
Frontiers in Immunology | www.frontiersin.

Edited by:
Aldo Tagliabue,

Italian National Research Council,
Italy

Reviewed by:
Francis Lin,

University of Manitoba, Canada
Gabriela Dveksler,

Uniformed Services University of the
Health Sciences, United States

*Correspondence:
Yanxiang Cheng

yanxiangCheng@whu.edu.cn
Xiaomiao Zhao

zhxmiao@mail.sysu.edu.cn

†These authors have contributed
equally to this work and

share first authorship

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 31 March 2021
Accepted: 13 August 2021
Published: 31 August 2021

Citation:
Yang D, Dai F, Yuan M, Zheng Y,
Liu S, Deng Z, Tan W, Chen L,

Zhang Q, Zhao X and Cheng Y (2021)
Role of Transforming Growth Factor-

b1 in Regulating Fetal-Maternal
Immune Tolerance in Normal
and Pathological Pregnancy.
Front. Immunol. 12:689181.

doi: 10.3389/fimmu.2021.689181

REVIEW
published: 31 August 2021

doi: 10.3389/fimmu.2021.689181
Role of Transforming Growth Factor-
b1 in Regulating Fetal-Maternal
Immune Tolerance in Normal and
Pathological Pregnancy
Dongyong Yang1†, Fangfang Dai1†, Mengqin Yuan1, Yajing Zheng1, Shiyi Liu1, Zhimin Deng1,
Wei Tan1, Liping Chen1, Qianjie Zhang1, Xiaomiao Zhao2* and Yanxiang Cheng1*

1 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China, 2 Department of
Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

Transforming growth factor-b (TGF-b) is composed of three isoforms, TGF-b1, TGF-b2,
and TGF-b3. TGF-b1 is a cytokine with multiple biological functions that has been studied
extensively. It plays an important role in regulating the differentiation of immune cells and
maintaining immune cell functions and immune homeostasis. Pregnancy is a carefully
regulated process. Controlled invasion of trophoblasts, precise coordination of immune
cells and cytokines, and crosstalk between trophoblasts and immune cells play vital roles
in the establishment and maintenance of normal pregnancy. In this systematic review, we
summarize the role of TGF-b1 in regulating fetal-maternal immune tolerance in healthy and
pathological pregnancies. During healthy pregnancy, TGF-b1 induces the production of
regulatory T cells (Tregs), maintains the immunosuppressive function of Tregs, mediates
the balance of M1/M2 macrophages, and regulates the function of NK cells, thus
participating in maintaining fetal-maternal immune tolerance. In addition, some studies
have shown that TGF-b1 is dysregulated in patients with recurrent spontaneous abortion
or preeclampsia. TGF-b1 may play a role in the occurrence and development of these
diseases and may be a potential target for the treatment of these diseases.

Keywords: transforming growth factor-b1, pregnancy, immune tolerance, recurrent spontaneous
abortion, preeclampsia
INTRODUCTION

Transforming growth factor-b (TGF-b), an evolutionarily conserved secreted protein consisting of
three isoforms, TGF-b1 (the most common), TGF-b2, and TGF-b3, which map to regions of human
chromosomes 19q13.1-q13.3, 1q41 (1), and 14q23-24 (2), respectively (3). The role of TGF-b in cell
growth, proliferation, differentiation, metabolism, and apoptosis has gradually attracted attention
since 1980 (4, 5). Pro-TGF-b1 monomers are composed of a 249-residue domain at the amino
terminus, a pro-protein convertase cleavage site, and a 112-residue domain at the carboxyl
terminus. TGF-b1 usually exists in the form of latent TGF-b1. Latent TGF-b1 combines with
latent TGF-b binding proteins (LTBPs) or glycoprotein-A repetitions predominant protein (GARP)
to form large latent complexes (6, 7). Increasing evidence shows that TGF-b1 plays an indispensable
org August 2021 | Volume 12 | Article 6891811
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role in regulating immune cell differentiation, maintaining
immune cell function, and immune homeostasis (8–11).

Healthy pregnancy is a process requiring precise regulation
that depends on the balance between the invasion of trophoblast
cells and fetal-maternal immune tolerance. The precise
coordination and action of various immune cells and cytokines
is the key to maintaining fetal-maternal immune tolerance (12).
Studies have shown that TGF-b1 plays an important role in
trophoblast cell invasion, maintenance of fetal-maternal immune
tolerance, and uterine spiral artery remodeling (13–15). In
addition, as a multifunctional cytokine, TGF-b1 is widely
involved in the regulation of immune cell function and plays
an indispensable role in fetal-maternal immune tolerance (16).
Therefore, in this review, we specifically focus on the mechanism
of TGF-b1 in the fetal-maternal immune tolerance. In addition,
we discuss its potential role in the occurrence and development
of recurrent spontaneous abortion (RSA) and preeclampsia (PE).
TGF-b1

TGF-b1 Activation
TGF-b1 is produced in the form of a precursor. The precursor
undergoes processing, such as signal peptide removal,
homodimerization, and proprotein convertase cleavage, to
produce carboxy-terminal dimers (mature TGF-b1) and amino-
terminal dimers (latency-associated peptide, LAP). Mature TGF-b1
and LAP combine in a noncovalent form to form latent TGF-b1
(17). Both immune cells and nonimmune cells can secrete latent
TGF-b1. There are two main mechanisms for the extracellular
fixation of latent TGF-b1. In the first, TGF-b1 binds to extracellular
matrix (ECM) proteins and is deposited in the ECM, which mainly
occurs in fibroblasts and epithelial cells. In the second, latent TGF-
b1 covalently binds to the transmembrane leucine-rich repeat
protein GARP and is maintained on the cell surface, a process
that mainly occurs in regulatory T cells (Tregs) (18).

Latent TGF-b1 is inactive because LAP prevents mature TGF-b1
from binding to receptors. The process of releasing mature
TGF-b1 from latent TGF-b1 is called TGF-b1 activation (19). The
TGF-b1 activation mechanisms include integrin-mediated LAP
deformation and release of mature TGF-b1, proteolysis,
physicochemical factors, and deglycosylation. These mechanisms
have been well summarized in a previous review (20). Here, we
emphasize the TGF-b1 activation effect of pregnancy-specific
glycoproteins (PSGs). PSGs are encoded by the Psg gene on
chromosome 19 and are expressed by syncytiotrophoblast cells
throughout human pregnancy. There are 10 kinds of PSGs in
humans, namely, PSG1-PSG9 and PSG11. PSG1 and PSG9 have
previously been confirmed to activate latent TGF-b1, and PSG1 can
also inhibit dextran sodium sulfate-induced colitis inmice in a TGF-
b-dependent manner (21, 22). It is worth noting that in subsequent
studies, researchers have found that all 10 human PSGs can activate
TGF-b1, and mouse PSG23 can also activate TGF-b1 in a dose-
dependent manner (23). These findings indicate that PSGs are
important activators of TGF-b1, and PSGs may play important
roles in maintaining immune tolerance during pregnancy by
activating TGF-b1.
Frontiers in Immunology | www.frontiersin.org 2
TGF-b1 Signaling Pathway
Once activated, mature TGF-b1 binds to high-affinity cell
surface-specific receptors and activates downstream signaling
pathways to perform corresponding biological functions.
Activated extracellular TGF-b1 binds with the transmembrane
kinase receptor TGF-b type I receptor (TbR-I) and TGF-b type II
receptor (TbR-II) at the cell surface to form a heterotetrameric
complex, leading to the phosphorylation and activation of the
receptors (24). Subsequently, receptor kinases phosphorylate and
activate intracellular cascade signals, including the classic small
mother against decapentaplegic (SMAD)-dependent and
SMAD-independent pathways (Figure 1), and then mediate
diverse biological effects (3, 25, 26). SMADs are composed of
spherical N-terminal DNA-binding domains (MHIs) and C-
terminal domains (MHIIs), including receptor-regulated
SMADs (SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8),
common-partner SMAD (SMAD4), and inhibitory SMADs
(SMAD6 and SMAD7) (25, 27). In the SMAD-dependent
pathway, activated transmembrane receptors phosphorylate
serine (Ser) residues at MHII of SMAD2 and SMAD3.
Phosphorylated SMAD2 and/or SMAD3 can form a trimeric
complex with SMAD4 and then undergo transfer to the nucleus
to regulate gene expression (28, 29). In addition to SMAD-
dependent pathways, TGF-b1 can also activate SMAD-
independent pathways such as PI3K-AKT, p38 MAPK, NF-kB,
and ERK to regulate gene expression and participate in
regulating cell functions (30–33).
TGF-b1 IN FETAL-MATERNAL IMMUNE
TOLERANCE

After fertilization, the embryo attaches to the endometrium, and
semiallogeneic fetal extravillous trophoblasts (EVTs) begin to
invade the uterine mucosa without being rejected by the
maternal immune system (34, 35). Once they have invaded
into the decidua, EVTs encounter different maternal cell types,
such as decidual macrophages, uterine NK (uNK) cells, and
Tregs. The moderate invasion of trophoblasts, precise
coordination of immune cells and cytokines, and crosstalk
between EVTs and immune cells are essential for the
establishment and maintenance of a normal pregnancy (36,
37). Tregs, NK cells, macrophages, and other immune cells
play vital roles in maintaining fetal-maternal immune
tolerance. These immune cells regulate each other and
maintain immune homeostasis by secreting proinflammatory
or anti-inflammatory cytokines (38). TGF-b1 is a cytokine that
exerts a negative regulatory function. It plays important roles in
the differentiation of Tregs, the balance of M1/M2 macrophages,
and the regulation of NK cell functions.

TGF-b1 and Tregs
CD4+CD25+ Tregs are a key subset of T lymphocytes. Both
thymus-derived Tregs and peripherally induced Tregs can act as
effective inhibitors of inflammatory immune responses and
mediate immune homeostasis (39). Natural Tregs depend on
August 2021 | Volume 12 | Article 689181
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the maturation of the thymus, and TGF-b1 is an important
inducer of peripheral Tregs (40). FOXP3 is the most specific Treg
marker. It is expressed in the thymus and peripheral Tregs
regardless of the mode and state of Treg activation (41). The
FOXP3 gene is highly conserved between humans and mice.
Mice lacking Foxp3 usually die of lethal lymphoproliferative
autoimmune syndrome, and humans with FOXP3 mutations
suffer from an autoimmune syndrome called IPEX (42, 43).
Continuous expression of FOXP3 is necessary to maintain the
suppressive immune function of Tregs. Tregs in Foxp3-deficient
mice lack immunosuppressive function, and Foxp3 transfection
can confer CD4+CD25+ T cells the ability to inhibit the
proliferation of CD4+ T cells (44).

During pregnancy, the maternal immune system undergoes
systemic changes to accommodate the growth and development
of fetuses expressing paternal antigens. This immune tolerance is
regulated by the number and immunosuppressive functions of
Tregs. The number of Tregs increases rapidly in the first
trimester, reaches a peak in the second trimester, and gradually
decreases to the prepregnancy level during delivery (39, 45).
Studies have shown that the proportion of Tregs in the peripheral
blood of pregnant women and mice increases significantly
during pregnancy, and the specific recruitment of Tregs from
maternal peripheral blood to the fetal-maternal interface makes
the proportion of Tregs in the placenta and decidua higher than
that in peripheral blood (46). Tregs at the maternal-fetal
interface prevent fetal rejection by creating an immune
tolerance microenvironment characterized by the expression of
Frontiers in Immunology | www.frontiersin.org 3
IL-10, TGF-b1, and heme oxygenase isoform 1 (HO-1) (47). The
level and function of Tregs are related to the occurrence and
development of pregnancy-related complications such as RSA
and PE. CD25+Treg depletion can cause embryo implantation
failure in allogeneic mice (48). Compared with normal pregnant
women, women with spontaneous abortion have a lower
level of CD4+CD25+Tregs (49). It has been appreciated that
immunotherapy with paternal or third-party lymphocytes is an
effective method of treatment for unexplained RSA (URSA) (50,
51). After immunotherapy with monocytes from the infant’s
father, expression of the transcription factor RORgt in Th17 cells
in peripheral blood mononuclear cells of URSA patients
decreased, while expression of the Treg-specific transcription
factor FOXP3 increased, and secretion of the cytokine TGF-b1
related to Tregs increased (52). These results indicate that the
Th17/Treg balance is conducive to normal pregnancy, and TGF-
b1 seems to be an important factor in regulating the balance of
Tregs/Th17 at the maternal-fetal interface.

Tregs can regulate the immune response and maintain
immune tolerance through a cell contact-dependent mechanism
and a cell contact-independent mechanism. The cell contact-
independent mechanism of Tregs is achieved through the
secretion of inhibitory cytokines, and TGF-b1 is essential for the
proliferation and inhibitory activity of Tregs (53). The activation
of TGF-b1 is necessary to induce the production of CD4+FOXP3+

Tregs, and Tregs can then secrete TGF-b1 and participate in
immune regulation (54, 55). Studies have shown that TGF-b1 can
promote the differentiation of initial CD4+ T cells into Tregs, and
FIGURE 1 | Active TGF-b1 functions via SMAD-dependent and/or SMAD-independent pathways. SMAD-dependent pathway: After TGF-b1 binds to specific
receptors on the cell surface, phosphorylated TbR-I recruits and phosphorylates SMAD2 and SMAD3. Phosphorylated SMAD2 and/or SMAD3 combine with SMAD4
to form a trimeric complex, which can regulate gene expression in the nucleus. SMAD-independent pathway: After TGF-b1 binds to receptors, phosphorylated TbR-I
recruits and phosphorylates signaling molecules, such as PI3K-AKT, p38 MAPK, NF-kB, and ERK, and participates in the regulation of gene expression.
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TGF-b1 secreted by Tregs can play a role in maintaining the
inhibitory properties of Tregs by binding to its receptors. The use
of neutralizing antibodies against TGF-b1 or TGF-b1 expression
defects in Tregs will result in the weakening or disappearance of
Treg inhibitory activity (56–58). The expression of Foxp3 in TGF-
b-/- mouse peripheral blood Treg cells was significantly reduced,
and the exogenous addition of TGF-b1 could promote the
expression of Foxp3 (59). In the CBA/J × DBA/2 abortion-
prone mouse model, adoptive transfer of Tregs enhanced the
concentration of TGF-b1 in mouse serum and reduced the
abortion rate (60). Similarly, applying recombinant IL-17
(a hallmark cytokine secreted by Th17 cells) to the vaginal
fornix of pregnant CBA/J mice mated with BALB/c males
significantly increased the abortion rate and reduced TGF-b
mRNA and protein levels. Adoptive transfer of pregnancy-
induced Tregs from 14-day normal pregnant mice before
mating offsets the adverse effects caused by IL-17 (61). These
results indicate that TGF-b1 is indispensable for maintaining the
function of Tregs. Simultaneously, TGF-b1 plays an important
role in mediating the fetal-maternal immune tolerance regulated
by Tregs, but the specific mechanism requires further study.

TGF-b1 and NK Cells
NK cells are important components of the endometrial innate
immune system and play an important role in the maintenance
of pregnancy. In the initial phase of pregnancy, NK cells are
preferentially recruited to the endometrium to play an
immunomodulatory role under the effect of chemokines
derived from endometrial stromal and trophoblast cells (62).
TGF-b1 produced by decidual stromal cells can convert
CD56dimCD16+NK cells into CD56brightCD16-NK cells to
complete the terminal differentiation of NK cells (63, 64).
Decidual NK (dNK) cells are mainly of the CD56brightCD16-

phenotype, constituting between 50 and 70% of the total
lymphocytes of the decidua, and they are the most abundant
immune cells in the decidua (65). Low cytotoxic dNK cells can
regulate vascular remodeling at the maternal-fetal interface by
producing vascular endothelial growth factor, angiopoietin,
and TGF-b1 (66–68). An emerging mechanism by which
mesenchymal stem cells (MSCs) regulate the immune function
of dNK cells has gradually attracted more attention (69). Studies
suggest that menstrual blood stromal/stem cells (MenSCs), a
substitute for endometrial MSCs, can induce the proliferation of
NK cells. However, MenSCs pretreated with IFN-g can suppress
NK cell proliferation by releasing TGF-b and IL-6 (70). These
results indicate that TGF-b1 is an important mediator that
regulates the function of dNK cells and plays an important role
in the maintenance of fetal-maternal immune tolerance.

TGF-b1 and Macrophages
Almost 20-30% of the leukocytes in the decidua in the first
trimester are macrophages. Macrophages play important roles
in trophoblast cell invasion, vascular remodeling, and
immune tolerance (71). Macrophages are classified into two
subpopulations: classic M1 and alternative M2 macrophages.
M1 macrophages express proinflammatory factors such as IL-6,
IL-12, and TNF-a. Conversely, M2 macrophages upregulate the
Frontiers in Immunology | www.frontiersin.org 4
expression of anti-inflammatory cytokines such as TGF-b1 and
IL-10 (72). The elaborate balance between M1 macrophages
and M2 macrophages is of prime importance to establish
and maintain pregnancy (73–75). M2 macrophages promote
cell homeostasis by secreting TGF-b1 and IL-10, which has
a profound impact on maintaining the immune tolerance
environment (76).

Macrophages not only regulate local immune function but
also directly promote the migration and invasion of extravillous
trophoblast cells and support spiral artery remodeling and
angiogenesis (77). Coculture of trophoblasts and macrophage
cell lines can promote the polarization of macrophages to M2,
and expression of the marker proteins TGF-b1 and IL-10 via
the IL-6/STAT3 pathway and M2 macrophages can promote
the invasion and migration of trophoblasts (78). Unlike NK
cells, which are only located in the decidua, macrophages exist
in both the decidua and the placenta and are the major immune
cell population in the placenta. Placental macrophages have
also shown an M2-like phenotype; genes related to M1 are
silenced by hypermethylation, while genes related to M2 are
hypomethylated (79). A recent study has shown that placental
macrophages have two cytokine expression patterns. In the first
pattern, placental macrophages produce reduced levels of IL-1,
IL-6, IL-10, IL-8, and TNFa and can be stimulated by bacterial
endotoxins. In the second pattern, placental macrophages
constitutively express IL-11, IL-17A, IL-17F, TGF-b1, and
VEGF, and this expression is unresponsive to stimulation (80).
Taken together, this evidence reveals that TGF-b1 plays an
important role in regulating the function of macrophages at
the maternal-fetal interface.

TGF-b1 and Regulatory B Cells
Regulatory B cells (Bregs), a new type of B cell population, have a
negative immunomodulatory effect. Bregs are a collective term
for a variety of regulatory B cell subgroups, accounting for
approximately 0.5% of the total number of B cells in healthy
people (81). Similar to Tregs, Bregs can maintain immune
tolerance by producing different inhibitory cytokines (such as
IL-10, IL-35, and TGF-b1) or through cell contact-dependent
mechanisms (82). Bregs can interact with Tregs, macrophages,
and dendritic cells to participate in the regulation of immune
homeostasis (83). A large number of studies have found that
Bregs also play an important role in maintaining fetal-maternal
immune tolerance. Studies have shown that increased levels of
CD5+CD1d+Breg cells can reduce immune abortion in pregnant
mice. The adoptive transfer of Bregs to abortion-prone mice can
enhance the function of Tregs and maintain the immature state
of DCs to enhance maternal immune tolerance (84). In addition,
estrogen can also induce the maturation of Bregs during
pregnancy to maintain immune tolerance (85).

Bregs play a key role in the downregulation of the
inflammatory response through an IL-10-dependent mechanism
(86). In addition, compared with normal mice, the percentage of
Bregs expressing IL-35 in the peripheral blood of abortive mice is
reduced, suggesting the potential involvement of IL-35 in
pregnancy maintenance (87). Can the TGF-b1 released by Bregs
also participate in the regulation of the immune balance of the
August 2021 | Volume 12 | Article 689181
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maternal-fetal interface? At present, research is lacking on Bregs
involved in regulating the immune tolerance of the maternal-fetal
interface by releasing TGF-b1. Considering that Bregs are an
established source of TGF-b1, TGF-b1 can regulate a variety of
immune cell functions, including Tregs, and the important role of
Bregs during pregnancy, more in-depth research remains to
be conducted.
TGF-b1 IN PATHOLOGICAL PREGNANCY

The two key events of normal human pregnancy are embryo
implantation and placenta formation (88). During these events,
the maternal immune system must accept the genetically
incompatible fetuses to allow trophoblast invasion (89). It is
known that pregnancy-related diseases, such as RSA and PE,
may be closely related to impaired immune tolerance (90, 91).
TGF-b1 is an important regulator of immune cell function.
Understanding the role of TGF-b1 in the occurrence and
development of RSA and PE may help to further reveal the
etiology of these diseases.

RSA
RSA refers to two or more consecutive spontaneous abortions
before 20 weeks of pregnancy, and its incidence is approximately
5% (92–94). Studies have confirmed that compared with healthy
controls, the expression of TGF-b1 in the decidual tissue of RSA
patients is significantly decreased (95, 96). Treatment with
vasoactive intestinal peptide (VIP) in a miscarriage-prone
mouse model (CBA/J×DBA/2) can regulate the endocytosis of
maternal macrophages and promote the expression of TGF-b1
at the implantation site of the mouse, significantly increasing
the number of implant points (97). In addition, Ma et al. (98)
found that endovascular extravillous trophoblasts (enEVTs)
actively produced TGF-b1, and primary enEVTs promoted the
differentiation of naive CD4+ T cells into immunosuppressive
Tregs in a TGF-b1-dependent manner. The proportion of TGF-
b1-producing enEVTs and their ability to educate Tregs
differentiation were significantly reduced in RSA patients.
Overall, TGF-b1 may participate in the occurrence and
development of RSA by regulating immune tolerance.

The TGF-b1 signaling pathway can regulate fetal-maternal
immune tolerance by regulating the expression of indoleamine
2,3-dioxy (IDO), thereby participating in immune and
inflammatory responses (99). In semen, high concentrations of
TGF-b1 and TGF-b2 can regulate women’s immune tolerance to
sperm, embryo implantation, and subsequent pregnancy. After
intercourse, the pH of the vagina will activate TGF-b-involved
immune tolerance (100). Furthermore, existing studies show that
TGF-b seems to be a factor controlling the apoptosis and
proliferation of endometrial cells during the process of embryo
implantation. Every subtype of TGF-b has a different effect on
the endometrium; TGF-b1 and TGF-b2 can induce the apoptosis
of uterine cells, while TGF-b3 has a proliferation-promoting
effect (26). In summary, in addition to immune cells, TGF-b1 is
also involved in maintaining the functions of nonimmune cells.
Frontiers in Immunology | www.frontiersin.org 5
PE
PE is a pregnancy-specific disease characterized by new
hypertension and proteinuria after 20 weeks of gestation. Its
global incidence is approximately 5-8% (101). PE can be divided
into two different subtypes: early-onset PE (appearing before 34
weeks) and late-onset PE (appearing after 34 weeks). The
pathogenesis between these two subtypes is different (102).
Although some theories have been proposed to explain PE, its
pathogenesis has not yet been elucidated.

A study found that compared with the control group, the
expression of TGF-b1 in maternal and cord blood of late-onset
PE was significantly reduced, but there was no significant
difference in that of early-onset PE (103). However, most
studies have not clearly pointed out whether PE patients have
early- or late-onset PE. For example, in a study on the TGF-b1
single nucleotide polymorphism and the risk of PE in Chinese
women, the researchers did not indicate whether PE patients
were early- or late-onset. PE patients were divided into mild PE
and severe PE. It was found that the allelic variant of TGF-b1
rs1800469 T was associated with the risk of PE, and TGF-b1
rs1800469 T>C was negatively correlated with the severity of PE
(104). In addition, a study has shown that compared with healthy
controls, the expression of TGF-b1 and Smad3 is upregulated in
the placenta of patients with PE (105), while another study has
shown no significant difference in the expression level of TGF-b1
in the serum of controls and PE patients (106). These
contradictory results may be due to the different tissues tested,
the racial differences in the subjects studied, and the small
number of subjects in some studies. In addition, these studies
rarely mentioned whether the detected TGF-b1 was active. It
should be noted that due to ethical requirements, most clinical
specimens of PE are derived from the placenta obtained after
delivery (>34 weeks), which cannot well reflect the early
development of PE. Therefore, these research results should be
considered with caution. Establishing TGF-b1 testing standards
and carrying out large-scale clinical sample testing may be
effective solutions to determine whether the expression level of
TGF-b1 is related to PE.

Impaired trophoblast cell invasion and increased uterine
placental vascular resistance in early pregnancy are important
pathological mechanisms of PE (107). TGF-b1 is involved in
regulating the invasion of human trophoblast cells (108, 109).
Compared with healthy controls, the transcription level of
TGFB1 and the level of active TGF-b1 protein are increased in
the placental tissue of patients with PE. The TGF-b1/Smad3
signaling pathway can mediate the inhibition of trophoblast cell
migration and invasion caused by the downregulation of lysyl
oxidase (LOX) (110). Liu (111) et al. found that TGF-b1/Smad3
can also mediate the inhibitory effect of miR-142-3p on the
invasion and migration of trophoblast cells in vitro. In addition,
TGF-b1 is also involved in the regulation of endothelial cell
function. Endoglin is a coreceptor of TGF-b signaling. Soluble
endoglin increases significantly in the serum of PE patients, and
its level is related to the severity of PE. Soluble endoglin can block
the vasodilation induced by TGF-b1 in rats by inhibiting the
binding of TGF-b1 to its receptor (112). A study on the
August 2021 | Volume 12 | Article 689181
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underlying mechanism between maternal PE and fetal vascular
function found that compared with the offspring of healthy
controls, the TGF-b1 signaling network in HUVECs of
maternal PE offspring was impaired. Maternal PE can promote
the proliferation of female fetal HUVECs induced by TGF-b1,
but it has no effect on the proliferation of male fetal HUVECs
induced by TGF-b1. These findings suggest that TGF-b1
may be involved in the regulation of endothelial cell function,
and maternal PE plays different roles in the regulation
of female and male fetal endothelial cell function (113).
Although the above studies have not clearly pointed out
whether PE is early- or late-onset PE, they indicate that
TGF-b1 may participate in the occurrence and development of
PE by regulating the invasion of trophoblast cells and the
function of vascular endothelial cells.

PE is related to abnormalities of the immune system
throughout the body and the placenta. Studies have shown that
compared with healthy controls, the level of TGF-b1 in the
decidua of PE patients (not indicating early- or late-onset PE) is
increased, and high levels of TGF-b1 can inhibit the activation of
specific subgroups of dNK cells, thereby participating in the
occurrence of PE (114). In addition, a mass spectrometry study
found that the level of PSG9 in the serum of women with early-
onset PE was significantly higher than that in the control group,
and PSG9 may be a potential marker of PE (115). Another study
has shown that PSG9 can bind to LAP and activate potential
TGF-b1 to induce the production of FoxP3+ Tregs, indicating
that PSG9 may be involved in inducing immune tolerance at the
fetal-maternal interface (21). These results are contradictory, and
the role of PSG9 in the pathogenesis of PE remains to be revealed
by more in-depth studies. Although these results suggest that
TGF-b1 may participate in the occurrence of PE by regulating
immune tolerance, further research is needed to explore the role
and specific mechanisms of TGF-b1.
CONCLUSION

In summary, TGF-b1 plays an important role in regulating the
function of immune cells at the maternal-fetal interface and
maintaining immune homeostasis. TGF-b1 can induce the
production of Tregs, regulate the balance of Tregs/Th17, and
is necessary to maintain the suppressive immune function
of Tregs. In addition, TGF-b1 can induce the production of
CD56brightCD16 NK cells, and TGF-b1 released by dNK cells
participates in the regulation of vascular remodeling at the
maternal-fetal interface. Furthermore, TGF-b1 plays a vital role
in regulating the M1/M2 balance. TGF-b1 is a cytokine secreted
by Tregs, NK cells, and M2 macrophages. It may be an important
molecule that coordinates the balance of immune cells at the
maternal-fetal interface and maintains immune tolerance.

During pregnancy, TGF-b1 and TGF-b2 induce endometrial
cell apoptosis, while TGF-b3 promotes endometrial cell
proliferation. The differential regulation of TGF-b subtypes
on endometrial cells may be the key regulatory mechanism of
endometrial decidualization. In addition, TGF-b1 is differentially
Frontiers in Immunology | www.frontiersin.org 6
expressed in RSA tissues, and the dysregulation of TGF-b1
may be related to the occurrence and development of RSA.
Although the expression level of TGF-b1 in the decidua
and serum of patients with PE is still controversial, an
increasing number of studies have shown that TGF-b1 can
participate in the occurrence and development of PE by
affecting the invasion ability of trophoblast cells and the
activation of dNK cells. Therefore, TGF-b1 may be a potential
therapeutic target for these diseases, and the role of TGF-b1 in
the immune tolerance of the maternal-fetal interface may
provide new clues for the immunological treatment of
pregnancy-related complications.

Because TGF-b1 plays a key role in regulating trophoblast cell
invasion and fetal-maternal immune tolerance, the development
of specific drugs targeting TGF-b1 for the treatment of
pregnancy-related diseases may have broad prospects. However,
since TGF-b1 is expressed in almost all cells, strategies to target
the drug to the maternal-fetal interface to function face challenges
that must be overcome.

Current studies have certain limitations. For example, many
studies do not clearly indicate which TGF-b subtype was studied
but instead described it as TGF-b, raising confusion and
obstacles to summarizing the functions of TGF-b1 and its role
in diseases. In addition, most studies on the relationship between
TGF-b1 and immune cells were carried out in cell lines. The use
of human or mouse primary cells may be more conducive to
revealing the true role of TGF-b1 in regulating immune cell
function. In future studies, standardizing the expression and
detection standards of TGF-b subtypes and conducting more
primary cell or in vivo studies may further reveal the role of
TGF-b1 in pathophysiological conditions.
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