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Abstract
Early-onset Alzheimer’s disease (AD) is associated with variants in amyloid precursor protein (APP) and presenilin (PSEN) 1 
and 2. It is increasingly recognized that patients with AD experience undiagnosed focal seizures. These AD patients with 
reported seizures may have worsened disease trajectory. Seizures in epilepsy can also lead to cognitive deficits, neuroinflam-
mation, and neurodegeneration. Epilepsy is roughly three times more common in individuals aged 65 and older. Due to the 
numerous available antiseizure drugs (ASDs), treatment of seizures has been proposed to reduce the burden of AD. More 
work is needed to establish the functional impact of seizures in AD to determine whether ASDs could be a rational therapeutic 
strategy. The efficacy of ASDs in aged animals is not routinely studied, despite the fact that the elderly represents the fastest 
growing demographic with epilepsy. This leaves a particular gap in understanding the discrete pathophysiological overlap 
between hyperexcitability and aging, and AD more specifically. Most of our preclinical knowledge of hyperexcitability in 
AD has come from mouse models that overexpress APP. While these studies have been invaluable, other drivers underlie 
AD, e.g. PSEN2. A diversity of animal models should be more frequently integrated into the study of hyperexcitability in 
AD, which could be particularly beneficial to identify novel therapies. Specifically, AD-associated risk genes, in particular 
PSENs, altogether represent underexplored contributors to hyperexcitability. This review assesses the available studies of 
ASDs administration in clinical AD populations and preclinical studies with AD-associated models and offers a perspective 
on the opportunities for further therapeutic innovation.
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Introduction

Elderly patients represent the fastest growing demographic 
with epilepsy, and epilepsy is, in fact, an under recognized 
comorbidity of Alzheimer’s disease (AD). The relative 
risk of unprovoked seizures markedly increases in patients 
with early-onset AD, reaching up to 87-fold greater risk 

for seizures in individuals with AD onset between 50 and 
59 years versus that of the general population [1]. Even late-
onset AD patients have a greater incidence of unprovoked 
seizures relative to that which would be expected in simi-
larly aged individuals (hazard ratio 8.06; 95% confidence 
interval 3.23–16.61 [2]). Silent hippocampal (focal) seizures 
have been reported in AD [3]; neuronal hyperexcitability is 
thus an underexplored contributor to the behavioral seque-
lae of AD. Epilepsy and AD also share many pathological 
similarities: temporal lobe atrophy, neuronal death, gliosis, 
neuritic alterations, and neuroinflammation [4–8]. Both are 
characterized by neuropsychiatric comorbidities—anxiety, 
aggression, and depression—that negatively impact quality 
of life. Both AD and epilepsy are associated with neuronal 
hyperexcitability; yet how seizures additively or secondarily 
contribute to the onset and severity of behavioral deficits in 
AD needs additional study. The purpose of this review is 
to thus assess the available studies of ASD use for seizures 
in clinical AD and preclinical studies with AD-associated 
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models, and offer a perspective on the untapped opportuni-
ties for further therapeutic innovation.

The precise mechanisms leading to the development of 
seizures in the setting of AD are still under investigation 
and in need of further study. Nonetheless, the mechanisms 

of seizure generation are well established in the epilep-
tic brain [9]. Neuronal depolarization drives the open-
ing of voltage-gated sodium and calcium channels in 
the presynaptic neuron, leading to presynaptic release of 
glutamate into the synaptic cleft (Fig. 1). Post-synaptic 

Fig. 1  There are numerous aspects of the excitatory synapse that can 
lead to seizures and disease worsening in Alzheimer’s disease. (1) 
Through yet undetermined mechanisms, hyperactivity can lead to 
electrographic seizures that induce neuronal depolarization within 
hippocampal and cortical brain circuits. Neuronal depolarization 
leads first to sodium channel opening, and then calcium channel 
opening. (2) Depolarization induces vesicular trafficking and release 
of glutamate into the synapse. There, glutamate interacts with both 
NMDA- and AMPA-type receptors, driving increased intracellular 
 Ca2+ levels. (3) High synaptic activity causes the cleavage of amyloid 
precursor protein (APP) by first β-, and then γ-secretase to generate 
β- and γ-C-terminal fragments (CTFs) of APP essential to amyloid 
β (Aβ) plaque formation. (4) Extracellular Aβ induces further gluta-
mate release from astrocytes, as well as blocks the astrocytic Glt-1 
transporter that is essential for glutamate reuptake. This effectively 
increases the amount of glutamate within the neuronal synapse and 
potentiates NMDA receptor activation, leading to a cycle of neuronal 

activation and (5) more seizures. This excessive neuronal activity and 
glutamate-mediated excitotoxicity then further increases neuroin-
flammation and microglial activation. In the context of Alzheimer’s 
disease, PSEN2 variants cause dysfunctional microglial response to 
neuroinflammation and can be proinflammatory, exacerbating neuro-
degeneration. Several approved antiseizure drugs have been assessed 
in preclinical AD models and their molecular targets within the excit-
atory synapse are depicted. This includes agents that act at sodium 
channels—valproic acid (VPA), carbamazepine (CBZ), phenytoin 
(PHT), lamotrigine (LTG); those that work at synaptic vesicles—lev-
etiracetam (LEV) and brivaracetam (BRV); those that target  Ca2+ 
channels—gabapentin (GBP); and those that act on AMPA-type glu-
tamate receptors—topiramate (TPM). Nonetheless, there are numer-
ous additional antiseizure drugs that work through alternative targets 
in the excitatory synapse that could be useful to attenuate hyperactiv-
ity and excitotoxic neurodegeneration. Created with BioRender.com
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α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA)-type glutamate receptors (AMPARs) are critical 
to fast excitatory neurotransmission, whereas N-methyl-
d-aspartate (NMDA)-type glutamate receptors (NMDARs) 
mediate much of the slow excitatory potentials essential to 
global information processing. Glutamate can also interact 
with ionotropic kainate receptors (KAR), although the pre-
cise role of KARs in seizures and neuronal signaling is less 
clearly established [10]. Presynaptic sodium and calcium 
channels driving excitatory neurotransmission and post-
synaptic glutamate receptors are thus generally relevant 
therapeutic targets in epilepsy. Further, sodium and calcium 
channels may contribute not only to seizure generation and 
maintenance, but also indirectly promote the excitotoxic 
neurodegeneration of AD through excessive glutamate 
release [11]. Indeed, the non-competitive NMDAR antag-
onist, memantine, does provide some degree of benefit in 
moderate- to severe-AD through the neuroprotective effects 
of reduced NMDA receptor activation and resulting reduc-
tions in the influx of calcium ions [12].

In addition to driving excitotoxic glutamate release, 
neuronal hyperexcitability may also promote expression of 
pathological drivers of AD (Fig. 1) causing further neurode-
generation. Synaptic activity drives the cleavage of amyloid 
precursor protein (APP; [13]) by first β-, then γ-, secretase 
to form amyloid-β (Aβ) plaques sequestered into the inter-
stitial space [14]. Aβ plaque accumulation is a pathological 
hallmark of AD. Increased Aβ deposition further indirectly 
compounds glutamate neurotoxicity via effects on astrocytes 
(Fig. 1). Under normal conditions, astrocytes remove excess 
glutamate from the synaptic cleft via the excitatory amino 
acid transporter 2 (EAAT2/glutamate transporter-1 (Glt-
1; [9]). Accumulated Aβ prevents the normal clearance of 
synaptic glutamate through Glt-1 [15], leading to excessive 
glutamate levels in the synaptic cleft to the point of extra-
synaptic NMDAR activation driving excitotoxic cell death. 
Aβ also interacts with synaptic NMDARs and enhances cal-
cium influx with neuronal depolarization [16]. Secondarily, 
Aβ plaque accumulation may lead to the misfolding of tau 
protein and aggregation, a neuronal microtubule-associated 
protein that plays a core role in axonal transport. Tau protein 
is hyperphosphorylated in AD, disrupting normal neuronal 
functions. Accumulation of hyperphosphorylated tau protein 
leads to the neurofibrillary tangles that are a defining fea-
ture of clinical AD [17, 18]. Accumulation of neurofibrillary 
tangles can cause neurodegeneration and cognitive deficit. 
Thus, neuronal hyperactivity leads to a number of pathologi-
cal changes in the AD brain that additively increase seizure 
susceptibility, promote excitotoxic neuronal death, and Aβ 
accumulation (Fig. 1).

Seizure control with antiseizure drugs (ASDs) may be 
a potential strategy to reduce the burden of AD [19]. With 
over 30 FDA-approved ASDs [20], there is an untapped 

opportunity to repurpose ASDs to possibly curb the sever-
ity of AD. Indeed, efforts have been made in recent years 
to assess the potential disease-modifying effects of ASD 
administration in AD, including findings that levetiracetam 
(LEV) may be disease-modifying [21–23]. However, insuf-
ficient clinical or preclinical studies have been conducted 
to definitively establish whether seizures in AD patients 
or animal models are not also sensitive to other ASDs. 
Moreover, the clinical studies that have been performed 
have not been uniformly conducted such that direct com-
parisons across studies is quite challenging. A considerable 
proportion of patients with epilepsy do not receive thera-
peutic benefit from available ASDs [24]. In this regard, 
preclinical models of AD are essential to simultaneously 
explore in greater detail the mechanisms associated with 
seizures in AD and potentially uncover novel treatments 
for hyperexcitability, not to mention rigorously establish 
the efficacy of ASDs in an aged AD-associated neurologi-
cal substrate. The worldwide percentage of people aged 
over 65 is increasing considerably (Fig. 2a), but basic sci-
ence has not sufficiently responded to address this clinical 
need. ASD discovery is not traditionally conducted in aged 
rodents [25–28]. Just as the use of juvenile Scn1a ± mice 
has uncovered novel treatments for Dravet syndrome (e.g., 
cannabidiol [29]), a rare pediatric epileptic encephalopa-
thy, there is substantial opportunity to more frequently 
integrate aged animals, and in particular aged AD mod-
els, into ASD discovery to advance novel treatments and 
identify novel therapeutic targets (Fig. 2b). Clinical and 
preclinical evidence reveals a chance to prioritize ASD dis-
covery for seizures in AD. Such efforts may also translate 
to improved treatments for epilepsy, in general. Seizures 
could be a manageable feature of AD [30–32] because sei-
zures in the elderly are generally not drug-resistant [33]. 
However, it is essential to clearly establish the direct con-
tribution of seizures on AD burden and neuropathology 
so that future preclinical and clinical trials can be more 
rationally and rigorously conducted.

Clinical Efficacy of Antiseizure Drugs 
in Patients with Alzheimer’s Disease

The focal seizures in AD may be difficult to recognize [3, 
31] and may even go undetected by surface EEG electrodes 
that only detect cortical activity [3]. Undetected seizures are 
untreated seizures. Whether the onset or severity of behavio-
ral sequelae of AD is exacerbated by uncontrolled focal sei-
zures is presently unclear. Synaptic activity itself can drive 
the release of Aβ [14]. It is therefore reasonable to presume 
that administration of ASDs could reduce the accumulation 
of Aβ through the direct suppression of seizures and hyper-
excitability (Fig. 1).
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Limited studies have suggested that pharmacologi-
cal control of focal seizures with ASDs administered 
to patients with AD may slow disease progression and 
reduce the severity of neuropsychiatric comorbidities [22]. 
Yet, the evidence that ASDs have therapeutic potential in 
clinical AD has been mixed (Table 1, [19]). Furthermore, 
there has been no standardized approach to patient enroll-
ment, ASD selection, or trial methodology to rigorously 
assess the therapeutic potential of ASD administration 
in a homogenously defined AD patient population. Lim-
ited clinical evidence would suggest that ASDs carry the 
potential to improve cognitive function in mild cognitive 
impairment [21], highlighting an untapped opportunity 
to improve clinical management of AD. For example, in 
a randomized study, valproic acid (VPA; 10–12 mg/kg/
day) or placebo was administered to 313 participants with 
moderate AD over 24 months (122 patients completed the 
study), yet the study concluded that VPA was associated 
with brain volume loss [34]. In another randomized study, 
313 individuals with mild-to-moderate AD were given 
VPA (10–12 mg/kg/day) or placebo for a 24-month period 
and again demonstrated a greater loss of hippocampal and 
brain volume in the VPA treatment group [35]. Further-
more, VPA administration led to adverse effects and no 
reduction in disease burden. VPA exerts a broad efficacy 
profile in patients with epilepsy and the precise mecha-
nism by which it exerts an anticonvulsant effect is still 
unclear [20]; whether a specific molecular target could be 
more useful for the seizures in AD is currently unknown. 
Available evidence thus-far clearly does not indicate that 

all ASDs are the panacea for AD and that inappropriate 
ASD selection may, in fact, carry the potential to do fur-
ther harm.

Rational selection of ASDs based on specific mecha-
nism may instead be more beneficial in AD (Table 1). For 
example, LEV monotherapy (1000–1500 mg/day) in 25 
patients with advanced AD and seizures demonstrated that 
72% of patients remained seizure-free over 14–25 months, 
suggesting that LEV could improve seizure control in AD 
[36]. A different randomized prospective study of 95 AD 
patients aged 60–90 years old with documented seizures 
was designed to compare the anticonvulsant efficacy of LEV 
(n = 38), phenobarbital (PB; n = 28), and lamotrigine (LTG; 
n = 29); there were no detectable differences in the 12-month 
change in seizure freedom and responder rate [22]. As a 
secondary objective, that study also assessed the cognitive 
impact of ASD administration to AD patients with seizures 
versus the cognitive performance of AD patients without 
seizures [22]. PB evoked negative cognitive effects, LEV 
improved attention, short-term memory, and oral fluency, 
and LTG conferred better moods [22]. Sodium channel-
blocking ASDs, like LTG, have gained interest and off-label 
use for the management of impulsive aggression [37–39], 
suggesting that rationally selected ASDs may attenuate 
specific AD-associated neuropsychiatric symptoms. Phar-
macological control of undetected focal seizures in AD 
with appropriately and rationally selected ASDs (e.g., LTG 
for neuropsychiatric deficits vs LEV for cognition) could 
potentially improve quality of life and prolong the period of 
independent function. LEV was developed as an enantiomer 

Fig. 2  a The percentage of people aged 65+ has steadily increased as 
a total percentage of the global population since 1950. Children aged 
0–19 represent a progressively smaller proportion of the global popu-
lation whereas elderly people aged 65  increasingly make up a larger 
proportion of the worldwide population. Elderly patients represent the 
fastest growing demographic with epilepsy, likely as a result of the 
numerous inciting events that can cause epilepsy in the elderly (e.g., 
stroke, brain tumor, traumatic brain injury/falls). Dashed line at 2020 
represents estimated populations going forward from UN Popula-
tion database access date of December 14, 2020 (https:// popul ation. 
un. org/ wpp/ DataQ uery/). b In the preclinical space, there has been 

relative concordance between the publications with aged and pediat-
ric animal models until approximately 2013–2014, likely as a result 
of several research initiatives (e.g., Citizens United for Research in 
Epilepsy Infantile Spasms Initiative, 2013 NINDS Curing the Epi-
lepsies Meeting, etc.). Since this time, published studies using pedi-
atric epilepsy models have significantly accelerated whereas similar 
publications with aged animal models of epilepsy has not similarly 
increased. This represents a significant gap in preclinical research that 
does not match the clinical patient demographic needs. # indicates 
reporting of all studies published up until the Pubmed access date of 
December 14, 2020
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of the nootropic agent, piracetam [40], so studies to fur-
ther elucidate the cognitive enhancing effects of LEV and 
related compounds (e.g. brivaracetam) in AD are warranted. 
However, whether LEV and LTG, or other ASD combina-
tions, could additively or synergistically reduce the burden 
of comorbidities of AD must be first rigorously established 
in well-controlled clinical trials. Studies in AD patients 
should also be prioritized to assess the antiseizure potential 
of newer ASDs (e.g. cannabidiol) that have been found to 
benefit cognitive function in patients with epilepsy [41] or 
animal epilepsy models [42].

ASD use in the elderly is already high; at least 10% of 
nursing home residents take at least one ASD [43–45]. Older 
adults with chronic conditions pose a particular prescribing 
challenge due to the high potential for drug-drug interactions 
[46], which can limit medication adherence due to adverse 
drug effects and/or adversely affect disease outcomes. Care-
ful selection of ASDs in elderly populations is particularly 
important because many of the available ASDs can alter 
the metabolism and/or bioavailability of drugs that are also 
prescribed for other aging-related conditions [47]. For exam-
ple, in a random sample of 5% of Medicare beneficiaries 
collected from 2008 to 2010, roughly 1 in 4 incident cases 
of epilepsy received an ASD in combination with at least 
one non-ASD that could adversely affect pharmacokinetic 
interactions between the agents [46]. In particular, over 
50% of older adults with epilepsy continue to use phenytoin 
(PHT) after 12 months [48], yet PHT is associated with high 
potential for drug-drug interactions in this population [46]. 
Moreover, poor adherence to specific medications by older 
adults can also put individuals at a higher risk of dementia 
[49]. Elderly patients with seizures are thus a particularly 
challenging group for drug treatment due to the numerous 
potential risks associated with polypharmacy. Selection 
of ASDs in combination with other medications used in 
this patient population should be carefully and rigorously 
assessed with both predictive animal models and carefully 
designed clinical studies, prior to widespread clinical imple-
mentation in patients with or at risk for AD.

Preclinical Models of Aging and Epilepsy 
Should Address Clinical Needs

Despite the greater incidence of epilepsy in elderly indi-
viduals and increased risk of comorbid seizures in AD 
patients, few aged animal seizure and epilepsy models have 
been sufficiently characterized to support drug discovery 
for aging-related seizures [50]. Comparative pharmacol-
ogy with prototypical ASDs has not been extensively col-
lected in the available animal models of AD to inform on the 
potential pharmacokinetic, toxicity, or drug interactions in 
aged or geriatric populations. This is in stark contrast to the AD
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rigorous evaluation of comparative pharmacology in rodent 
drug-resistant epilepsy models [26, 51–53]. Information 
concerning the risk of seizure in rodents with AD-associated 
mutations would support their utility for moderate- to high-
throughput preclinical approaches for drug development 
for aged and geriatric patients with seizures. Mouse strain 
alone can significantly impact seizure threshold [54], as can 
age [55], but whether there are additive effects of aging and 
AD-associated mutations on seizure susceptibility or ASD 
efficacy should be more comprehensively assessed.

Preclinical models are invaluable to predict tolerability 
and pharmacokinetics in a specific population, e.g. aged 
individuals. However, the ASDs on the market were brought 
forth based on efficacy in young adult, neurologically intact 
wild-type rodents [56]. Preclinical information concern-
ing the efficacy and safety of investigational agents is not 
routinely defined in aged animals with seizures [28, 56]. 
While there has been a recent explosion in available pre-
clinical models of pediatric epilepsy used for ASD discovery 
(Fig. 2b), there has not been a similar rise in the use of aged 
animals. Rodents with AD-associated variants are simply not 
used for ASD identification or differentiation [57]. Safety 
and tolerability of FDA-approved ASDs in aged individuals 
has been established in clinical trials [58–60], even though 
aged rodents share many of the age-related physiological 
changes of humans [61] and could be important surrogates 
to predict tolerability for this demographic. For example, 
we detect marked tremors in aged mice acutely treated with 
high doses of LTG [62], an adverse effect also reported in 
elderly patients treated with LTG [63]. It is plausible that 
use of aged rodents for ASD tolerability testing could have 
predicted such observations, as has already been done with 
other rodent epilepsy models [64, 65]. As a result, the man-
agement of seizures in elderly patients, including those with 
seizures in AD, may be underinformed.

Preclinical studies have defined the cognitive profile, 
baseline EEG activity, and changes in synaptic morphol-
ogy associated with APP overexpression at a single age in 
mice [66–68], yet the basic understanding of age-related 
susceptibility to seizures in the presence of AD-associated 
risk genes is still relatively undefined. Rodent models with 
early onset-AD-associated variants are particularly valuable 
to define how hyperexcitability may be associated with AD 
throughout life. While the age of AD onset varies mark-
edly based on the specific genetic variant, the pathology 
and clinical course of early-onset AD is similar to that of 
sporadic AD [69]. Early-onset AD is associated with point 
mutations or indels within PSEN1, PSEN2 or APP genes, 
or with a duplication of APP. However, the majority of our 
preclinical knowledge of hyperexcitability in AD has come 
from mice that overexpress APP [23, 67]. While spontane-
ous seizures are well-tolerated in most APP/PS1 mice, ~ 38% 
of animals can succumb to seizure-related mortality [68], 

constraining resources and driving up costs for moderate-
throughput ASD discovery [57]. Thus, models that over-
express early-onset AD-associated APP variants have been 
helpful to explore the manifestation of hyperexcitability in 
AD, but there still remains a need to establish whether and 
how other drivers of AD affect seizures and disease course.

There is scattered preclinical data assessing the impact 
of ASDs on disease burden in a diversity of AD models; 
that which is available also predominantly focuses on the 
effects of ASDs on behaviors in models that overexpress 
APP as a result of early-onset AD-associated genetic vari-
ants. Furthermore, studies conducted thus far do not consist-
ently nor uniformly apply anticonvulsant doses of ASDs to 
discretely interrogate antiseizure versus disease-modifying 
effects (Table 2). For example, chronic (4-week) adminis-
tration of low dose VPA to 7- to 9-month-old APP23 trans-
genic mice reduced neuritic plaques (i.e. amyloid plaques) 
by 56–76% and improved spatial memory. A similar course 
of VPA administered to 6-week-old APP23/PS45 double-
transgenic mice (which express presenilin-1 with G384A 
variant) resulted in a nearly 80% reduction in plaques [70]. 
However, the dose of VPA (30 mg/kg, i.p., q.i.d.) used in 
either strain was far below that which acutely blocks focal 
seizures in wild-type C57Bl/6 mice (169–276 mg/kg, i.p.) 
[51], including similarly aged C57Bl/6 mice (186 mg/kg, 
i.p.) [62]. The frequency of administration (once/day) was 
also insufficient to attain steady-state seizure suppression 
with such a rapidly metabolized ASD in mice [71]. Thus, 
the effects of once-daily VPA administration on Aβ plaques 
in APP23 and APP23/PS45 mice was likely not due to direct 
seizure control [72, 73]. Repeated once-daily i.p. adminis-
tration of topiramate (20 mg/kg), LEV (50 mg/kg), or VPA 
(30  mg/kg) to 7-month-old APP/PS1 mice reduced Aβ 
plaques by 45.8%, 51.9%, and 53.1% respectively, and atten-
uated behavioral deficits [74]. However, as with the studies 
by Qing and colleagues [70], the doses and frequency of 
topiramate and LEV administration of [74] were well below 
the acutely anticonvulsant doses in mice [71], suggesting 
that any disease-modification was not directly attributable 
to prevention of electrographic seizures.

Studies that have directly assessed the antiseizure 
effects of ASDs in preclinical models with AD-associated 
genotypes are even more limited (Table 2). These stud-
ies have consistently relied on APP overexpressing mouse 
models. The doses that were assessed in such studies were 
not also uniformly applied to encompass an anticonvulsant 
range. Ziyatdinova and colleagues demonstrated a ben-
eficial dose-related effect of VPA (30 vs 300 mg/kg, i.p.) 
on spontaneous electrographic discharges (EDs) in APP/
PS1 mice [75]. Yet, there was no associated effect of VPA 
(300 mg/kg) on soluble and insoluble Aβ levels in that 
study [75]. Low-dose LEV (20–75 mg/kg) has been found 
to consistently suppress spontaneous EDs in APP/PS1 [72, 
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73] and hAPPJ20 mice [23]. This dose range of LEV is 
anticonvulsant against focal seizures in young and aged 
C57Bl/6 mice [51, 62]. Acute administration of the T-type 
calcium channel blocker, ethosuximide (ESM; 200 mg/kg), 
can also reduce EDs in APP/PS1 mice [72, 73] but high 
dose ESM (400 mg/kg) is ineffective in hAPPJ20 mice 
[23]. This dose of ESM is also acutely anticonvulsant in 
a mouse audiogenic seizure model of reflex seizure [71] 
and myoclonic seizures [76]. Brivaracetam (8.5 mg/kg/
day for 28 days) has been shown to not only reduce EDs, 
but reverse memory impairments in APP/PS1 mice [73], 
likely due to anticonvulsant effects on EDs. Notably, bri-
varacetam has a superior profile of brain bioavailability in 
rodents, more rapid penetration into the brain, and is sub-
stantially more potent than LEV in numerous acute seizure 
models in male mice, including this 8.5 mg/kg/day dose 
[77, 78]. Certainly, some specific ASDs have been found 
to effectively suppress seizures in mouse AD models.

The spontaneous seizures of APP/PS1 mice aged 4- to 
6-months-old were also found to be sensitive to repeated 
administration of anticonvulsant doses of the sodium chan-
nel-blocking ASDs, carbamazepine (CBZ) and phenytoin 
(PHT), and the broad spectrum ASD, VPA [68]. However, 
that study also demonstrated that high dose administration 
of the sodium channel-blocking ASDs (40 mg/kg CBZ; 
40 mg/kg PHT) worsened the electrographic discharges 
of 1–3 individual mice [68], consistent with later findings 
with similarly high dose of PHT (40 mg/kg) in hAPPJ20 
mice [23]. While these findings for seizure worsening 
with high dose administration of sodium channel block-
ing ASDs is at first glance concerning for a mouse model 
of AD, it is well established that sodium channel blockers 
can lower seizure threshold at high doses [76, 79], thus 
care should be taken to not over interpret these findings as 
specific to AD models. Lastly, Jin and colleagues have also 
more recently demonstrated an effect of ESM (200 mg/
kg) and LEV (75 mg/kg) on state-dependent spike-wave 
discharges (SWDs) in aged APP/PS1 mice [80]. This study 
highlights the capacity to evaluate the efficacy of ASDs on 
specific types of epileptiform activity that is also observed 
in genetically susceptible rat models of absence epilepsy 
[57, 81, 82]. There is scattered evidence that ASDs can 
effectively reduce spontaneous EDs and SWDs in mice 
that overexpress APP. However, the studies have not been 
uniformly conducted using well-established principles for 
pharmacological studies [51], and the outcome measures 
have been mixed, clouding interpretation of any findings 
and limiting translational impact. Additional studies to 
comprehensively assess whether anticonvulsant doses of 
other ASDs affect seizures in other AD-associated models 
that do not exclusively overexpress APP are also needed.

Overlapping Molecular Targets in Epilepsy 
and Alzheimer’s Disease

In addition to the shared pathophysiology between sei-
zures and AD, which can potentially worsen functional 
outcomes, these disorders share several similarities in 
molecular drivers of disease that warrant further study. 
The formation of Aβ plaques as a result of pathological 
neuronal hyperactivity and cleavage of APP by first β-, 
and then γ-secretase to generate β- and γ-C-terminal frag-
ments (CTFs) of APP is essential to Aβ plaque formation 
produces a key clinical feature of AD (Fig. 1). However, 
the α-secretase A Disintegrin And Metalloprotease 10 
(ADAM10) is involved in a secondary and understudied 
pathway of APP processing that releases the soluble por-
tion (sAβPPα) and prevents the formation of senile plaques 
[83]. In this manner, ADAM10 may actually be protective 
in AD and prevent the formation of senile plaques. Inter-
estingly, ADAM10 has been implicated in the pathogen-
esis of focal cortical dysplasia [84, 85], a disease charac-
terized by epileptic seizures and neurocognitive deficit. 
Overexpression of ADAM10 in a mouse temporal lobe 
epilepsy model also attenuates the burden of seizures and 
prevents pathological neuroinflammation [86]. While no 
ASD has yet been shown to affect the ADAM10 pathway, 
this work highlights that this alternative pathway under-
lying pathogenesis in both epilepsy and AD is a potential 
avenue for therapeutic intervention.

Both epilepsy and AD are increasingly viewed as dis-
orders associated with significant metabolic dysfunction. 
Glucose hypometabolism is commonly observed in both 
clinical [87] and preclinical studies [88] of AD, as is the 
compensatory shift to alternative fuel sources, e.g. ketone 
bodies [89–91]. Reduced glucose utilization in the hip-
pocampus and entorhinal cortex, two brain regions also 
heavily implicated in temporal lobe epilpesy, correlates 
to cognitive deficits over time in normal aged individu-
als, and can also predict those individuals who go on to 
develop mild cognitive impairment [92]. Oxidative stress 
is often reported in preclinical models of temporal lobe 
epilepsy in adult rodents [93]. Moreover, the aged brain 
itself may also undergo significant shifts in normal bio-
energetics processes; aged individuals utilize glucose to 
alternative fuel sources (e.g. ketone bodies) at a ratio of 
29:1, whereas young individuals exclusively utilize glu-
cose at a ratio of 100:0 [94]. In patients with AD, this 
ratio of glucose to alternative fuel consumption is 2:1 
[94]. Thus, age-related shifts in glucose metabolism may 
contribute to both epilepsy and AD. Further, reducing 
glycolysis in both patients with epilepsy and animal mod-
els using 2-deoxy-D-glucose (2DG) has been found to be 
quite effective as an anticonvulsant strategy [95, 96]. Thus, 
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metabolic regulation through pharmacological or dietary 
manipulation is an overlapping therapeutic target for both 
epilepsy and AD, as well as potentially affecting the hyper-
excitability associated with seizures in patients with AD.

Presenilins are an Underexplored Molecular 
Contributor to Seizures in AD

Early-onset AD is also associated with PSEN1 and PSEN2 
variants [97]. Presenilins are intramembrane proteases of the 
catalytic component of γ-secretase; mutations of which pro-
mote the formation of cleavage products such as Aβ (Fig. 1; 
[69, 98]). There is high incidence of seizures (32%) in AD 
patients with the most common PSEN2 variant (N141I), 
although these events are only self-reported and no chronic 
monitoring for electrographic (focal) seizures has yet been 
exclusively conducted in this patient group [99]. Moreover, 
similar to case reports in other patients with early-onset AD 
[3, 19, 32], it is entirely plausible that focal seizures are more 
frequent with PSEN2 variants than generalized seizures that 
would be readily detected by a caregiver, underscoring the 
need for more detailed clinical monitoring. PSEN2 is also 
particularly intriguing to explore the hyperexcitability of AD 
because some PSEN2 variants are associated with reduced 
penetrance [100], such that cases may be inadvertently 
masked as sporadic AD [101].

PSEN2 is attractive to define the additive impact of aging 
and seizures on disease burden in AD. First, PSENs may 
more meaningfully influence neuropsychiatric symptoms of 
AD [102]. Second, PSEN2 is a key contributor underlying 
neuroinflammation [103, 104]; loss of normal PSEN2 func-
tion disrupts canonical γ-secretase activity to promote a pro-
inflammatory phenotype mediated by microglial activation 
and cytokine release [104, 105]. Microglial activation and 
cytokine release can also promote the development of epi-
lepsy [106, 107]. Use of PSEN2 transgenic versus APP over-
expression models [67, 108] allows for the interrogation of 
the role that an altered neuroinflammatory milieu may play 
on seizure susceptibility and burden of AD. Third, PSEN2 
variants cause AD with later onset than PSEN1 variants 
(AD Mutation database: https:// www. alzfo rum. org/ mutat 
ions), making PSEN2 variant models suitable to simulta-
neously interrogate the additive environmental impacts of 
senescence [109] and neuronal hyperexcitability on disease 
outcomes. Fourth, PSEN2 variants do not induce Aβ accu-
mulation in mice [110] and APP processing [111], unlike 
APP/PS1 transgenic mouse models [112, 113], affording 
an opportunity to define whether Aβ accumulation and/or 
seizures are more detrimental to the onset and severity of 
behavioral sequelae. Finally, PSEN2 is essential to mito-
chondrial-dependent  Ca2+ homeostasis underlying normal 
neuronal signaling [114, 115]. Specifically, PSEN2, but not 

PSEN1, regulates the tethering and  Ca2+ crosstalk between 
the endoplasmic reticulum and mitochondria, which may 
itself alter cellular bioenergetics or increase mitochondria-
dependent cell death [115]. The early-onset AD-associated 
PSEN2-N141I variant, but not normal PSEN2 or PSEN1, 
can potentiate mitochondrial dysfunction [116]. Neuronal 
hyperexcitability due to dysregulation of  Ca2+ release may 
be one of the first observable biomarkers in the aged and 
diseased brain and is consistently observed in rodent models 
of AD [117–119] and epilepsy [120]. Altogether, PSEN2 
mouse models should be increasingly integrated into stud-
ies of seizures and hyperexcitability in AD to interrogate 
pathological processes of AD that are distinct from extrane-
ous Aβ production.

Mouse PSEN2 variant models are an untapped opportu-
nity to further elucidate the mechanism of seizures in AD. 
It is clear that APP overexpression in mice has revealed 
significant pathophysiological overlap between AD and epi-
lepsy [67, 121]; yet few studies have extensively evaluated 
whether other AD risk genes (e.g., PSENs) are similarly 
associated with changes in seizure susceptibility, seizure-
induced functional impacts, or ASD efficacy. Recently, we 
have begun to explore age-related seizure susceptibility in 
mice with loss of normal PSEN2 function. We observe an 
age-related change in the development of kindled seizures, 
a model of epileptogenesis [81], in PSEN2 knockout (KO) 
mice [62]. PSEN2 variants in AD lead to a loss of normal 
γ-secretase activity, such that PSEN2 KO mice are use-
ful to a priori assess how loss of normal PSEN2 function 
influences seizure susceptibility. Young PSEN2 KO mice 
were less susceptible to formation of an epileptic network 
than aged PSEN2 KO mice [62], implicating an age-related 
change in neuronal excitability and susceptibility to chronic 
seizures with loss of normal PSEN2 function. The latency 
to develop corneal kindled seizures in 2-month-old PSEN2 
KO mice was significantly longer than age- and sex-matched 
WT mice; an effect that was lost in mice aged > 8 months 
[62]. Notably, the seizure duration of mice with fully kin-
dled seizures was significantly longer in young PSEN2 KO 
mice, despite requiring more corneal stimulations to achieve 
the fully kindled state. The seizures of young male fully 
kindled PSEN2 KO mice were also less sensitive to escalat-
ing doses of LEV and diazepam (DZP) than age-matched 
WT mice, as well as the fully kindled PSEN2 KO mice aged 
greater than 8-months old. Thus, corneal kindling of PSEN2 
KO mice is a technically feasible way to assess the poten-
tial for anticonvulsant efficacy, identify novel contributors 
to ictogenesis, and assess age-related changes in seizure 
susceptibility. In addition to assessing kindling acquisition 
rates of young and mature PSEN2 KO mice, we assessed 
the age-related changes in seizure susceptibility using two 
acute seizure tests: the minimal clonic and 6 Hz seizure 
models [62]. Importantly, these studies established the 
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feasibility of using well-established, moderate-throughput 
acute and chronic seizure models [26, 57] to PSEN2 KO 
mice to define how AD-associated risk factors impact ASD 
efficacy and seizure susceptibility. PSEN2 variant models 
can be highly informative to more thoroughly understand 
how seizures and ASDs are tolerated in the aged rodent 
brain.

Conclusions and Future Directions

Considerable understanding of the hyperexcitability and 
seizures in AD has come from small clinical studies [3] and 
preclinical work primarily with early-onset AD-associated 
APP-overexpressing mice [23, 67]. However, the intersec-
tion between seizures and AD remains relatively underex-
plored. Numerous therapeutic targets bridge the intersection 
between both disorders; additional study is clearly war-
ranted. PSEN2 variants are highly associated with seizures 
within 5 years of AD diagnosis; this incidence matches 
that which is associated with APP duplications and is more 
common than that which is observed with PSEN1 variants 
[122]. As a result, PSENs, and PSEN2 in particular, should 
be more frequently studied in isolation to interrogate the 
effects of PSEN2 variants on seizures in AD. Mice with 
PSEN2 variants do not demonstrate Aβ plaques [110]. 
PSEN2 variant models are intriguing to study the patho-
logical intersection between seizures in AD because of the 
role for PS2 protein that is independent from its γ-secretase 
activity. In this regard, PSEN2 is an untapped opportunity 
to define the contributions that Aβ-independent mechanisms 
may play in the hyperexcitability of AD. PSEN2 manipula-
tion may additionally reveal novel molecular contributors 
to ictogenesis [123]. There is reason to believe that novel 
therapies for AD and epilepsy could be bidirectionally 
uncovered [124]. Basic science has generated a remarkable 
diversity of preclinical models of AD that have advanced 
our understanding of its pathophysiological processes. Now, 
it is incumbent that we further expand the application of 
these models to comorbid conditions (e.g., epilepsy) to best 
inform the clinical management and further elucidate the 
mechanisms of hyperexcitability and its influence on AD 
trajectory. Prioritizing the studies of seizures in a diversity 
of AD models will better inform future ASD discovery for 
elderly patients.
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