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Abstract

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered as

the gold standard for accurate, sensitive, and fast measurement of gene expression. Prior

to downstream statistical analysis, RT-qPCR fluorescence amplification curves are summa-

rized into one single value, the quantification cycle (Cq). When RT-qPCR does not reach the

limit of detection, the Cq is labeled as “undetermined”. Current state of the art qPCR data

analysis pipelines acknowledge the importance of normalization for removing non-biological

sample to sample variation in the Cq values. However, their strategies for handling undeter-

mined Cq values are very ad hoc. We show that popular methods for handling undetermined

values can have a severe impact on the downstream differential expression analysis. They

introduce a considerable bias and suffer from a lower precision. We propose a novel method

that unites preprocessing and differential expression analysis in a single statistical model

that provides a rigorous way for handling undetermined Cq values. We compare our method

with existing approaches in a simulation study and on published microRNA and mRNA gene

expression datasets. We show that our method outperforms traditional RT-qPCR differential

expression analysis pipelines in the presence of undetermined values, both in terms of

accuracy and precision.

1 Introduction

High-throughput reverse transcription quantitative polymerase chain reaction (RT-qPCR) is

a popular technology for gene expression profiling. An important advantage of qPCR is the

speed, specificity and sensitivity of the qPCR assays. qPCR is often referred to as the gold

standard for gene expression profiling [e.g. [1]]. Therefore, it is commonly used within the

context of diagnostic and prognostic testing as well as for biological validation of biomarkers

discovered in large screening experiments with microarray or next generation sequencing

technologies. RT-qPCR is a cyclic process in which targeted molecules are amplified and
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simultaneously quantified by measuring a fluorescence intensity. The raw RT-qPCR profiles

are typically summarized into a single value, the quantification cycle Cq. Common procedures

for calculating Cq-values are based on the number of cycles needed to cross a certain threshold,

or on second derivatives of the amplification curve [e.g. [2]]. If a target is not expressed or the

amplification step fails, the threshold is not reached after the maximum number of cycles

(limit of detection or LOD) and the Cq is undetermined. A typical qPCR dataset thus consists

of both expressed and undetermined Cq-values (UV). To our knowledge, the existing methods

for handling UV in qPCR experiments are very ad hoc. Popular approaches either remove UV

or perform imputation. The former approach ignores data that is informative whereas the lat-

ter results in artifacts. Although the truncation at the LOD has implications for all types of sub-

sequent data analysis (e.g. cluster analysis, absolute quantification, . . .), our method is

specifically developed for differential expression analysis.

Similar to other gene expression workflows, differential expression analysis with qPCR

involves a) preprocessing, b) statistical analysis and c) correction for multiple testing. The

existing qPCR analysis pipelines are sequential: first, technical sample variation is reduced in a

separate normalization step and subsequently multiple hypothesis tests are conducted.

Although the effect of the pre-processing can be quite substantial, it is typically ignored in the

subsequent analysis steps. This can imply an incorrect control of the significance level α,

which can lead to an increased false positive rate or a reduced power. Within a microarray

context, it has been shown that error propagation can improve the accuracy of the differential

expression analysis substantially. But, even when error propagation is provided, the analysis

can still be suboptimal: each step in a modular approach is optimized individually without tak-

ing the previous and the future analysis steps into account [3].

We present a unified censored normal regression (UCNR) model for differential expression

analysis of RT-qPCR data. In contrast to a sequential approach, a “unified” method simulta-

neously performs normalization and statistical testing, while correctly accounting for UV. In

the presence of UV, our method outperforms state of the art RT-qPCR data analysis pipelines

in terms of accuracy and precision. Our hypothesis tests are more robust to UV and the

method increases the stability of the estimated normalization factors. The paper is organised as

follows: we introduce the unified censored normal regression model and elaborate on the

interpretation of the parameters for differential microRNA/gene expression. Next, we compare

the robustness of hypothesis testing and normalization of our model-based approach to popu-

lar methods for analysing RT-qPCR data. Finally, we illustrate the method on a microRNA

gene expression study in neuroblastoma to find differentially expressed genes between MYCN
amplified and MYCN single copy tumor samples [4], and on a mRNA gene expression study

in neuroblastoma to detect differentially expressed prognostic genes between patients with

higher risk of death from disease or higher risk of relapse or progression and patients with low

risk [5].

2 Materials and methods

MicroRNA gene expression data in neuroblastoma (NB) with 430 profiled microRNAs and 18

small RNA controls, as described in [4], is used to set up a simulation study and analysed as a

case study for differential expression analysis between two tumor groups in 61 samples, with

22 MYCN amplified (MNA) and 39 MYCN single copy (MNSC) tumor samples (61 sam-

ples × 448 microRNAs = 27328 observations). A second case study involves a cohort of 343

neuroblastoma patients from a study of the International Society of Pediatric Oncology, Euro-

pean Neuroblastoma Group (SIOPEN) with 58 prognostic genes, that serves as a multigene-

expression signature for patients with neuroblastoma [5], and 5 reference genes. Finally, we
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consider an independent cohort of 236 patients from the Children’s Oncology Group (COG)

that was used as validation cohort for testing the multigene-expression signature [5]. The raw

miRNA expression data, experimental annotation and sample annotation are available at

https://github.com/CenterForStatistics-UGent/UCNR.

3 Results

3.1 Unified censored normal regression model

From a statistical point of view, UV can be considered as right censored, i.e. the data is incom-

pletely observed, but UV are known to correspond with a Cq of at least LOD cycles (e.g.

LOD = 40); we thus observe an undetermined value as the LOD. Suppose that C� represents

the hypothetical Cq value that would have been observed if there was no LOD. In statistical

terms the partly unobservable C� is referred to as a latent process. Our approach consists in

modelling this latent process and the parameters of this model are expected to give an unbiased

assessment of differential expression.

Formally, if C refers to the observed Cq and C� to the latent Cq process, then they are related

through

C ¼ min ðC�; LODÞ: ð1Þ

Consider a study with J samples and I targets. The samples are divided into K groups and the

objective of the study is testing for differential expression between the groups. The censored

regression model is a hierarchical statistical model. On the top layer, Eq (1) relates the

observed C to the latent process C�. The latter is further modeled as a classical linear model. In

particular,

C�ijk ¼ mþ ai þ bj þ ðagÞik þ εij; ð2Þ

where

• μ: intercept

• αi: effect of target i, with i = 1, . . ., I

• βj: effect of sample j, with j = 1, . . ., J

• αγik: interaction effect between target i and group k, with k = 1, . . ., K

• εij � Nð0; s2
i Þ: error term reflecting the random noise.

While the sample effect βj is included for preprocessing purposes, the interaction effect

between target i and group k is a measure for differential expression of target i between a refer-

ence group and the group k of interest (see S1 Appendix). The parameter βj represents a nor-

malization factor that is similar to the modified global mean [6], which is an improvement of

the global mean strategy [4]. The modified global mean procedure (MOD) consists of (a) cen-

tering the responses within each target for attributing an equal weight to each target in the sub-

sequent normalisation; (b) centering the modified responses of (a) within each sample around

the mean of all expressed targets (or around the mean of the targets expressed in all samples).

MOD results in adequate removal of technical variability, as evidenced by more pronounced

and balanced differential expression [6].

The model defined by Eqs (1) and (2) is referred to as the UCNR model, which is a variation

of the Tobit model [7]. Parameters can be estimated by means of maximum likelihood [8]. The

maximum likelihood estimators are consistent and asymptotically normal. The UCNR can be

used for testing differential expression of targets and also for the estimation of differential
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expression in terms of the log2 fold change, while simultaneously normalizing the data. For tar-

get i, this log2 fold change is denoted by δi, which is a contrast of the interaction effect parame-

ters (see S1 Appendix). Within our framework, generalised Wald tests for H0: δi = 0 can be

used for assessing differentially expressed targets. In the absence of UV this procedure is

very similar to a sequential analysis that exists in MOD normalized data followed by a t-test

(see S1 Appendix).

The estimator of δi takes the UV correctly into account. Treating UV as censored observa-

tions has the advantage that we continue working with all raw observed data and no ad hoc

data manipulations are required. We illustrate the robustness of the estimator in the presence

of UV by means of a simulation study with real data characteristics and compare it with classi-

cal sequential analyses. To make both methods comparable, we consider classical analyses

using multiple t-tests, i.e. a single t-test for testing for differential expression for each target.

In the RT-qPCR literature, there is no consensus on preprocessing UV. Imputation of the

undetermined Cq values by the LOD is suggested [9], while other approaches rely on a regres-

sion to the mean. In a simulation study we consider three common strategies for handling UV.

The first strategy imputes the undetermined value by the LOD and normalizes the imputed

values by subtracting the modified global mean or the mean of the selected reference genes

(LOD). A second strategy imputes the UV by the maximum normalized value of each individ-

ual target and adds 1 so as to preserve the undetermined realization (MNV+1). The third strat-

egy is a k-nearest neighbor algorithm that determines the k nearest neighbors for a gene using

a Euclidian metric and imputes the UV by the average of the normalized expressed values of

its neighbors (KNN). The latter strategy is provided within the SAM algorithm [10] for imput-

ing missing values.

3.2 Robustness of the differential expression estimator in the presence

of undetermined values

We conducted a simulation study based on the microRNA gene expression NB data [4]. From

the total of 448 microRNAs profiled in the NB set, we discarded the microRNAs with at least

1 UV regardless of the group (MNA or MNSC) and only considered the remaining set of 201

microRNAs. For each individual microRNA, we shifted one group to equalize the mean nor-

malized Cq-values (MOD) in the two groups. For computational reasons and optimal graphi-

cal display, we considered a random subset of 50 microRNAs from which we altered 20

microRNAs by adding a δi = 2 or δi = −2 differential expression to the Cq values in one group.

We divided the number of up- and downregulated microRNAs equally over the study. The dif-

ference δi is thus interpreted as a linear fold change of 4. The remaining 30 microRNAs are not

differentially expressed (δi = 0). The δ parameters in this uncensored data set (δi = 0 or δi = ±2)

are considered as the true parameter values. Hence, a total of 61 samples × 50 micro-

RNAs = 3050 observations are involved.

We evaluated the impact of UV for the different methods in an iterative procedure. First

the LOD is set to the largest Cq value in the dataset. At each step s = 1, . . ., 1000 of the proce-

dure, we censored the maximum uncensored observation in the dataset, resulting in a stepwise

decrease of the LOD, and we test for differential expression of the microRNAs using the

UCNR and the classical analyses with the three imputation strategies (LOD, MNV+1 and

KNN with k = 10). At the end of the procedure, about a third of the data is censored. We evalu-

ate the estimates d̂ i in Fig 1. The study illustrates the robustness of the estimator of differential

expression in the presence of UV (Fig 1). For iteration s, each analysis provides a set of esti-

mates d̂ i of the parameters δi. Fig 1A tracks the mean difference between δi and d̂ i, which is an

estimate of the bias, while Fig 1B tracks the square root of the mean squared error (RMSE).

qPCR differential gene expression analysis
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Both statistics assess the robustness of the estimators in the presence of UV: the smaller the

bias and the RMSE the better the estimator. The graphs suggest that the bias of the estimator

obtained by UCNR is minimal and approximately piecewise constant in this study. The esti-

mators provided by the sequential analyses fluctuate heavily due to the ad hoc imputations.

Fig 1B shows a smaller RMSE for our new estimator in comparison with the classical analyses.

One may argue that in a small interval (between about 300 to 600 steps) UCNR seems to have

a slightly larger bias as compared to the other methods, but in this interval the UCNR method

has a very good precision (Fig 1). Both graphs demonstrate the robustness of the new estimator

(UCNR) of differential expression in the presence of UV, which improves upon the traditional

approaches with respect to both accuracy and precision.

S1 and S2 Figs show results for the bias and the RMSE in a similar simulation study, but

starting from 100 and 200 completely observed microRNAs (i.e. no UV at the start of the simu-

lations). The conclusions are the same as for the 50 microRNA setting, demonstrating the scal-

ability of the method.

3.3 Robustness of the hypothesis tests in the presence of undetermined

values

Using the same data and simulation setup as in the previous paragraph, Figs 2 and 3 illustrate

the behaviour of individual hypothesis tests for differential expression (H0: δi = 0; H1: δi 6¼ 0).

The figures track the differential expression estimates and p-values for two representative tar-

gets for which δi = ±2, for both the classical sequential approaches with multiple t-tests and the

UCNR. As before, the estimator from the UCNR is more robust in the presence of UV, and

Fig 1. (A) Bias and (B) RMSE of the differential expression estimates of 50 microRNAs, as a function of the number of censored Cq values. At

the bottom the grey circles indicate the removal of a complete miRNA (as a consequence of censoring). The numbers on top of some of the grey circles

represent the number of remaining miRNA in the study. Estimators are obtained by UCNR (green solid line), multiple t-tests with MOD normalization and

LOD imputation of the UV (red dashed line), multiple t-tests with MOD normalization and MNV+1 imputation (blue dotted line) and multiple t-tests with

MOD normalization and KNN imputation (black dotted-dashed line). A bias closer to zero suggest more accurate estimates. A small RMSE indicate a high

precision of the estimator. The sharp jumps in the curves happen when a complete miRNA gets censored, which heavily affects the normalisation

constants.

https://doi.org/10.1371/journal.pone.0182832.g001
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improves upon the sequential approaches in terms of accuracy and precision. This is also

reflected in the UCNR p-values (Fig 2(b)), that do not vary as much as with the sequential

approaches and remain significant even when a large fraction of the Cq values is set to UV. The

uncertainty of the estimates from the four approaches is shown in a box plot (Fig 2(c)). After

the introduction of approximately 350 UV the microRNA was removed from the study due to

the large amount of censoring (19 observations in the MNA group and 37 in the MNSC

group), which is common practice when too many datapoints are missing (typically 80% or

more).

In the presence of UV, the estimates of differential expression with the sequential

approaches differ due to the different imputation strategies. Imputation with MNV+1 treats

the UV as ties, which explains the better performance of this estimator and an increase of the

p-values only at the end. The estimates of the four analyses tend towards zero as censoring

increases, but the bias is clearly larger for the sequential analyses. The p-values obtained from

classical analyses inflate heavily at low levels of censoring, while the p-values of the UCNR

remain stable over a larger range of censoring. Correctly rejecting the null hypothesis is more

often guaranteed with the UCNR. Intuitively, the proportion of censored observations that a

Fig 2. A differentially expressed microRNA (true δi = 2) tracked during the simulation study. (A)

Estimates of differential expression by UCNR (green solid line), multiple t-tests with MOD normalization and

LOD imputation (red dashed line), MNV+1 imputation (blue dotted line) and KNN imputation (black dotted-

dashed line). Censoring an observation at some point for this particular microRNA is marked by a black circle

(MNA group) or a grey square (MNSC group) on the horizontal axis. (B) Plot of − log10 p-values for the

hypothesis test (H0: δi = 0; H1: δi 6¼ 0). (C) Box plot of differential expression estimates.

https://doi.org/10.1371/journal.pone.0182832.g002

qPCR differential gene expression analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0182832 August 17, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0182832.g002
https://doi.org/10.1371/journal.pone.0182832


statistical test can handle before a type II error (falsely accept H0) is committed, indicates the

robustness of the hypothesis test. For the sequential analyses, these proportions are 0.69

(LOD), 0.79 (MNV+1) and 0.34 (KNN), while for UCNR this proportion is equal to 0.90.

Larger values indicate more robustness. Fig 3 shows the results for a microRNA (true δi = −2)

that is heavily censored in the MNA-group and is removed from the study after approximately

300 steps. The p-values (Fig 3(b)) remain constant and significant (5% significance level) with

increasing censoring for both UCNR and the sequential analyses, except for KNN for which

the p-values diverge. Note that the bias of the estimator of δi remains small for UCNR, while

the sequential analyses provide estimates that again tend towards zero as censoring increases

(Fig 3(a)), because they rely on the observations of both groups for the ad hoc imputation

of UV.

With a sequential method it is also possible to apply a Wilcoxon rank sum test after normal-

isation. In S3 Fig results are presented from the same simulation study, but with the t-test

replaced by the Wilcoxon rank sum test after MNV+1, LOD or KNN normalisation. Again the

p-values of the UCNR method remain more stable with increasing censoring.

Fig 3. A differentially expressed microRNA (true δi = −2) tracked during the simulation study. (A)

Estimates of differential expression by UCNR (green solid line), multiple t-tests with MOD normalization and

LOD imputation (red dashed line), MNV+1 imputation (blue dotted line) and KNN imputation (black dotted-

dashed line). Censoring an observation at some point for this particular microRNA is marked by a black circle

(MNA group) or a grey square (MNSC group) on the horizontal axis. (B) Plot of − log10 p-values for the

hypothesis test (H0: δi = 0; H1: δi 6¼ 0). (C) Box plot of differential expression estimates.

https://doi.org/10.1371/journal.pone.0182832.g003
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3.4 Latent mean normalization

Centering the response around the global mean of the expressed microRNAs adequately

removes technical variation and reduces the number of false negatives [4]. This normalization

procedure is further improved by first centering the targets and thus attributing equal weight

to the individual targets [6]. Our model extends this approach by including the UV. In particu-

lar, the estimator of the βj parameter in the UCNR model (2) has the interpretation of a nor-

malisation factor for sample j. The robustness of this estimator (b̂ j) is illustrated in Fig 4 which

tracks the estimates of the true normalization factor for two representative samples in the sim-

ulation study obtained by UCNR, MOD normalization and MOD normalization on common

targets. The latter computes the normalization factor using only the targets that are expressed

in all samples. Since the censored observations are not considered, both MOD normalization

estimates rapidly diverge from the true normalization factor (Fig 4), which explains the peaks

and the crossing curves in Fig 1. The UCNR method requires no imputations and takes the

uncertainty of the estimates into account. We refer to this normalization procedure as latent
mean normalization (LMN). Finally, note that the normalisation does not have to be per-

formed as a separate step when the UCNR method is used for testing for differential expres-

sion, because testing and normalisation are combined in the unified statistical framework.

3.5 Normalization using reference genes

Many normalization strategies have been described in literature. Both MOD and LMN require

a large number and unbiased set of genes to be profiled. An empirical approach to select stably

expressed reference genes for normalization purposes has previously been described using a

gene-stability measure based on the mean pairwise variation between a given candidate refer-

ence gene and other tested candidate reference genes [11]. In the field of microRNA gene

Fig 4. Estimates of the normalization factor of two representative samples ((A) sample 2, (B) sample 3) in the simulation study. Estimates are

obtained by LMN (green solid line), MOD normalization (red dashed line) and MOD normalization on common targets (blue dotted line). The true

normalization factor is represented by the horizontal line.

https://doi.org/10.1371/journal.pone.0182832.g004
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expression, however, only a few candidate reference microRNAs are reported and small non-

coding RNAs are often used instead. This approach assumes however that none of these small

RNAs are differentially regulated in the experiment. The selection of reference microRNAs is

thus rather empirical. Large scale microRNA expression profiling studies global mean expres-

sion value normalization is characterized by a high expression stability and thus results in an

adequate removal of technical variability [4]. This normalization procedure avoids the neces-

sity of identifying good reference RNAs. For small datasets, the procedure using reference

genes [11] is often the default procedure. In [4], a strategy to identify stably expressed micro-

RNAs is presented.

The UCNR Eq (2) can be easily adapted to perform normalization using multiple reference

genes. First, we introduce an indicator Ri for the reference genes:

Ri ¼
0 : gene i is of interest

1 : gene i is a reference gene:

(

Let C� again refer to the latent Cq. Then, the UCNR with normalization based on reference

makes use of

C�ijk ¼ mþ ai þ bj þ Rizj þ ð1 � RiÞðagÞik þ εij; ð3Þ

where the interpretations of the parameters μ, αi and (αγ)ik and the error term εij remain as for

model (2), and μ + βj + zj now represents the normalization factor. The parameter of interest,

differential expression δi of gene i, is again a contrast of the parameters and it is estimated

simultaneously with normalization. As before, generalized Wald tests can be used for hypothe-

sis testing (further details in S1 Appendix).

3.6 Case study I: Upregulation in the miR-17-92 cluster in MYCN

amplified cancer cells

The use of model (2) is illustrated by analyzing the NB dataset [4] to detect up- and downregu-

lated microRNAs between MNA and MNSC tumor samples. The LOD was set to 35, as values

above this threshold were considered to be noise [12]. This corresponds with 32.5% censored

observations. The parameters of the UCNR model are again estimated using maximum likeli-

hood estimation which allows for potential heteroskedasticity between the microRNAs.

MYCN amplification is the most prominent genetic alteration in neuroblastoma. Here we

focus on the miR-17-92 cluster, which is known to be upregulated in the MYCN amplified

tumors [13]. The miR-17-92 cluster is among the first microRNAs recognized as key compo-

nents of a molecular network that impacts tumorigenesis and tumor maintenance [14].

Table 1 lists the results of the differential expression analysis for the miR-17-92 cluster. All

microRNAs from the cluster were found to be significantly upregulated in the MNA tumor

samples (at the false discovery rate level of 5%). These findings are similar as described in [4]

and [6], except for miR-17-3p which is now also found as differentially expressed. This makes

sense because the entire cluster is simultaneously transcribed.

3.7 Case study II: Differential gene expression analysis of a multigene-

expression signature for patients with neuroblastoma

In a second case study, we demonstrate model (3) for a multigene-expression signature that

serves as a risk predictor for patients with neuroblastoma [5]. The signature supports 59 genes

that were carefully selected using an innovative data-mining strategy. The prediction model

was built using 30 training samples, randomly selected from a cohort of 343 neuroblastoma
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patients from the SIOPEN study. We perform a differential expression analysis on 58 prognos-

tic genes on the 30 training samples (15 deceased high-risk (HR) and 15 low-risk patients (LR)

with a long progression-free survival time). Furthermore, 5 reference genes (AluSq, HMBS,

HPRT1, SDHA, and UBC) are included for normalization.

The LOD is set at 39. This choice is based on the application of a data-driven LOD selection

criterion to the COG data (see S1 Appendix). Since the COG data and the SIOPEN data were

generated on the same platform, an appropriate LOD for the former is expected to be good for

the latter too. Moreover, by using an independent dataset for the selection of the LOD, the sta-

tistical inference procedures described earlier in the paper (e.g. hypothesis testing) remain

valid. The selection of LOD = 39 was also confirmed as follows. With the SIOPEN data, a 95%

confidence interval for the average Cq value for the detection of 1 molecule for an individual

gene, based on the y-intercepts of a 5-point 10-fold serial dilution standard curve, is given by

[37.90; 38.32] (qbasePLUS version 2.4). This gives a biological justification for the choice of 39.

With a LOD of 39, 2.5% of the observations are censored. Differential expression analysis

between HR and LR was performed by the UCNR method.

The UCNR detects 43 out of the 58 genes as differentially expressed (5% false discovery

rate) between the HR and LR group. A full listing of the analysis results is available as supple-

mentary material (S1 Table). The analysis was also performed with the classical MNV+1 and

LOD on the normalized data, using reference gene normalization. Both analyses detect 38 dif-

ferentially expressed genes. Fig 5 displays a Q-Q plot of the -log10 transformed p-values from

the UCNR model (3) versus those from the classical MNV+1. The figure illustrates that the

UCNR method has very often larger -log10p values (i.e. smaller p values). Since UCNR correctly

controls for the type I error, the method thus guarantees a higher sensitivity. Table 2 compares

the number of called significant and non-significant genes for both analyses (UCNR Eq (3)

and MNV+1). UCNR Eq (3) detects 5 (7-2) extra differential expressed genes.

4 Discussion

We present a unified censored normal regression (UCNR) model for assessing differential

expression in qPCR experiments. The method acts on the raw Cq-values. It performs normali-

zation and differential expression analysis simultaneously while providing a statistical rigorous

way for handling undetermined Cq values (UV). Generalized Wald tests are used for assessing

differential expression and the model parameters of interest have an interpretation in terms of

log2 fold changes.

Table 1. Differential expression analysis with UCNR in the miR-17-92 cluster. The 8 microRNAs are

upregulated in the MNA tumor samples. For each individual microRNA in the cluster, estimates d̂ i of the log2

fold change (MNSC—MNA), adjusted p-values (correcting for multiple testing according to [15]) and 5% false

discovery rate-adjusted confidence intervals [16] for the average fold change are given.

d̂ i
adj. p-value (BH) 5% FDR-adjusted CI for the avg FC

hsa-mir-17-3p 0.59 3.58 × 10−5 [1.21; 1.86]

hsa-mir-17-5p 1.04 1.16 × 10−6 [1.49; 2.85]

hsa-mir-18a 1.16 1.89 × 10−6 [1.55; 3.24]

hsa-mir-18a� 1.11 3.75 × 10−9 [1.63; 2.88]

hsa-mir-19a 1.33 4.34 × 10−11 [1.85; 3.44]

hsa-mir-19b 1.06 7.95 × 10−8 [1.55; 2.82]

hsa-mir-20a 1.35 3.73 × 10−11 [1.87; 3.47]

hsa-mir-92 1.83 2.12 × 10−20 [2.61; 4.84]

https://doi.org/10.1371/journal.pone.0182832.t001
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Ignoring censoring will generally lead to inconsistent estimators [8]. Figs 1 to 4 illustrate

the influence of censoring on the differential expression estimator, the normalization factor

estimator and the hypothesis tests.

Sequential analyses are sensitive to censored observations as suggested by the fluctuations

in the estimates of differential expression in Fig 1. The impact of ignoring censoring on two

representative differentially expressed microRNAs (true |δi| = 2) is illustrated in Figs 2 and 3:

the p-values and estimates of the log2 fold change remain more stable with increasing degree

of censoring with the UCNR method than with the other analysis methods. Figs 2 and 3 show

the results of a microRNA with heavy censoring in the sense that these particular microRNAs

are removed from the study after about 300-350 steps of reducing the LOD. Note that all meth-

ods result in biased log2 fold change estimates and low power to detect differential expression

when censoring reaches levels so that few samples with concentrations above the LOD remain.

Fig 5. Q-Q plot of the −log10 p-values for the UCNR model (3) versus MNV+1. The p-values result from

the differential gene expression analysis of the multigene-expression signature for patients with

neuroblastoma. The solid line represents the bisector. The UCNR method typically has larger −log10 p-values

than the MVN+1 method, resulting in a higher sensitivity.

https://doi.org/10.1371/journal.pone.0182832.g005

Table 2. Differential gene expression analysis of the multigene-expression signature for patients with

neuroblastoma. Comparison of the significant (S) and non-significant (NS) differential expressed genes (5%

false discovery rate) by UCNR model (3) versus MNV+1. UCNR detects 5 extra differential expressed genes.

MNV+1

NS S

UCNR NS 13 2

S 7 36

https://doi.org/10.1371/journal.pone.0182832.t002
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For microRNAs containing less censored observations, or when the microRNA is not differen-

tially expressed, UCNR still outperforms the other methods, but the differences between the

methods are smaller (S4 and S5 Figs).

The proportion of censored observations in a microRNA before a type II error (false nega-

tive) or type I error (false positive) occurred, is used to measure the robustness of the test. For

individual microRNAs, the proportions resulting from our model are never smaller and

mostly larger than for the classical analyses, indicating its robustness (less sensitive to undeter-

mined values).

The UCNR method extends the common normalization strategies, such as modified global

mean normalization and the usage of reference genes or genes resembling the mean. Classical

approaches first normalize the data to remove technical variability and statistical analyses are

conducted on the normalized data. As a result, the standard errors of the fold change estimates

are incorrectly estimated. Our method accounts for estimating the normalization factor.

When normalizing using reference genes, the unified model uses the reference genes through-

out the full analysis, resulting in a larger sample size and more degrees of freedom. This also

affects the p-values. Classical sequential analyses are thus found to be more conservative than

the unified method with reference genes. Note that the unified method also correctly controls

the type I error rate. Hence, the power gain does not come at the expense of false positives.

Large scale experiments with many targets being measured are less vulnerable for incorrect

standard errors estimates, even when a sequential approach is applied. From a theoretical per-

spective, correct standard error estimates and p-values can be obtained from a sequential pro-

cedure by applying an adjustment factor and corrected degrees of freedom. Note, however,

that after these adjustments, the sequential approaches will still suffer from lower accuracy and

precision in the presence of UV.

The UCNR method is successfully applied on a large scale neuroblastoma study to detect

up and down regulated microRNAs between MYCN amplified (MNA) and MYCN single copy

(MNSC) tumor samples. We compared the results for the MNA upregulated miR-17-92 cluster

with the results obtained by the sequential analyses using multiple t-tests after MOD normali-

zation and imputation of UV according to LOD and MNV+1 (S2 and S3 Tables). The findings

are similar, except for miR-17-3p, which is not detected as a differentially expressed micro-

RNA with the classical approaches. The estimates of the log2 fold change differences obtained

with UCNR are considerably larger. UCNR employs the information contained in the cen-

sored observations throughout the full analysis, resulting in more robust and efficient estima-

tors in the presence of UV.

The method is also applied on a mRNA neuroblastoma dataset for detecting differentially

expressed genes within a 58 gene-expression signature. Reference gene normalization was

used. Since the signature is validated as an accurate risk predictor for patients with neuroblas-

toma, it is expected that most genes are differentially expressed between the high-risk and the

low-risk group. UCNR illustrates its power by detecting more differential expressed genes

than with the classical analyses.

The LOD censoring threshold plays a non-ignorable role in a censored regression context.

In the SIOPEN case study, an optimal LOD was selected through the evaluation of a data-

driven loglikelihood-based criterion on two independent datasets that were profiled on a simi-

lar platform as the SIOPEN data. Both analyses rendered an optimal LOD which could be bio-

logically validated.

Since the UCNR model relies on a normal distributed process, the method is thus only

applicable when the assumption of normality is not violated. The same holds for analyses with

multiple t-tests. However, in the absence of the normality assumption the properties of the

estimator still hold asymptotically (i.e. for a large number of observations). If the UV results
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from technical error such as failure of amplification rather than a concentration below the

LOD, an additional assumption of this technical failure being random (i.e. the failure of

quantification is not related to the concentration, the particular target, . . . being assessed) is

needed.

Since the UCNR model is basically a linear regression model, it can also be adapted to more

complex study designs (e.g. k-group designs) or can be extended by including one or more

confounder variables. The method guarantees to correctly account for the normalization

which is simultaneously performed with the estimation.

The R code and data used to conduct the simulation and case studies are available in a

GitHub repository accessible at https://github.com/CenterForStatistics-UGent/UCNR. The

case studies have been documented so that they can be adapted to analyse the users’ own data.

5 Conclusion

We proposed a unified censored normal regression (UCNR) model for analyzing differential

expression in qPCR experiments. The model acts on the raw Cq-values and accounts for unde-

termined values (UV) without requiring ad hoc imputation algorithms. The model integrates

the normalization procedure within the statistical analysis. We showed that the estimator and

hypothesis tests are robust in the presence of UV and that our method outperforms popular

imputation methods in terms of accuracy and precision.

Supporting information

S1 Fig. Bias (left) and root mean squared errors (RMSE) (right) of the differential expres-

sion estimates of 100 microRNAs, as a function of the number of censored Cq values. At

the bottom the grey circles indicate the removal of a complete miRNA (as a consequence of

censoring). The numbers on top of some of the grey circles represent the number of remaining

miRNA in the study. Estimators are obtained by UCNR (green solid line), multiple t-tests with

MOD normalization and LOD imputation of the UV (red dashed line), multiple t-tests with

MOD normalization and MNV+1 imputation (blue dotted line) and multiple t-tests with

MOD normalization and KNN imputation (black dotted-dashed line). A bias closer to zero

suggest more accurate estimates. A small RMSE indicate a high precision of the estimator. The

sharp jumps in the curves happen when a complete miRNA gets censored, which heavily

affects the normalisation constants.

(PDF)

S2 Fig. Bias (left) and root mean squared errors (RMSE) (right) of the differential expres-

sion estimates of 200 microRNAs, as a function of the number of censored Cq values. At

the bottom the grey circles indicate the removal of a complete miRNA (as a consequence of

censoring). The numbers on top of some of the grey circles represent the number of remaining

miRNA in the study. Estimators are obtained by UCNR (green solid line), multiple t-tests with

MOD normalization and LOD imputation of the UV (red dashed line), multiple t-tests with

MOD normalization and MNV+1 imputation (blue dotted line) and multiple t-tests with

MOD normalization and KNN imputation (black dotted-dashed line). A bias closer to zero

suggest more accurate estimates. A small RMSE indicate a high precision of the estimator. The

sharp jumps in the curves happen when a complete miRNA gets censored, which heavily

affects the normalisation constants.

(PDF)

S3 Fig. Two differentially expressed microRNAs (true δi = 2 (up) and δi = −2 (down))

tracked during the simulation study. Plot of −log10(p)-values for the hypothesis tests: UCNR
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(green solid line) and Wilcoxon rank sum after MNV+1(blue dotted line), LOD (red dashed

line) and KNN (black dotted-dashed line normalisation.

(PDF)

S4 Fig. The graphs illustrate the differences between the methods when applied to differen-

tially expressed microRNAs that show only minor censoring. Two differentially expressed

microRNAs (true |δi| = 2) are tracked during the simulation study. (a) Estimates of differential

expression by UCNR (green solid line), multiple t-tests with MOD normalization and LOD

imputation (red dashed line), MNV+1 imputation (blue dotted line) and KNN imputation

(black dotted-dashed line). Censoring an observation at some point for this particular micro-

RNA is marked by a black circle (MNA group) or a grey square (MNSC group) on the hori-

zontal axis. (b) Plot of −log10 p-values for the hypothesis test (H0: δi = 0;H1: δi 6¼ 0). (c)

Box plot of differential expression estimates.

(PDF)

S5 Fig. The graphs illustrate the differences between the methods when applied to non-

differentially expressed microRNAs (true δi = 0). Two non-differentially expressed micro-

RNAs are tracked during the simulation study. (a) Estimates of differential expression by

UCNR (green solid line), multiple t-tests with MOD normalization and LOD imputation (red

dashed line), MNV+1 imputation (blue dotted line) and KNN imputation (black dotted-

dashed line). Censoring an observation at some point for this particular microRNA is marked

by a black circle (MNA group) or a grey square (MNSC group) on the horizontal axis. (b) Plot

of −log10 p-values for the hypothesis test (H0: δi = 0;H1: δi 6¼ 0). (c) Box plot of differential

expression estimates.

(PDF)

S1 Table. Results for SIOPEN data (UCNR). The table shows parameter estimates and their

standard errors (SE) for each of the 58 microRNAs, as well as the two-sided p-values and

adjusted p-values (using the Benjamini and Hochberg procedure) for testing for no differential

expression. 43 out of the 58 microRNAs are differentially expressed at the 5% false discovery

rate.

(PDF)

S2 Table. Results for the miR-17-92 cluster, using t-tests after MOD normalization and

LOD imputation of UV. The table shows the estimated log2 fold change (d̂ i), the p-value and

the adjusted p-value (Benjamini and Hochberg correction).

(PDF)

S3 Table. Results for the miR-17-92 cluster, using t-tests after MOD normalization and

MNV+1 imputation of UV. The table shows the estimated log2 fold change (d̂ i), the p-value

and the adjusted p-value (Benjamini and Hochberg correction).

(PDF)

S1 Appendix. Derivations of differential expression in the unified censored regression

model and the selection of an optimal LOD.

(PDF)
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