatively specialized form of
working memory (Caplan and Waters, 1999), and this possibil-
ity has been supported with a computational model of sentence
processing (Haarmann et al., 1997).

Although research in psycholinguistics no longer makes use
of the original Derivational Theory of Complexity, the question
of what factors make one sentence more complex than another
continues to generate debate. There are two general approaches
that have been applied in recent years to the study of non-brain-
damaged individuals: those based on working memory, and those
based on probabilistic expectations. Memory-based accounts pro-
pose that complexity is the result either of decaying activation of
the representation of a previously encountered word, or of inter-
ference in the retrieval of a word due to interposed material that
binds up scarce processing resources (Gibson, 2000; Lewis and
Vasishth, 2005). Expectation-based accounts propose that the dif-
ficulty of processing any given word in a sentence context depends
on the conditional probability of the word itself or of its syntactic
type given the sentence context so far (Hale, 2001; Levy, 2008; Levy
et al., 2012).

The work presented here focuses in part on one memory-based
account, namely, the dependency locality theory (DLT; Gibson,
2000). According to this theory, difficulties of language parsing
and interpretation arise from two concurrent processes that draw
on the same cognitive resource. These processes are integration
and storage. Integration consists of “connecting a [new] word
into structure that has been built for the input thus far” (Gibson,
2000). Integration becomes costlier (more complex) with increas-
ing distance between two elements that must be integrated. Gibson
operationalizes integration as a simple count of new discourse ref-
erents and discourse referents that intervene between two phrases
that must be integrated. When quantified in this way, integration
costs account for difficulties with nested structures and for self-
paced reading times of subject–subject and subject–object relative
clauses. The other process in the theory, storage, consists of main-
taining a mental representation of sentence structure, and also
(perhaps more importantly) keeping track of predictions regard-
ing which syntactic constituents should occur later in the input.
Storage is operationalized by simply counting, at each word in the
input, the minimal number of syntactic elements that would be
sufficient to provide a coherent end to the sentence being appre-
hended. Measured in this way, storage costs associated with the
expectation of additional verbs account for periods of slowing
observed in online reading times (Chen et al., 2005).

Predictions of the DLT are directly compared here with the
proposal that variation in the complexity of sentences arises from
qualities of their hierarchical structure. Hypotheses that character-
ize sentence difficulty in terms of hierarchical syntactic relation-
ships could provide a link between linguistic theory and the single-
resource hypothesis. The original presentation of this hypothesis
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is couched in terms of economy of derivation, chiefly using data
on language production and grammaticality judgment from two
agrammatic speakers of Japanese (Hagiwara,1995). Hagiwara con-
cludes that aphasic speakers have greater access to functional heads
that occur in lower positions in the syntactic derivation. Friederici
and Gorrell (1998) provide observations across four different lan-
guages that aphasic individuals often assign the semantic Agent
role to the most “structurally prominent” noun phrase in a syn-
tactic representation. Again, this hypothesis emphasizes qualities
of the syntactic derivation rather than a linear order mapping
for determining sentence meaning. Subsequent observations from
aphasic speakers of Hebrew and Palestinian Arabic have led to the
formulation of the Tree Pruning Hypothesis, which is founded
chiefly on observations that these individuals have difficulty pro-
ducing material in proportion to its height in the syntactic tree
(Friedmann and Grodzinsky, 1997). This hypothesis has been gen-
eralized to include language comprehension (Luzzatti and Guasti,
2001; Friedmann, 2006). A simulation of language comprehen-
sion using modified computational semantics software provides
some evidence that hierarchical structure can account for quanti-
tative patterns in aphasic sentence comprehension (Clark, 2009).
Specifically, the accuracy of semantic representations assembled
by a degradable parser was shown to correlate with the perfor-
mance of a group of patients with aphasia. An advantage of this
approach is that it is sufficiently flexible to account for the apparent
continuous variation observed among both patients and sentence
structures.

For the purposes of this research, the structures of the sentences
under evaluation are made explicit using combinatory categorial
grammar (CCG; Steedman, 1996; Steedman, 2001; Reitter et al.,
2006, 2011). CCG derivations resemble those of traditional cat-
egorial grammar, in that every word is assigned a syntactic type
that describes what type it will take as an argument, whether the

argument should precede or follow the word, and what syntac-
tic type will result when the word is applied to its argument. For
example, the definite article “the” has type NP/N, indicating that
(1) it takes a noun (N) as argument, (2) this noun must succeed
the article (indicated by the forward slash), and (3) the resulting
type will be an NP. In addition to syntactic types, words in CCG are
associated with semantic information. Each step in the syntactic
derivation is accompanied by a parallel compositional semantic
step such that complete syntactic derivations result in logically
complete interpretations. Importantly, the use of CCG for the
current work permits the assumption that strings of words that
are parsed are also interpreted, without the necessity of introduc-
ing additional interpretive machinery or of showing the semantic
interpretations. CCG has the advantage that its weak generative
capacity is mildly context sensitive – that is, it is capable of gen-
erating certain particular word sequences that occur in natural
language, but that cannot be derived using less powerful com-
putational formalisms, such as regular or context-free grammars
(Joshi et al., 1991). CCG gains this additional power through the
use of combinators, including function composition, substitution,
and type-raising. (For a very entertaining introduction to combi-
natory logic, see Smullyan, 2000). See Figure 1 for an example of
a CCG derivation.

Both the tree-based and the DLT-based methods for quanti-
fying sentence complexity offer a means by which to generate
numerically explicit predictions regarding patterns of sentence
comprehension difficulty in aphasia. In both cases, the poten-
tial for a sentence to be considered complex can be described
in terms of a list of numbers. (A “list” resembles a set but may
contain more than one copy of any given element.) The work
presented here starts from the assumption that the probability
that an individual will adequately parse and interpret sentence-
level information is degraded in proportion to two things: the

FIGURE 1 | Syntactic derivations from combinatory categorial grammar

(CCG). In this formalism, functions are represented by the schema (X/Y) or
(X\Y), in which X is the output of the function, Y is the required argument, and
the slash tells whether the argument must be found to the left or to the right
of the function. For example, syntactic combination of the (NP/N) and girl (N)
yields the girl (NP). (A) Parsing the subject with the subject relative clause

requires the integration of material at levels 1, 2, 3, 4, and 5. Comprehension
of the entire sentence requires additional integration steps at levels 1, 2, and
6. (B) A shallow heuristic parse of the content words from the subject phrase
can be accomplished by integrating material only at levels 1 and 2, yielding
the correct thematic role assignment. However, use of the same strategy on
the second NVN sequence yields the wrong agent for the verb tickled.
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severity of the individual’s aphasia and some quantification of sen-
tence complexity derived from numerical tree-based or DLT-based
descriptions.

Several lines of evidence indicate that cognitively normal
individuals, and probably also individuals with aphasia, make
use of heuristic strategies during language comprehension tasks
(Townsend and Bever, 2001; Ferreira et al., 2002; Ferreira, 2003;
van Herten et al., 2006; Ferreira and Patson, 2007). The work
presented here assumes that individuals with aphasia may apply
a heuristic in which the first two nouns of “noun–verb–noun”
(NVN) or “noun–noun–verb” (NNV) sequences are interpreted
as the semantic Agent and Theme of the verb. Predictions of
aphasic sentence comprehension performance are made by com-
bining complexity metrics, as sketched briefly above, with various
assumptions regarding application of this heuristic.

This research is an effort to characterize the performance of a
group of aphasic individuals on 16 sentence structures using ele-
ments of probability theory. The data come from Caplan et al.
(2007a). The primary goal is to define a precise and methodical
approach for evaluating and contrasting hypotheses that pertain
to sentence comprehension in aphasia. There are four key ques-
tions. The primary question is which of several complexity metrics
provides the best fit to observed comprehension patterns among
aphasic individuals. The complexity metrics are all based either on
the DLT (i.e., storage costs, integration costs, or a combination of
the two) or on hierarchical sentence structures derived with CCG.
The second question is whether aphasic patients employ an Agent–
Theme heuristic when interpreting sentences. The third question
is whether patients apply this heuristic obligatorily or vary in their
tendency to apply it. Heterogeneity of heuristic use would pro-
vide another dimension along which aphasic patients might vary,
potentially augmenting characterizations based solely on sever-
ity. (Alternatively, patients could apply the heuristic obligatorily
but vary in their tendency to accept the interpretation it yields.
This research does not distinguish between these possibilities.)
The fourth question is whether heuristic skills are degraded by the
lesion that produces aphasia. Conceivably, if the application of the
heuristic is semantically driven, and neural structures supporting
semantic cognition are more distributed across the cerebrum than
those supporting syntax, heuristics might be relatively preserved in
the setting of aphasia. On the other hand, if heuristic skills rely on
some of the same machinery as syntax (or are, in fact, early steps in
constructing a syntactic representation), then these skills could be
degraded in proportion to the severity of the aphasia. As pointed
out by Hagiwara and Caplan (1990), the most severely impaired
patients of Caplan and Hildebrandt (1988) appear to be unable to
use a heuristic strategy. It should be noted that both degradation
of heuristic skills and reduced application of heuristics drive per-
formance closer to chance levels, making the distinction of these
possibilities difficult. The method for addressing this problem is
discussed in detail in Section “Heuristics.”

The goal of this research was to compare tree-based and
DLT-based metrics for explaining patterns of aphasic sentence
comprehension. The approach was to generate a thorough numer-
ical characterization of the expected patterns of aphasic sentence
comprehension under a variety of different assumptions. Obser-
vations of actual patient performance were then compared to these

numerical descriptions to determine which assumptions result in
the best fit.

MATERIALS AND METHODS
OVERVIEW
Data for this project came from work published in Caplan et al.
(2007a,b), which include a generous set of patient-level data detail-
ing demographic and clinical characteristics, lesion locations, and
sentence comprehension abilities of 42 aphasic individuals with a
wide range of anatomical lesions and clinical aphasia syndromes.
All of the patients had sufficient comprehension ability to take part
in the study, but a broad range of performance in sentence compre-
hension was observed. The patients were tested with three tasks: a
sentence–picture verification (SPV) task using 10 sentence struc-
tures, a sentence–picture matching (SPM) task using 11 sentence
structures (five of which overlapped those of the SPV task), and
an object manipulation (OM) task that used the same sentences as
the SPM task. Thus, the 42 patients were tested with 16 different
sentence structures. Preliminary analysis suggested that accuracy
with sentences that contained two propositions (such as subject–
object and subject–subject relatives) dropped much more rapidly
with increasing aphasia severity on the OM task than on the SPM
or SPV tasks. This difference might be due to the necessity of either
accurately interpreting multiple propositions or making separate
interpretations or guesses for each proposition. Importantly, the
necessary assumptions for modeling the OM data differ substan-
tially from those required to model the more constrained tasks. As
a result, only the SPM and SPV data were used for this analysis.
The set of sentences from each task that used the same sentence
structure is referred to as a “subtest” throughout the manuscript.
There were 21 subtests (11 from SPM and 10 from SPV), but only
16 different sentence structures due to the fact that the SPM and
SPV tasks had 5 sentences with the same structure. Items from the
various subtests were administered in pseudorandom order, not
in block format.

Hypotheses of sentence complexity were evaluated in four steps:
(1) probability spaces were generated for each metric (see Generat-
ing a Probability Space), (2) patient data were fit to the probability
spaces (see Fitting Patient Data to the Probability Space), (3) the
model’s predictions were derived for each metric (see Deriving
Predictions of the Model), and (4) the accuracies of the predictions
of all the metrics were compared (see Comparison of Predictions
Made by Different Hypotheses).

GENERATING A PROBABILITY SPACE
The term “probability space” is used loosely here. Strictly, the term
should be applied to groups of disjoint outcomes with probabili-
ties that sum to 1.0. Here, the term is being used to refer to a data
structure that contains a large set of probability mass functions
(PMFs; each of which satisfies the strict definition of probability
space).

Each hypothesis of sentence complexity was made numeri-
cally explicit by specifying a quantitative complexity metric (see
Table 1 for the 12 complexity metrics that were evaluated). For
each complexity metric, a four-dimensional probability space was
constructed. The four dimensions of the probability space were (1)
aphasia severity (s), which ranged from 0.0 (unimpaired) to 1.0
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Table 1 | Sentence complexity metric abbreviations and methods.

Complexity

metric

abbreviation

Specifics of implementation

Mx-T The maximum level of the CCG derivation is listed.

Pr-T Levels of all steps in the CCG derivation are listed.

Sum-T The sum of all levels in the CCG derivation is listed.

Mx-I The maximum of all integration costs for the sentence

is listed.

Mx-S The maximum of all storage costs for the sentence

is listed.

Mx-C Storage and integration costs are summed at each word

in the sentence. The maximum of these sums is then

listed.

Pr-I The list of integration costs is used unchanged.

Pr-S The list of storage costs is used unchanged.

Pr-C Integration and storage costs are summed at each word

as for Mx-C. The list of sums is then used.

Sum-I The sum of all integration costs.

Sum-S The sum of all storage costs.

Sum-C The grand total of all integration and storage costs

is used.

The list of numbers returned by each metric was fed to Eq. 1 as the list “L.”

CCG, combinatory categorial grammar.

(completely unable to use syntax), (2) heuristic acceptance prob-
ability (h), which ranged from 0.0 (never accepting the heuristic
interpretation) to 1.0 (always accepting the heuristic interpreta-
tion), (3) sentence structure (of 16 possible structures, including
active voice, reflexive genitive, etc.), and (4) scores on each test
of sentence structures, which ranged from 0 up to either 9 or
10, depending on the specific subtest. Thus, this probability space
contained a comprehensive sampling of the possible patterns of
sentence comprehension that could occur under the hypothesis
embodied by the metric. The value stored at each location in
the space represented a probability. For example, under a given
hypothesis, the coordinates {0.15, 0.4, active, 7/10} could contain
the value 0.24, indicating that a patient with s = 0.15 and h = 0.4,
when tested with active voice sentences, would obtain a score of
7/10 with 24% probability.

The goal of setting up this probability space was to find the
point in the space where each aphasic patient fit and then to use the
probabilities at that point as predictions of performance. Figure 2
provides a metaphorical illustration of the probability space. Two
of the dimensions (aphasia severity s and heuristic acceptance
probability h) were assumed to be unknown for every patient
prior to fitting the patient’s data to the space. These two variables
are represented in Figure 2 as the rows and columns in a two-
dimensional grid of locked boxes. The remaining two dimensions,
sentence structures and predicted subtest scores, are represented
as a pattern of pins inside the lock on each box. This “pattern of
pins” is actually a set of binomial PMFs over possible scores on the
subtests for the sentence structures. The PMFs were dependent
on the parameters s and h, because they were actually computed
by applying the complexity metric that was being evaluated to

each sentence structure under the assumption of specific values
for these two parameters.

Five specific steps were taken to generate the probability space.
These are explained in detail in following sections below.

Numerical descriptions of sentence structures
Each sentence structure was assigned a numerical description per-
taining to its potential for complexity. For tree-based metrics,
the description consisted of the level of each node (i.e., func-
tion application, composition, or type-raising) in the hierarchical
syntactic derivation. Syntactic derivations were typical canonical
derivations from CCG. For the DLT-based metrics, the description
consisted of the estimated storage or integration costs at each word.
All CCG derivations and DLT-based costs are listed in Appendix
and Table A1 in Appendix, respectively. Note that for both types
of metrics, the information available for specifying a complexity
metric consisted of a list of whole numbers (either a list of node
levels or a list of DLT-based costs).

Application of complexity metrics to numerical sentence
descriptions
A complexity metric was specified and applied to the numerical
description of each sentence structure. This metric was an explicit
method of assigning to each sentence structure a probability that
a patient could successfully apply syntactic mechanisms to accu-
rately interpret sentences with the structure. See Table 1 for a list
of the complexity metrics that were evaluated. The probability of
successfully using syntactic mechanisms to arrive at an accurate
sentence interpretation was computed using Eq. 1:

f (s, L) = max

(
0,
∏
λ∈L

1.0 − λs

)
, (1)

where s represents the numerical aphasia severity (between 0.0
and 1.0) and L represents the a list of numbers that was specific to
a given sentence structure and complexity metric. In cases where
L consisted of only one number (such as a maximum or a sum),
the probability returned by f(s) was reduced linearly in proportion
to s. In cases where L consisted of a list of numbers (e.g., storage
costs or tree node levels), the probability returned by f(s) was the
product of a series of probabilities, each of which was reduced in
proportion to s and λ. The assumption underlying this equation
was that sentence comprehension relies on a series of structure
building, interpretive, or memory operations, each of which has
an independent chance of success or failure. Failure of any of these
operations disrupts the process of comprehension.

Depending on the specific complexity metric being evalu-
ated, Eq. 1 could refer to different processing events. One example
of such an event would be successfully maintaining a prediction of
syntactic constituents during the most demanding part of the sen-
tence. The measurement of complexity associated with this event
is embodied in the “Mx-S” metric. In this case there would be only
one event in question, and the probability of a successful parse
would decline linearly with aphasia severity. A second example
of events represented by Eq. 1 would be the successful appli-
cation of a sequence of syntactic functions during construction

www.frontiersin.org May 2012 | Volume 3 | Article 135 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Clark Storage costs and heuristics in aphasia

FIGURE 2 | Lock and key metaphor for maximum likelihood

estimation. (A) Two dimensions of the probability space lie along the
axes of aphasia severity (s) and heuristic acceptance probability (h).
These axes are depicted here as columns and rows of locked boxes. (B)

Actual scores on sentence comprehension tests by an aphasic individual
are depicted here as teeth on a key. The key has varying degrees of fit
with the pins inside the locks. The pins represent estimates of scores

based on a given sentence complexity metric. (C) A binomial probability
mass function (PMF) describing the probabilities of different scores on a
given subtest of the aphasia evaluation. The pins inside the lock are
actually PMFs. Given a list of actual scores, these PMFs can be used to
calculate the likelihood of those scores. By testing a given key in every
available box, the values of the s and h parameters that provide the best
fit can be determined.

of a hierarchical representation. This series of events is embod-
ied in the “Pr-T” metric. In this case, the overall probability is
a product of probabilities, leading to a non-linear relationship
between aphasia severity and the probability of an accurate parse.
It should be noted that although the function f returns values
that are treated as probabilities, the set of probabilities returned
with different values of its arguments does not yield a probability
distribution, as the outputs of the function are not required to
sum to 1.0.

Probability tree diagram
A probability tree diagram was constructed describing each possi-
ble sequence of circumstances that would lead to success or failure
on a single stimulus item for a sentence with a given structure. This
tree diagram incorporated the probabilities of adequate syntactic
parsing, of using and successfully applying a heuristic strategy to
arrive at an interpretation, and of correctly guessing when heuris-
tic and syntactic processes failed to generate a conclusion. See
Figure 3 for the tree diagram that was used.

Derivation of functions for computing Bernoulli values
Based on Eq. 1 and the probability tree diagram, functions were
derived for each sentence structure. These functions took as argu-
ments the aphasia severity s and heuristic acceptance probability
h, and returned a Bernoulli value describing the probability of
success with the sentence structure. See Figure 4 for examples of
Bernoulli values generated by these functions.

Generation of binomial probability mass functions
Using the functions derived in the last step (see Derivation of
Functions for Computing Bernoulli Values), a binomial PMF was
generated for each sentence structure, each level of aphasia sever-
ity, and each heuristic acceptance probability. This PMF described
the probability of obtaining every possible score across the range
of scores afforded by a subtest. The probability space consisted
of probabilities from these PMFs. See Figure 2 for a metaphor-
ical illustration of the probability space. The probability of each
possible score within a PMF was computed using Eq. 2,

P(k|p, n) =
(n

k

)
pk(1.0 − p)n−k , (2)

where n represents the number of sentences in the subtest, k rep-
resents a certain score on that test (ranging from 0 to n), and p
is the Bernoulli value computed in Section “Derivation of Func-
tions for Computing Bernoulli Values,” above. The first term of
this equation (in parentheses) is the binomial coefficient, which
tells the number of possible ways to select a subset of k items from
a set of n items. In this case, the binomial coefficient is the number
of possible ways that a given score can be achieved. For example, a
score of 1/10 could be obtained 10 different ways, by getting any 1
of the 10 items correct and missing the other nine.

FITTING PATIENT DATA TO THE PROBABILITY SPACE
Scores from each patient were compared to each pattern in the
probability space. Figure 2B depicts a patient’s profile of subtest
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FIGURE 3 |The probability tree diagram used for deriving functions for

computing Bernoulli values. Abbreviations: sp = probability of a
successful syntactic parse (a function of aphasia severity and levels in the
CCG derivation, derived from Eq. 1); h = the probability that a given
individual will use an Agent–Theme heuristic for interpreting sentences;
sh = the probability of a successful heuristic parse (a function of aphasia
severity and levels in the simplified heuristic derivation, derived from Eq. 1);
hf = set to 1.0 if heuristics are favorable for comprehending a given
sentence; set to 0.0 if heuristics are unfavorable; g2 = the probability of
guessing correctly when presented with two options (always equal to 0.5).

scores, represented as the teeth on a key. Assuming that each key
“opened” one and only one box, the fit of the key was tested on
all of the boxes and the key was presumed to open only the box
that gave the best fit. The position of the “best fit” box in the grid
yielded an estimate of the patient’s aphasia severity and inclina-
tion to accept interpretations generated from heuristics (under
the assumptions of whichever hypothesis was being tested – these
assumptions were embodied in the specific complexity metric that
gave rise to the probability space).

The search for the best aphasia severity (s) and heuristic accep-
tance probability (h) parameters amounts to likelihood maximiza-
tion. Likelihood was computed as the product of probabilities for
all of a patient’s scores, as defined by the PMFs in a given “box.” To
make this example more concrete, consider a patient who scored
8/10 on a test of active voice sentences and 6/10 on a test of pas-
sives. In a given box of the grid, a score of 8/10 on actives may
have a probability of 0.6 and a score of 6/10 on passives may have
a probability of 0.4, yielding a likelihood for these two scores of
(0.6 × 0.4) = 0.24. Comparison of the same scores to PMFs in a
different box might yield probabilities of 0.3 and 0.2, resulting in
a likelihood of 0.06. In this case, the first box would be considered
the better fit. (Likelihood for the actual fitting was computed over
all 21 of the subtests that were administered).

DERIVING PREDICTIONS OF THE MODEL
Predictions for each patient were defined as the expected values of
the binomial PMFs for each sentence structure at the point in the
probability space that provided the best fit (i.e., maximum likeli-
hood). Thus, if a patient’s scores were found to fit best with the

PMFs at s = 0.6 and h = 0.3, it was PMFs derived from these para-
meters that were used to generate the expected values. (Expected
values are averages of scores weighted by the probability of each
score). These expected values constituted the predictions of the
model for statistical analysis and comparison to other hypotheses.

COMPARISON OF PREDICTIONS MADE BY DIFFERENT HYPOTHESES
Planned comparisons
Routine analysis. Three measures of fit quality were calculated as
follows. A linear mixed effects model was computed with subtest
scores as the dependent variable and random effects of patient and
sentence structure (Baayen et al., 2008; Bates et al., 2011). Fixed
effects included task (SPM or SPV) and predictions of subtest
scores derived by the methods detailed above. The first measure
of fit quality was root mean squared error (hereafter referred to
simply as “error”), calculated from the difference between the fit-
ted values for the linear mixed effects model and the actual patient
scores. The second measure of fit quality consisted of the per-
centage of fitted values that came within one-half point of the
patient’s actual score (hereafter referred to as “precision”). The
third measure of fit quality was the Akaike information criterion
(AIC; Akaike, 1981) from the linear mixed effects model. Use of
AIC permitted comparison of the mixed effects models in terms
of their relative probability.

The relative predictive values of the hypotheses were deter-
mined by first ranking the quality of the predictions derived from
each complexity metric and choosing the metrics that had the
best performance. In terms of error and precision, metrics were
compared using confidence intervals. Specifically, a 95% confi-
dence interval was calculated for the complexity metric with the
lowest error. Metrics that performed within the upper bound of
this interval were listed along with the best metric. The same gen-
eral procedure was followed for precision, but the metric with the
highest precision was selected, the 95% confidence interval was
constructed for this metric, and other metrics that scored above
the lower bound were listed along with the best metric. AICs can
be compared by means of Eq. 3,

e

(
AICl−AICh

2

)
, (3)

in which the base of the natural logarithm (e) is raised to a power
calculated as the difference between the lower AIC and the higher
AIC, divided by two. The result is the probability that the model
with the higher AIC will minimize information loss in compari-
son to the model with the lower AIC. The best metric was then
listed along with metrics that had a greater than 5% chance of
minimizing information loss when compared to it.

Cross-validation. Values for each of these measures of fit were
recomputed using leave-one-out cross-validation to ensure that
the model’s predictions had the capability of generalizing to data
that were not used in the fitting. Specifically, for each subject, the
score from one subtest was left out while the remaining scores
were fitted to the probability space. The point in the probability
that provided the best fit was then used to predict the left-out
score. This procedure was repeated for each score and the winning
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FIGURE 4 | Bernoulli values at all levels of severity for five selected

sentence structures, as computed for the Pr-C metric (top row), Mx-S

metric (middle row), and Pr-S metric (bottom row). The five sentence
structures included here are active voice (black), subject clefts (blue), passive
voice (purple), subject–object relative (red), and subject–subject relative
(green). The panels in the left column show the Bernoulli values derived with
the assumption that subjects never apply an Agent–Theme heuristic. The

middle and right columns show the Bernoulli values if subjects always accept
a heuristically generated interpretation whenever syntax fails. The values in
the middle column were computed with the assumption that aphasia does
not degrade the patient’s ability to apply the heuristic (impervious heuristic).
Those in the right column were computed with the assumption that aphasia
degrades heuristic skills to a degree proportional to the severity of the
aphasia (vulnerable heuristic).

metrics were selected by the same methods described above. Note
that this method of cross-validation supports generalization of the
findings to other sentence structures, but not to other aphasic indi-
viduals. It was not possible to perform a leave-one-out analysis of
aphasic patients, because the data were fit to the probability space
one subject at a time.

Post hoc permutation tests
The unknown parameter of aphasia severity s was permitted to
vary between 0.0 and 1.0 by increments of 0.01, leading to 101
possible values. In the absence of heuristic use or with obligatory
heuristic use, the parameter search took place only in this lim-
ited space. However, when the heuristic acceptance probability h
was allowed to vary (also between 0.0 and 1.0, but by increments
of 0.1, leading to 11 possible values), the size of the parameter
space was expanded to the Cartesian product of these two sets of
parameter values (i.e., 1,111 possible pairings of s and h). This
considerable expansion raised the possibility that any improve-
ment in fit observed with freely varying heuristics could be the

result of increased flexibility in the model rather than a systematic
improvement referable to heuristic use. To evaluate this possibil-
ity, permutation tests were undertaken by the following method:
first, the top complexity metrics from the planned analyses were
identified. Next, each of these metrics was used to generate 1,000
sets of predictions using all of the 1,111 pairings of the s and h
parameters, but shuffling the Bernoulli values obtained for all h
values greater than 0.0. (Probabilities associated with no heuristic
use, i.e., h = 0, were kept constant to provide a conservative mea-
sure of the increased flexibility resulting from adding a parameter
to this model.) Measures of fit quality performed on the original
predictions were then compared to the predictions obtained using
the shuffled values.

HEURISTICS
Complexity metrics were evaluated with the four steps described
in Sections “Generating a Probability Space,”“Fitting Patient Data
to the Probability Space,”“Deriving Predictions of the Model,” and
“Comparison of Predictions Made by Different Hypotheses”under
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five different assumptions of heuristic use. Unimpaired individuals
appear to use heuristics when interpreting sentences (Townsend
and Bever, 2001; Ferreira and Patson, 2007) and this phenomenon
is widely assumed to play a role in generating the patterns of apha-
sic sentence comprehension (Caramazza and Zurif, 1976; Caplan
et al., 1997). The most common heuristic proposed for speakers of
English consists of the default assignment of the Agent and Theme
roles to the first and second nouns that occur (Ferreira and Pat-
son, 2007). For this work, the heuristic was formalized as a NVN or
NNV sequence. Interpretations that were expected to be available
to aphasic patients were based on the content word sequences in
each sentence structure that was studied. Sequences of nouns and
verbs occurring in the 16 structures used for this research led in
some cases to accurate interpretations (e.g., active voice sentences)
and in some cases to faulty interpretations (e.g., passive voice
sentences). Appendix lists the content word sequences for each
sentence structure and whether application of the heuristic was
favorable or unfavorable for generating the correct interpretation.

Use of the Agent–Theme heuristic was incorporated into the
model in two qualitatively different ways to reflect two possible
degrees of influence that brain damage may exert on an individual’s
ability to make use of heuristics. First, there is a possibility that the
neural mechanisms responsible for heuristic interpretation may be
preserved under conditions of brain damage that result in apha-
sia. Throughout the remainder of this paper, heuristics that are
not degraded in proportion to aphasia severity will be referred to
as “impervious.” In this setting, heuristic interpretations (whether
accurate or faulty) would remain accessible regardless of the sever-
ity of the syntactic deficit. This circumstance was simulated by
setting the probability of heuristic success to 1.0 (sh in the tree
diagram of Figure 3) and resulted in Bernoulli values like those
of the center column in Figure 4. In this situation, once the apha-
sia exceeded a certain level of severity, the Bernoulli value for any
given structure would settle at 0.0 or 1.0.

Alternatively, the Agent–Theme heuristic could make use of the
same syntactic machinery as more detailed syntactic analysis, and
would suffer according to the severity of the aphasia. Through-
out the remainder of this paper, such a heuristic will be referred
to as “vulnerable.” Degradation of heuristic interpretations was
handled in much the same way as degradation of interpretations
generated by more detailed syntactic analysis. Interpretation of
NVN or NNV sequences was considered to rely on a simplified
categorial grammar (for tree-based metrics) and limited storage
and integration costs were estimated for the three-word heuristic
sequences (for DLT-based metrics). The probability of heuristic
success was computed in the same way as the probability of suc-
cess with full syntactic analysis. As shown in the right-hand panels
of Figure 4, Bernoulli values calculated with vulnerable heuristics
converged on a value of 0.5 (corresponding to guessing) when the
aphasia severity exceeded a certain level.

Figure 2 illustrates the probability space as a grid of boxes
in which the columns correspond to different probabilities of
using the Agent–Theme heuristic (or accepting an interpretation
generated by it). However, it is not certain that subjects with
syntactic disturbances have any capacity to suppress a heuristi-
cally generated interpretation, nor is it certain that the Agent–
Theme heuristic has value for explaining variation in aphasic
sentence comprehension performance. Separate searches for the

best aphasia severity parameter were undertaken in which the
search was restricted to the PMFs that presumed no use of heuris-
tics (h = 0.0) or obligatory use of heuristics (h = 1.0) in addition
to the default search in which patients were presumed to vary in
their tendency to apply the heuristic (or to accept interpretations
afforded by it). As a matter of convenience, these assumptions will
be referred to hereafter as “no heuristic use,” “free heuristic use,”
and “obligatory heuristic use.” Note that under the assumption of
free heuristic use, the Bernoulli value generated for a given level
of severity could fall anywhere between two extremes, depending
on the heuristic acceptance probability, h. For a given complex-
ity metric depicted in a row of Figure 4, these two extremes were
defined by the Bernoulli value in the left-most column (where
h = 0) and either the Bernoulli value in the middle column (where
h = 1 and the heuristic was impervious) or the one in the right
column (where h = 1 and the heuristic was vulnerable).

To summarize, each complexity metric was evaluated under the
following five different assumptions regarding heuristic use: (1)
with heuristic acceptance probability (h) set to 0.0 for all patients
(i.e., no use of heuristics), (2) with free use of an impervious
heuristic, (3) with free use of a vulnerable heuristic, (4) with oblig-
atory use of an impervious heuristic, and (5) with obligatory use
of a vulnerable heuristic. The difficulty noted in the introduction
of discerning between heuristic degradation and individual differ-
ences in heuristic application was addressed by comparison of the
model fit under these different assumptions.

RESULTS
ROOT MEAN SQUARED ERROR (ERROR)
Table 2 shows data from the comparison of the models’predictions
to actual patient scores with root mean squared error, after removal
of task and random effects. This measure of fit quality revealed
that Mx-S (the maximum of the storage costs) provided the most
accurate predictions (error = 0.377) with free use of a vulnera-
ble heuristic. No other complexity metrics fell within the 95%
confidence interval (0.352–0.402) under any heuristic assump-
tions. In the cross-validated analysis, Pr-C provided the best fit
(error = 0.467 with 95% CI 0.451–0.483) under the assumption
of a freely varying vulnerable heuristic. Under the assumption of
a freely varying impervious heuristic, the same metric achieved
an error within the 95% CI (error = 0.478). Obligatory use of
the impervious heuristic led to very inaccurate predictions, with
error > 6. (Because most of the subtests consisted of 10 sentence
presentations, it should be possible to achieve an error less than 5
by always predicting a score of 5 on every subtest. Therefore, an
error of around 5 suggests chance performance by the model.)

PERCENTAGE OF FITTED VALUES WITHIN ONE-HALF POINT OF ACTUAL
SCORE (PRECISION)
The second measure of fit quality was the percentage of fitted val-
ues that came within one-half point of the actual patient score
(precision – Table 3). In the routine analysis, Mx-S was associated
with 84.7% precision when paired with a freely applied, vulnerable
heuristic. Under these heuristic assumptions, no other complex-
ity metric fell within the 95% confidence interval (82.3–87.1).
However, when paired with other heuristic assumptions, the Mx-S
metric still fell within this confidence interval. With the assump-
tion of no heuristic use, Mx-S achieved 83.0% precision. With the
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Table 2 | Root mean squared error of fitted values in routine and cross-validated analyses.

Heuristic assumptions Error of fitted values Error of fitted values – cross-validated

Metric Value Metric Value

No heuristic Mx-S 0.432 (0.450) Pr-C 0.502 (0.518)

No alternates Mx-S 0.507

Pr-I 0.513

Free heuristic – impervious Mx-S 0.387 (0.413) Pr-C 0.478 (0.495)
†

No alternates Pr-S 0.493

Free heuristic – vulnerable Mx-S 0.377 (0.402)* Pr-C 0.467 (0.483)*

No alternates Nno alternates

Obligatory heuristic – impervious Mx-S 6.287 (6.451) Mx-T 6.267 (6.431)

All other metrics were within 95% CI All other metrics were within 95% CI

Obligatory heuristic – vulnerable Pr-I 0.793 (0.828) Pr-I 0.857 (0.894)

Mx-S 0.803 No alternates

Mx-C 0.828

Numbers in parentheses represent the upper limits of the 95% confidence interval (CI). For each heuristic assumption, the complexity metric that provides the best

fit is listed (unshaded) and other metrics that fell within the 95% CI of this metric are listed below (shaded).

*Indicates the best fit (lowest score) across all heuristic assumptions within a column.
† Indicates a measure that falls within the 95% CI of the lowest error measurement within the same column.

Table 3 | Percent of predictions within one-half point of actual score in routine and cross-validated analyses.

Heuristic assumptions Precision Precision – cross-validated

Metric Value and probability Metric Value and probability

No heuristic Mx-S 83.0 (80.5)
†

Mx-S 68.5 (65.6)
†

No alternates No alternates

Free heuristic – impervious Mx-S 84.0 (81.6)
†

Mx-S 70.6 (67.6)*

No alternates Pr-S 68.3
†

Free heuristic – vulnerable Mx-S 84.7 (82.3)* Mx-S 70.0 (66.9)
†

No alternates Pr-C 69.0
†

Pr-S 68.3
†

Obligatory heuristic – impervious Pr-I, Sum-I 10.7 (8.6) Mx-S 10.2 (8.2)

More than half the other

metrics fall within 95% CI

All other metrics fall

within 95% CI
Obligatory heuristic – vulnerable Mx-I 41.6 (38.4) Pr-I 41.4 (38.1)

Pr-I 40.9 Mx-C 39.6

Mx-S 40.9 Mx-S 38.5

Sum-I 40.2 Sum-I 38.5

Numbers in parentheses represent the lower limits of the 95% confidence interval (CI). For each heuristic assumption, the complexity metric that provides the best

fit is listed (unshaded) and other metrics that fell within the 95% CI of this metric are listed below (shaded).

*Indicates the best fit across all heuristic assumptions.
† Indicates that a measurement falls within the 95% CI of the highest score within a column.

assumption of free application of an impervious heuristic, Mx-S
achieved 84.0% precision.

In the cross-validated analysis, Mx-S gave the highest precision
(70.6%) under the assumption of a freely varying, impervious
heuristic. Under different heuristic assumptions, the same metric
(Mx-S) yielded precisions within the 95% CI of the best result (i.e.,
between 67.6 and 73.6): with no heuristic use, the precision was
68.5% and with a freely varying, vulnerable heuristic, the precision
was 70.0%. Again, the assumption of obligatory application of an

impervious heuristic led to very low precision in both analyses
(approximately 10%).

AKAIKE INFORMATION CRITERION
The linear mixed effects models were then compared in terms of
the AIC (Table 4). In the routine analysis, the best model paired Pr-
S with free application of a vulnerable heuristic (AIC = 2988.82).
Recall that the Pr-S metric was a product of probabilities, one
probability per word, each of which was degraded in proportion
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to storage cost at that word. Under the same heuristic assumptions,
Mx-S met the criterion of having greater than 5% probability of
minimizing information loss (AIC 2922.66). Under the assump-
tion of free application of an impervious heuristic, Pr-S and Mx-S
met this criterion (AIC 2993.57 and 2994.51, respectively).

In the cross-validated analysis, the best model consisted of
the Pr-S metric, combined with free application of a vulnerable
heuristic (AIC 3112.75). In this analysis, no other metrics met
the criterion of having greater than 5% probability of minimiz-
ing information loss. Once again, obligatory application of an
impervious heuristic led to the worst fit in both analyses.

POST HOC PERMUTATION TESTS
Permutation tests were undertaken to evaluate the best value
obtained for each of the measures of fit quality in the routine
and cross-validated analyses. In each case, the program was run
1,000 times, each time shuffling the probabilities in the probabil-
ity space for all values of h greater than 0. This procedure yielded
1,000 distinct predictions of patient performance, each of which
was evaluated with the corresponding measure of fit quality. The
null hypothesis for each test was that fit quality would not be better
than that expected to emerge by chance. The alternate hypothesis
was that fit quality would be better (i.e., lower for error and AIC,
and higher for precision) than measures generated with permuted
data. The resulting measurements of fit quality were sorted and
the one-tailed p-value of the best result produced for a given mea-
sure of fit quality (i.e., those measures marked with an asterisk in
Tables 2–4) was then calculated as the rank of the original best
result among the 1,000 results from the permuted models.

In five out of six cases, the p-value estimated by the permuta-
tion test fell below 0.05 (Table 5). These findings support the belief
that the improvement in fit observed with free variation in heuris-
tic application probability was not caused by mere addition of a
parameter. Rather, the fit was improved by the specific assumption
of free variation in application of an Agent–Theme heuristic.

DISCUSSION
This research is an effort to discern differences in utility among 12
candidate metrics of sentence complexity for explaining patterns
of aphasic sentence comprehension difficulty. The key findings
are as follows. First, among the complexity metrics evaluated,
DLT-based storage costs provide the best measure of sentence
complexity for this population. Second, this research provides
further support for the hypothesis that aphasic individuals employ
an Agent–Theme heuristic when interpreting sentences. Third,
aphasic individuals appear to vary in their tendency to make use

Table 5 | p-Values of best error, precision, and AIC results, computed

by permutation analysis.

Measure of

fit quality

Analysis Complexity

metric

Heuristic p-Value

(one-tailed)

Error Routine Mx-S Vulnerable 0.001

Error Cross-validated Pr-C Vulnerable 0.001

Precision Routine Mx-S Vulnerable 0.005

Precision Cross-validated Mx-S Impervious 0.057

AIC Routine Pr-S Vulnerable 0.001

AIC Cross-validated Pr-S Vulnerable 0.002

Table 4 | AIC scores of the linear mixed effects models with predictions from each metric as an independent variable from the routine and

cross-validated analyses.

Heuristic assumptions Akaike information criterion Akaike information criterion – cross-validated

Metric Value, t -statistic,

and probability

Metric Value, t -statistic,

and probability

No heuristic Mx-S 3053.56, 33.31, 8.75 × 10−15 Pr-S 3127.75, 30.79, 0.001

No alternates Mx-S 3131.42, 30.67, 8.83 × 10−5

Free heuristic – impervious Pr-S 2993.57, 35.38, 0.093
†

Pr-S 3123.17, 30.92, 0.005

Mx-S 2994.51, 35.31, 0.058† Mx-S 3125.74, 30.84, 0.002

Free heuristic – vulnerable Pr-S 2988.82, 35.6, 1.0* Pr-S 3112.75, 31.27, 1.0*

Mx-S 2992.66, 35.36, 0.147† No alternates

Obligatory heuristic – impervious Mx-S 3247.29, 1.90, 7.48 × 10−57 Mx-T 3246.15, 2.19, 1.08 × 10−29

All other metrics had

probability > 0.05 in

comparison to Mx-S

All other metrics had

probability > 0.05 in

comparison to Mx-T

Obligatory heuristic – vulnerable Mx-T 3118.53, 25.01, 6.82 × 10−29 Pr-S 3207.31, 9.79, 2.93 × 10−21

Pr-I 3123.34, 31.13, 6.16 × 10−30 Mx-S 3207.42, 10.56, 2.77 × 10−21

Pr-I 3208.15, 24.39, 1.92 × 10−21

For each model, three values are listed: the AIC, the t-statistic for the mixed-effects model, and the probability that the model would minimize information loss relative

to the best-fitting model (i.e., lowest AIC score) within the routine or cross-validated analysis.

*Indicates the model with the best fit across all heuristic assumptions.
† Indicates that the model has a greater than 5% probability of minimizing the information loss, relative to the best model. This probability was computed using Eq. 3.

Alternates were listed under each heuristic assumption if their AIC values were within 6 points of the lowest AIC value found under that assumption. (This difference

corresponds to at least a 5% probability of minimizing the information loss.)
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of this heuristic. Fourth, the ability to derive an interpretation
from the Agent–Theme heuristic may be degraded in proportion
to aphasia severity.

STORAGE COST-BASED MEASURES OF SENTENCE DIFFICULTY
Compared to tree-based metrics and other DLT-based metrics,
metrics based on DLT storage costs provide the most useful
characterization of sentence complexity as it relates to compre-
hension performance in aphasia (see Tables 2–4). Depending on
the heuristic assumptions and the measure of fit quality that is
employed, three DLT-based metrics emerge as winners: the max-
imum of the storage costs (Mx-S), the product of probabilities
degraded in proportion to storage costs (Pr-S), and the product
of probabilities degraded in proportion to combined storage and
integration costs (Pr-C). The DLT proposes that variation in sen-
tence complexity arises from both storage and integration costs
and that these costs draw on the same pool of resources. This pool
of resources is proposed to be either general working memory or
a syntax-specific form of working memory. The results presented
here, however, suggest that aphasia preferentially degrades storage,
i.e., the online maintenance of predictions of which syntactic cat-
egories will occur as a sentence is presented. Some proponents of
the DLT characterize storage costs as measuring language-specific
processes that relate closely to syntax and semantics (Grodner et al.,
2002). In contrast, these authors conjecture that integration costs
“may be reflective of a domain general principle applicable to any
serialized information processing” (p. 269).

The results presented here do not offer support to either side
of the controversy regarding the notion of language-specific cog-
nitive processes. One may speculate that syntactic computation in
the brain is supported by a working memory system that processes
information at a rate optimal for sentence interpretation, and that
disruption of this system leads to intermittent failure of the proces-
sor to maintain expected dependencies long enough to link them
with new words in the auditory stream. If so, then sentences might
represent one of very few types of stimuli that require processing of
sequences that unfold over an interval of hundreds to thousands
of milliseconds, and thus place a burden on this system. Such a
system may rely on low-frequency neural oscillations, just as more
rapid linguistic transitions (i.e., phonemes and syllables) may be
encoded with correspondingly rapid neural oscillations (Lohmann
et al., 2010; Giraud and Poeppel, 2012). There is some evidence of
anatomical and functional overlap between neural systems that
process language and those that process music or other non-
linguistic sequences with hierarchical structure (Koelsch et al.,
2005; Bahlmann et al., 2009; Sammler et al., 2011). Syntax-like
mechanisms underlying processing of these other stimuli may
require a memory system tuned to transitions that occur at a
rate similar to linguistic transitions at the level of phrases and
sentences.

AGENT–THEME HEURISTIC
This research offers support to the hypothesis that patterns of
aphasic sentence comprehension are due, at least in part, to
application of an Agent–Theme heuristic. Many accounts of apha-
sic sentence comprehension performance assume that subjects
make use of some form of heuristic strategy (Caramazza and Zurif,
1976; Grodzinsky, 1995a; Caplan et al., 1997; Grodzinsky, 2000; Su

et al., 2007), although the nature of the heuristic varies. In both
the routine and cross-validated analyses presented here, the best
fit was always obtained with the assumption that aphasic patients
make use of an Agent–Theme heuristic. With two of the measures
of fit quality (error and AIC – Tables 2 and 4) neither the routine
nor the cross-validated analyses give any support to models that
exclude the use of the heuristic.

A caveat arises in the interpretation of these data when pre-
cision is used as a measure of fit quality. Specifically, the Mx-S
metric, paired with the assumption of no heuristic use, performs
well enough that its precision falls within the 95% confidence
interval of the winning metric in the routine and cross-validated
analyses (Table 3). However, when paired with no heuristic use,
the Mx-S metric makes incorrect predictions with one of the most
commonly reported dissociations in aphasia (Berndt et al., 1996;
Caplan et al., 1996; Grodzinsky, 2000). Specifically, this pairing
assigns active and passive voice sentences identical Bernoulli val-
ues. Thus, in the absence of some form of heuristic use, the model
can provide no explanation for the fact that passive voice sen-
tences are empirically more difficult than actives, yet addition of
the Agent–Theme heuristic does not lead to a statistically signif-
icant improvement in performance. These findings contrast with
those from the other two measures of fit quality, and do not seem
sufficient to exclude the use of heuristics for language comprehen-
sion. Nevertheless they do raise the concern that the Agent–Theme
heuristic might be an incomplete characterization of the heuristic
strategies employed by these patients.

VARIATION IN USE OF HEURISTICS
While the weight of evidence discussed in the previous section
suggests that aphasic individuals do make use of an Agent–Theme
heuristic, it does not appear that acceptance of interpretations
derived from this heuristic is obligatory. This observation is par-
ticularly salient with obligatory acceptance of an impervious
heuristic. Under these assumptions, the error is in the range of
chance performance (Table 2), precision falls to 10% (Table 3),
and the probability of minimizing the information loss is at most
1.08 × 10−29. Obligatory application of the vulnerable heuristic
fares somewhat better, but still shows a relatively poor fit across
all measures in both the routine and cross-validated analyses. The
best-fitting models that incorporate the heuristic usually comprise
Bernoulli values derived with the assumption that patients vary
in their tendency to accept interpretations generated by heuris-
tics. These findings support the presence of variability in heuristic
acceptance over the presence of heuristic degradation alone (cf.
see Heuristics). Based on the results of a permutation analysis
(Table 5), the improvement in the fit of the model under the
assumption of free variation in heuristic acceptance does not
appear to be solely due to the addition of a parameter.

DEGRADATION OF HEURISTIC USE BY APHASIA
The findings reported here suggest that the ability to apply
the Agent–Theme heuristic is disrupted by aphasia, as has been
suggested by Hagiwara and Caplan (1990). In the routine analysis,
the metrics that provide the best fit are paired with a vulnerable
heuristic in every case. In the cross-validated analysis, the metrics
that provide the best fit are paired with a vulnerable heuristic for
two of the three measures of fit quality (error and AIC). However,
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with some of the measures of fit quality (precision and AIC in the
routine analysis, error in the cross-validated analysis), it was not
possible to completely exclude invulnerable heuristics. In one cir-
cumstance, an invulnerable heuristic provided the best fit (with use
of precision in the cross-validated analysis). Although the findings
are not in perfect harmony, it appears that the vulnerable heuris-
tic generally outperforms the impervious heuristic across all three
measures of fit quality.

LIMITATIONS
This research suffers from several limitations. Most importantly,
the data were collected in an experiment that was not designed
with the goal of discerning among different complexity metrics.
Acquisition of the data with different tasks led to the exclusion
of data from one task (OM) and added noise that could be
only partly removed using linear mixed effects models. Future
work should focus on a smaller number of candidate complex-
ity metrics and should include materials designed specifically to
differentiate among those metrics. Second, use of three different
measures of fit quality carries the risk of drawing multiple conflict-
ing conclusions, and in this case the measures do fail to identify a
consistent winner among the metrics (albeit perhaps not among
the theoretical foundations underlying the metrics). This failure
is mitigated somewhat by the fact that all three “winning” metrics
rely on storage costs from the DLT. None of them rely on tree-
based measures or solely on DLT-based integration costs. Third,
this work focuses on only one possible heuristic strategy. It is
possible that other strategies may apply or that some sequences
are preferred over others (i.e., perhaps NVN sequences are eas-
ier to parse than NNV sequences or erroneous interpretations of
NVN sequences are more difficult to suppress than those arising
from NNV sequences). Aphasic individuals may sometimes apply
unusual heuristics or guessing strategies, such as those based on the
spatial arrangement of individuals in pictures that are presented
(Chatterjee et al., 1995). This work cannot account for such effects.
Finally, the Bernoulli values here are calculated using a probability
tree that represents the logical conditions of interpretive mech-
anisms rather than a necessary temporal ordering of events. For
example, the tree (Figure 3) shows that acceptance of a (pos-
sibly erroneous) heuristic interpretation occurs “after” syntactic
mechanisms have failed. In contrast, in some theories heuristics
are proposed to be an early step in sentence comprehension, and
may provide scaffolding on which more precise syntactic mech-
anisms rely (Townsend and Bever, 2001; Ferreira et al., 2002). If

so, then generation of a complete syntactic parse might be impos-
sible when heuristic mechanisms fail, and might be substantially
easier when heuristic mechanisms succeed. Unfortunately, little
is known about how these heuristically generated representations
compete with or inform representations generated by the more
precise syntactic algorithms (Tabor et al., 2004). This issue should
be revisited with models that make explicit any potential map-
pings from heuristically generated representations to syntactically
robust representations.

CONCLUSION
Linguistic theory provides a foundation on which we may con-
struct an understanding of how language manifests in the brain
and how language functions may be disrupted by brain dam-
age. Both the tree-based and DLT-based metrics investigated here
have roots in a line of inquiry that uses patterns in language
itself as the sole source of evidence. Even the use of heuris-
tics in language comprehension has been investigated from a
purely linguistic viewpoint (Townsend and Bever, 2001). How-
ever, theories that depict natural language only in terms of dis-
crete symbols predict a perfect dissociation between structures
that are preserved and those that are disrupted when the system
is damaged. Thus, they lack a fundamental property of neural
systems known as graceful degradation. This work draws on
probability theory to provide a description of patterns that may
emerge when a symbol-processing system is partially degraded.
The results give support to the hypothesis that reduction of a
single resource is the chief source of variation among patients
with aphasia, and that the degraded resource is likely to be a
form of working memory involved in the storage of processed
material and the prediction of material required for complet-
ing a sentence. However, individual differences in heuristic use
also contribute to variation in comprehension among the aphasic
individuals.
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APPENDIX A
Structure: Active
Example: The man hit the father.
Content words: MAN HIT FATHER (favorable for NVN heuristic)
Canonical CCG parse: [ < [ > the man (1) ] [ > hit [ > the father (1) ] (2) ] (3) ]
Levels for complete sentence: 1, 1, 2, 3

Structure: Passive
Example: The boy was kissed by the girl.
Content words: BOY KISSED GIRL (unfavorable)
Canonical CCG parse:
[ < [ > the boy (1) ] [ < [ > was kissed (1) ] [ > by [ > the girl (1) ] (2) ] (3) ] (4) ]
Levels for complete sentence: 1, 1, 2, 3, 4

Structure: Cleft object
Example: It was the uncle who the boy kicked
Content words: UNCLE BOY KICKED (no heuristic parse)
Canonical CCG parse:
[ < it [ > was [ > the [ < uncle [ > who [ B> [ T> [ > the boy (1) ] (2) ] kicked (3) ] (4) ] (5) ] (6) ] (7) ] (8) ] (4)] (5)] (6)] (7)] (8)]
Levels for complete sentence: 1, 2, 3, 4, 5, 6, 7, 8

Structure: Cleft subject
Example: It was the boy who kicked the uncle.
Content words: BOY KICKED UNCLE (NVN – favorable)
Canonical CCG parse:
[ < it [ > was [ > the [ < boy [ > who [ > kicked [ > the uncle (1) ] (2) ] (3) ] (4) ] (5) ] (6) ] (7) ] (6)] (7)]
Levels for complete sentence: 1, 2, 3, 4, 5, 6, 7

Structure: Truncated passive
Example: The father was hit.
Content words: FATHER HIT (no heuristic parse)
Canonical CCG parse: [ < [ > the father (1) ] [ > was hit (1) ] (2) ]
Levels for complete sentence: 1, 1, 2

Structure: Reflexive genitive with semireflexive verb
Example: The uncle of the boy dressed himself.
Content words: (UNCLE) BOY DRESSED (NV heuristic – unfavorable)
Canonical CCG parse:
[ < [ < [ > the uncle (1) ] [ > of [ > the boy (1) ] (2) ] (3) ] [ > dressed himself (1) ] (4) ]
Levels for complete sentence: 1, 1, 2, 3, 1, 4

Structure: Reflexive genitive with transitive verb
Example: The uncle of the boy hit himself.
Content words: UNCLE BOY HIT (no heuristic parse)
Canonical CCG parse:
[ < [ < [ > the uncle (1) ] [ > of [ > the boy (1) ] (2) ] (3) ] [ > hit himself (1) ] (4) ]
Levels for complete sentence: 1, 1, 2, 3, 1, 4

Structure: Reflexive genitive baseline sentence
Example: The daughter of the aunt tickled the uncle.
Content words: DAUGHTER AUNT TICKLED UNCLE (NVN – unfavorable)
Canonical CCG parse:
[ < [ < [ > the daughter (1) ] [ > of [ > the aunt (1) ] (2) ] (3) ] [ > tickled [ > the uncle (1) ] (2) ] (4) ]
Levels for complete sentence: 1, 1, 2, 3, 1, 2, 4
Structure: Reflexive possessive with semireflexive verb
Example: The woman’s daughter dressed herself.
Content words: (WOMAN) DAUGHTER DRESSED (NV parse – favorable)
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Canonical CCG parse:
[ < [ > the [ > woman [ > ‘s daughter (1) ] (2) ] (3) ] [ > dressed herself (1) ] (4) ]
Levels for complete sentence: 1, 2, 3, 1, 4

Structure: Reflexive possessive with transitive verb
Example: The woman’s daughter bit herself.
Content words: (WOMAN) DAUGHTER BIT (no heuristic parse)
Canonical CCG parse:
[ < [ > the [ > woman [ > ‘s daughter (1) ] (2) ] (3) ] [ > bit herself (1) ] (4) ]
Levels for complete sentence: 1, 2, 3, 1, 4

(As with reflexive genitives, Bernoulli values were calculated for both semireflexive and transitive verbs and averaged.)

Structure: Reflexive possessive baseline sentence
Example: The woman’s niece kicked the man.
Content words: (WOMAN) NIECE KICKED MAN (NVN parse – favorable)
Canonical CCG parse:
[ < [ > [ > the woman (1) ] [ > ‘s niece (1) ] (2) ] [ > kicked [ > the man (1) ] (2) ] (3) ]
Levels for complete sentence: 1, 1, 2, 1, 2, 3

Structure: Subject–object relative
Example: The brother who the sister hit chased the girl.
Content words: BROTHER SISTER HIT CHASED GIRL (no heuristic parse)
Canonical CCG parse:
[ < [ > the [ < brother [ > who [ B> [ T> [ > the sister (1) ] (2) ] hit (3) ] (4) ] (5) ] (6) ] [ > chased [ > the girl (1) ] (2) ] (7) ]
Levels for embedded clause: 1, 2, 3, 4, 5, 6

Structure: Subject–subject relative
Example: The brother who kicked the uncle pinched the woman.
Content words: BROTHER KICKED UNCLE PINCHED WOMAN (1st NVN heuristic is favorable, second is unfavorable)
Canonical CCG parse:
[ < [ > the [ < brother [ > who [ > kicked [ > the uncle (1) ] (2) ] (3) ] (4) ] (5) ] [ > pinched [ > the woman (1) ] (2) ] (6) ]
Levels for embedded clause: 1, 2, 3, 4, 5

Structure: Active, conjoined theme
Example: The pig chased the lion and the cow.
Content words: PIG CHASED LION COW (NVN heuristic – favorable)
Canonical CCG parse:
[ < [ > the pig (1) ] [ > chased [ < [ > the lion (1) ] [ > and [ > the cow (1) ] (2) ] (3) ] (4) ] (5) ]
Levels for complete sentence: 1, 1, 1, 2, 3, 4, 5
Levels for complete sentence: 1, 1, 1, 2, 3, 4, 5

(The NVN heuristic is favorable if all pictures used that show the pig chasing the lion also show the pig chasing the cow, i.e., that
none show the pig and the cow chasing the lion or the cow watching the pig chase the lion. The NVN heuristic would lead to false truth
conditions for the latter picture. All analyses reported here assumed the heuristic was favorable.)

Structure: Dative
Example: The elephant passed the dog to the horse.
Content words: ELEPHANT PASSED DOG HORSE (NVNN heuristic – favorable)
Canonical CCG parse:
[ < [ > the elephant (1) ] [ > [ > passed [ > the dog (1) ] (2) ] [ > to [ > the horse (1) ] (2) ] (3) ] (4) ]
Levels for complete sentence: 1, 1, 2, 1, 2, 3, 4

Structure: Dative passive
Example: The lion was pulled to the elephant by the horse
Content words: LION PULLED ELEPHANT HORSE (NVNN heuristic – unfavorable)
Canonical CCG parse:
[ < [ > the lion (1) ] [ < [ > [ > was pulled (1) ] [ > to [ > the elephant (1) ] (2) ] (3) ] [ > by [ > the horse (1) ] (2) ] (4) ] (5) ]
Levels for complete sentence: 1, 1, 1, 2, 3, 1, 2, 4, 5
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Structure: Object–subject relative
Example: The horse kicked the elephant that touched the dog.
Content words: HORSE KICKED ELEPHANT TOUCHED DOG (first NVN heuristic is favorable, second is unfavorable)
Canonical CCG parse:
[ < [ > the horse (1) ] [ > kicked [ > the [ < elephant [ > that [ > touched [ > the dog (1) ] (2) ] (3) ] (4) ] (5) ] (6) ] (7) ]
Levels for complete sentence: 1, 1, 2, 3, 4, 5, 6, 7

Structure: Active, conjoined verb phrase
Example: The lion tagged the dog and chased the cow.
Content words: LION TAGGED DOG CHASED COW (first NVN heuristic is favorable, second is unfavorable)
Canonical CCG parse: [ < [ > the lion (1) ] [ < [ > tagged [ the dog (1) ] (2) ] [ > and [ > chased [ > the cow (1) ] (2) ] (3) ] (4) ] (5) ]
Levels for complete sentence: 1, 1, 2, 1, 2, 3, 4, 5
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APPENDIX B

Table A1 | Costs as estimated using dependency locality theory (DLT).

(A) The man hit the father

Integration 0 1 2 0 1

Storage 2 1 1 1 0

Combined 2 2 3 1 1

(P) The boy was kissed by the girl

Integration 0 1 0 2 0 0 1

Storage 2 1 1 0 1 1 0

Combined 2 2 1 2 1 1 1

(CO) It was the uncle who the boy kicked

Integration 0 0 0 1 0 0 1 4

Storage 1 1 1 0 1 2 1 0

Combined 1 1 1 1 1 2 2 4

(CS) It was the boy who kicked the uncle

Integration 0 0 0 1 0 2 0 1

Storage 1 1 1 0 1 1 1 0

Combined 1 1 1 1 1 3 1 1

(PT) The father was hit

Integration 0 1 0 2

Storage 2 1 1 0

Combined 2 2 1 2

(RG) The uncle of the boy hit himself

Integration 0 1 0 0 2 3 0

Storage 2 1 2 2 1 1 0

Combined 2 2 2 2 3 4 0

(GB) The daughter of the aunt tickled the uncle

Integration 0 1 0 0 2 3 0 1

Storage 2 1 2 2 1 2 1 0

Combined 2 2 2 2 3 5 1 1

(RP) The woman’s daughter dressed herself

Integration 0 1 2 3 0

Storage 2 2 1 1 0

Combined 2 3 3 4 0

(PB) The woman’s niece kicked the man

Integration 0 1 2 3 0 2

Storage 2 2 1 1 1 0

Combined 2 3 3 4 1 2

(SO) The brother who the sister hit chased the girl

Integration 0 1 0 0 1 3 4 0 1

Storage 2 1 3 4 3 1 1 1 0

Combined 2 2 3 4 4 4 5 1 1

(SS) The brother who kicked the uncle pinched the aunt

Integration 0 1 0 1 0 1 4 0 1

Storage 2 1 3 2 2 1 1 1 0

Combined 2 2 3 3 2 2 5 1 1

(ACTH) The pig chased the lion and the cow

Integration 0 1 2 0 1 0 0 1

Storage 2 1 1 1 0 1 1 0

Combined 2 2 3 1 1 1 1 1

(D) The elephant gave the dog to the horse

Integration 0 1 2 0 1 0 0 1

Storage 2 1 2 2 1 1 1 0

Combined 2 2 4 2 2 1 1 1

(Continued)
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Table A1 | Continued

(DP) The lion was pulled To the elephant by the horse

Integration 0 1 0 2 0 0 1 0 0 1

Storage 2 1 1 0 1 1 0 1 1 0

Combined 2 2 1 2 1 1 1 1 1 1

(OS) The horse kicked the elephant that touched the dog

Integration 0 1 2 0 1 1 2 0 1

Storage 2 1 1 1 0 1 1 1 0

Combined 2 2 3 1 1 2 3 1 1

(ACVP) The lion tagged the dog and chased the cow

Integration 0 1 2 0 1 0 2 0 1

Storage 2 1 1 1 0 1 1 1 0

Combined 2 2 3 1 1 1 3 1 1
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